I have 4 points that form some quadrilateral. The lines can't cross or anything like that, it should be a square, rectangle, rhombus, parallelogram, etc.
The lines that connect them break the field into 9 regions. With a square, it would look like a tic-tac-toe board (#), but with other shapes the lines will be at angles.
A point falls randomly into this 9-region field. I know the coordinates of the random point, as well as the coordinates of the quadrilateral's 4 corners.
Is there any way I can find which field contains the point without using the equations of the lines?
I'm basically looking for something like
if(p.x > q1.x && p.x < q4.x && p.y < q3.y) {
//It's in the top left region
}
etc
I'm thinking that this isn't possible when using sloped lines (rather than a square/rectangle) without solving the line equations. But I thought I'd run it by the math guys first. THANKS!
It may be equivalent to 'using the equations of the lines', but the obvious thing to do is to compute the affine transformation that takes your four points to the unit square (0,0), (0,1), (1,0), (1,1). To decide the location of a point, apply the transform to the point and compare the result against the unit square.
Anything you do is effectively "using the equations of the lines", so I'm not sure what to make of that condition. I assume you just want easy inequalities to check which region the random point (x,y) is in, so that's what I'll show you how to do.
From your question, it sounds like you always have a parallelogram, so let's assume that the points are (0,0), (a,b), (c,d), and (a+c,b+d), which makes the explanation a little easier to follow. To fix your mental picture, imagine that (a,b) is roughly "to the right" of (0,0) and (c,d) is roughly "above" (0,0). Then the equations for the "horizontal" lines are -bx+ay=0 and -bx+ay=-bc+ad, so you get three possibilities, depending on how -bx+cy compares to 0 and -bc+ad:
// Assuming -bc+ad is positive
-bx+ay < 0 // it's in the "bottom row"
0 < -bx+ay < -bc+ad // it's in the "middle row"
-bc+ad < -bx+ay // it's in the "top row"
Similarly, the equations for the "vertical" lines are dx-cy=0 and dx-cy=da-bc, so the three possibilities, depending on how dx-cy compares to 0 and to da-cb:
// Still assuming ad-bc is positive
dx-cy < 0 // it's in the "left column"
0 < dx-cy < da-cb // it's in the "middle column"
da-cb < dx-cy // it's in the "right column"
Of course, if da-cb is negative, then the three possibilities in each case are "less than da-cb", "between da-cb and 0", and "greater than 0" instead. Finally, if equality ever holds, then the point (x,y) is actually on one of the lines rather than in one of the regions.
The lines that connect them break the field into 9 regions. With a square, it would look like a tic-tac-toe board (#), but with other shapes the lines will be at angles.
What if your points make up a trapezium (or trapezoid)?
For example, if the points are (-2, 0), (2, 0), (-1, 1), (1, 1), then the 'lines ... at angles' will intersect and it's not clear which of the '9 regions' you would want, say, (0, 10) to be in:
(please excuse my Paint skills...)
Unless of course by 'The lines can't cross or anything like that' you mean that the quadrilateral is always a parallelogram?
Related
Assume we have a 3D grid that spans some 3D space. This grid is made out of cubes, the cubes need not have integer length, they can have any possible floating point length.
Our goal is, given a point and a direction, to check linearly each cube in our path once and exactly once.
So if this was just a regular 3D array and the direction is say in the X direction, starting at position (1,2,0) the algorithm would be:
for(i in number of cubes)
{
grid[1+i][2][0]
}
But of course the origin and the direction are arbitrary and floating point numbers, so it's not as easy as iterating through only one dimension of a 3D array. And the fact the side lengths of the cubes are also arbitrary floats makes it slightly harder as well.
Assume that your cube side lengths are s = (sx, sy, sz), your ray direction is d = (dx, dy, dz), and your starting point is p = (px, py, pz). Then, the ray that you want to traverse is r(t) = p + t * d, where t is an arbitrary positive number.
Let's focus on a single dimension. If you are currently at the lower boundary of a cube, then the step length dt that you need to make on your ray in order to get to the upper boundary of the cube is: dt = s / d. And we can calculate this step length for each of the three dimensions, i.e. dt is also a 3D vector.
Now, the idea is as follows: Find the cell where the ray's starting point lies in and find the parameter values t where the first intersection with the grid occurs per dimension. Then, you can incrementally find the parameter values where you switch from one cube to the next for each dimension. Sort the changes by the respective t value and just iterate.
Some more details:
cell = floor(p - gridLowerBound) / s <-- the / is component-wise division
I will only cover the case where the direction is positive. There are some minor changes if you go in the negative direction but I am sure that you can do these.
Find the first intersections per dimension (nextIntersection is a 3D vector):
nextIntersection = ((cell + (1, 1, 1)) * s - p) / d
And calculate the step length:
dt = s / d
Now, just iterate:
if(nextIntersection.x < nextIntersection.y && nextIntersection.x < nextIntersection.z)
cell.x++
nextIntersection.x += dt.x
else if(nextIntersection.y < nextIntersection.z)
cell.y++
nextIntersection.y += dt.y
else
cell.z++
nextIntersection.z += dt.z
end if
if cell is outside of grid
terminate
I have omitted the case where two or three cells are changed at the same time. The above code will only change one at a time. If you need this, feel free to adapt the code accordingly.
Well if you are working with floats, you can make the equation for the line in direction specifiedd. Which is parameterized by t. Because in between any two floats there is a finite number of points, you can simply check each of these points which cube they are in easily cause you have point (x,y,z) whose components should be in, a respective interval defining a cube.
The issue gets a little bit harder if you consider intervals that are, dense.
The key here is even with floats this is a discrete problem of searching. The fact that the equation of a line between any two points is a discrete set of points means you merely need to check them all to the cube intervals. What's better is there is a symmetry (a line) allowing you to enumerate each point easily with arithmetic expression, one after another for checking.
Also perhaps consider integer case first as it is same but slightly simpler in determining the discrete points as it is a line in Z_2^8?
Hi sorry for the confusing title.
I'm trying to make a race track using points. I want to draw 3 rectangles which form my roads. However I don't want these rectangles to overlap, I want to leave an empty space between them to place my corners (triangles) meaning they only intersect at a single point. Since the roads have a common width I know the width of the rectangles.
I know the coordinates of the points A, B and C and therefore their length and the angles between them. From this I think I can say that the angles of the yellow triangle are the same as those of the outer triangle. From there I can work out the lengths of the sides of the blue triangles. However I don't know how to find the coordinates of the points of the blue triangles or the length of the sides of the yellow triangle and therefore the rectangles.
This is an X-Y problem (asking us how to accomplish X because you think it would help you solve a problem Y better solved another way), but luckily you gave us Y so I can just answer that.
What you should do is find the lines that are the edges of the roads, figure out where they intersect, and proceed to calculate everything else from that.
First, given 2 points P and Q, we can write down the line between them in parameterized form as f(t) = P + t(Q - P). Note that Q - P = v is the vector representing the direction of the line.
Second, given a vector v = (x_v, y_v) the vector (y_v, -x_v) is at right angles to it. Divide by its length sqrt(x_v**2 + y_v**2) and you have a unit vector at right angles to the first. Project P and Q a distance d along this vector, and you've got 2 points on a parallel line at distance d from your original line.
There are two such parallel lines. Given a point on the line and a point off of the line, the sign of the dot product of your normal vector with the vector between those two lines tells you whether you've found the parallel line on the same side as the other, or on the opposite side.
You just need to figure out where they intersect. But figuring out where lines P1 + t*v1 and P2 + s*v2 intersect can be done by setting up 2 equations in 2 variables and solving that. Which calculation you can carry out.
And now you have sufficient information to calculate the edges of the roads, which edges are inside, and every intersection in your diagram. Which lets you figure out anything else that you need.
Slightly different approach with a bit of trigonometry:
Define vectors
b = B - A
c = C - A
uB = Normalized(b)
uC = Normalized(c)
angle
Alpha = atan2(CrossProduct(b, c), DotProduct(b,c))
HalfA = Alpha / 2
HalfW = Width / 2
uB_Perp = (-uB.Y, ub.X) //unit vector, perpendicular to b
//now calculate points:
P1 = A + HalfW * (uB * ctg(HalfA) + uB_Perp) //outer blue triangle vertice
P2 = A + HalfW * (uB * ctg(HalfA) - uB_Perp) //inner blue triangle vertice, lies on bisector
(I did not consider extra case of too large width)
I have a list of 2D points (x1,y1),(x2,y2)......(Xn,Yn) representing a curved segment, is there any formula to determine whether the direction of drawing that segment is clockwise or anti clockwise ?
any help is appreciated
Alternately, you can use a bit of linear algebra. If you have three points a, b, and c, in that order, then do the following:
1) create the vectors u = (b-a) = (b.x-a.x,b.y-a.y) and v = (c-b) ...
2) calculate the cross product uxv = u.x*v.y-u.y*v.x
3) if uxv is -ve then a-b-c is curving in clockwise direction (and vice-versa).
by following a longer curve along in the same manner, you can even detect when as 's'-shaped curve changes from clockwise to anticlockwise, if that is useful.
One possible approach. It should work reasonably well if the sampling of the line represented by your list of points is uniform and smooth enough, and if the line is sufficiently simple.
Subtract the mean to "center" the line.
Convert to polar coordinates to get the angle.
Unwrap the angle, to make sure its increments are meaningful.
Check if total increment is possitive or negative.
I'm assuming you have the data in x and y vectors.
theta = cart2pol(x-mean(x), y-mean(y)); %// steps 1 and 2
theta = unwrap(theta); %// step 3
clockwise = theta(end)<theta(1); %// step 4. Gives 1 if CW, 0 if ACW
This only considers the integrated effect of all points. It doesn't tell you if there are "kinks" or sections with different directions of turn along the way.
A possible improvement would be to replace the average of x and y by some kind of integral. The reason is: if sampling is denser in a region the average will be biased towards that, whereas the integral wouldn't.
Now this is my approach, as mentioned in a comment to the question -
Another approach: draw a line from starting point to ending point. This line is indeed a vector. A CW curve has most of its part on RHS of this line. For CCW, left.
I wrote a sample code to elaborate this idea. Most of the explanation can be found in comments in the code.
clear;clc;close all
%% draw a spiral curve
N = 30;
theta = linspace(0,pi/2,N); % a CCW curve
rho = linspace(1,.5,N);
[x,y] = pol2cart(theta,rho);
clearvars theta rho N
plot(x,y);
hold on
%% find "the vector"
vec(:,:,1) = [x(1), y(1); x(end), y(end)]; % "the vector"
scatter(x(1),y(1), 200,'s','r','fill') % square is the starting point
scatter(x(end),y(end), 200,'^','r','fill') % triangle is the ending point
line(vec(:,1,1), vec(:,2,1), 'LineStyle', '-', 'Color', 'r')
%% find center of mass
com = [mean(x), mean(y)]; % center of mass
vec(:,:,2) = [x(1), y(1); com]; % secondary vector (start -> com)
scatter(com(1), com(2), 200,'d','k','fill') % diamond is the com
line(vec(:,1,2), vec(:,2,2), 'LineStyle', '-', 'Color', 'k')
%% find rotation angle
dif = diff(vec,1,1);
[ang, ~] = cart2pol(reshape(dif(1,1,:),1,[]), reshape(dif(1,2,:),1,[]));
clearvars dif
% now you can tell the answer by the rotation angle
if ( diff(ang)>0 )
disp('CW!')
else
disp('CCW!')
end
One can always tell on which side of the directed line (the vector) a point is, by comparing two vectors, namely, rotating vector [starting point -> center of mass] to the vector [starting point -> ending point], and then comparing the rotation angle to 0. A few seconds of mind-animating can help understand.
Generally we traverse the array by row or column but here I want to traverse it in an angle.
I will try and explain what I mean,
So lets say if the angle is 45 degree then rather than row by col it would search as (0,0) then (0,1) (1,0) then (0,2) , (1,1) ,(2,0) and so on.. .(sorry could not upload an image as I am new user and not allowed to do so, may be try and imagine/draw an array that would help get what I am trying to say)
But what will happen if the user inputs an angle like 20 degree how can we determine how to search the array.
i just wanted to know if there is any algorithm which does something similar to this? Programming language is not an issue i guess the issue is more of algoritham sort.
Any ideas would be welcome.
Please feel free to ask if I am not able to explain clearly what I am looking for.
Thanks guys.
Easy. Take an angle (let's say 45). This corresponds to a vector v=(1, 1) in your case. (This can be normalized to a unitary vector (sqrt(2)/2, sqrt(2)/2), but this is not necessary)
For every single point in your array, you have their coordinates (x, y). Simply do the scalar product of these coordinates with the vector. Let's call f(x, y) = scalarProduct((x, y), v)
Sort the values of f(x, y) and you've got the "traversing" you're looking for!
A real example.
Your matrix is 3x3
The scalar products are :
(0,0).(1,1) = 0
(0,1).(1,1) = 1
(0,2).(1,1) = 2
(1,0).(1,1) = 1
(1,1).(1,1) = 2
(1,2).(1,1) = 3
(2,0).(1,1) = 2
(2,1).(1,1) = 3
(2,2).(1,1) = 4
If you order these scalar products by ascending order, you obtain the ordering (0,0), (1,0), (1,0), (2,0), (1,1), (0,2), (2,1)...
And if you want to do it with the angle 20, replace all occurences of v=(1, 1) with v=(cos(20), sin(20))
Here's an illustration of a geometrical interpretation. The scalar products correspond to the intersections of the vector v (in red) with the blue lines.
For every starting point (the leftmost point of every row), use trigonometry to determine an ending point for the given angle. The tan(angle) is defined as (height difference / width of the array), so your height differece is tan(angle)*(witdh of the array). You only have to calculate the height difference once. If y+height difference is greater than the height of the array, just subtract the height (or use the modulo operator).
Now that you have a starting point and an ending point you could use Bresenham's Algorithm to determine the points in between: http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
You want to look for a space-filling-curve for example a morton curve or z-curve. If you want to subdivide the array in 4 tiles you may want to look for a hilbert curve or a moore curve.
Given n squares with edge length l, how can I determine the minimum radius r of the circle so that I can distribute all squares evenly along the perimeter of the circle without them overlapping? (Constraint: the first square will always be positioned at 12 o'clock.)
Followup question: how can I place n identical rectangles with height h and width w?
(source: n3rd.org)
There may be a mathematically clever way to do this, but I wouldn't know.
I think it's complicated a bit by the fact that the geometry is different for every different number of squares; for 4 it's a rhombus, for 5 it's a pentagon and so on.
What I'd do is place those squares on a 1 unit circle (much too small, I know, bear with me) distributed equally on it. That's easy enough, just subtend (divide) your 360 degrees by the number of squares. Then just test all your squares for overlap against their neighbors; if they overlap, increase the radius.
You can make this procedure less stupid than it sounds by using an intelligent algorithm to approach the right size. I'm thinking of something like Newton's algorithm: Given two successive guesses, of which one is too small and one is too big, your next guess needs to be the average of those two.
You can iterate down to any precision you like. Stop whenever the distance between guesses is smaller than some arbitrary small margin of error.
EDIT I have a better solution:
I was thinking about what to tell you if you asked "how will I know if squares overlap?" This gave me an idea on how to calculate the circle size exactly, in one step:
Place your squares on a much-too-small circle. You know how: Calculate the points on the circle where your 360/n angles intersect it, and put the center of the square there. Actually, you don't need to place squares yet, the next steps only require midpoints.
To calculate the minimum distance of a square to its neighbor: Calculate the difference in X and the difference in Y of the midpoints, and take the minimum of those. The X's and Y's are actually just cosines and sines on the circle.
You'll want the minimum of any square against its neighbor (clockwise, say). So you need to work your way around the circle to find the very smallest one.
The minimum (X or Y) distance between the squares needs to become 1.0 . So just take the reciprocal of the minimum distance and multiply the circle's size by that. Presto, your circle is the right size.
EDIT
Without losing generality, I think it's possible to nail my solution down a bit so it's close to coding. Here's a refinement:
Assume the squares have size 1, i.e. each side has a length of 1 unit. In the end, your boxes will surely be larger than 1 pixel but it's just a matter of scaling.
Get rid of the corner cases:
if (n < 2) throw new IllegalArgumentException();
if (n == 2) return 0.5; // 2 squares will fit exactly on a circle of radius 0.5
Start with a circle size r of 0.5, which will surely be too small for any number of squares > 2.
r = 0.5;
dmin = 1.0; // start assuming minimum distance is fine
a = 2 * PI / n;
for (p1 = 0.0; p1 <= PI; p1+=a) { // starting with angle 0, try all points till halfway around
// (yeah, we're starting east, not north. doesn't matter)
p2 = p1 + a; // next point on the circle
dx = abs(r * cos(p2) - r * cos(p1))
dy = abs(r * sin(p2) - r * sin(p1))
dmin = min(dmin, dx, dy)
}
r = r / dmin;
EDIT
I turned this into real Java code and got something quite similar to this to run. Code and results here: http://ideone.com/r9aiu
I created graphical output using GnuPlot. I was able to create simple diagrams of boxes arranged in a circle by cut-and-pasting the point sets from the output into a data file and then running
plot '5.dat' with boxxyerrorbars
The .5's in the file serve to size the boxes... lazy but working solution. The .5 is applied to both sides of the center, so the boxes end up being exactly 1.0 in size.
Alas, my algorithm doesn't work. It makes the radii far too large, thus placing the boxes much further apart than necessary. Even scaling down by a factor of 2 (could have been a mistake to use 0.5 in some places) didn't help.
Sorry, I give up. Maybe my approach can be salvaged, but it doesn't work the way I had though it would. :(
EDIT
I hate giving up. I was about to leave my PC when I thought of a way to salvage my algorithm:
The algorithm was adjusting the smaller of the X or Y distances to be at least 1. It's easy to demonstrate that's just plain silly. When you have a lot of boxes then at the eastern and western edges of the circle you have boxes stacked almost directly on top of each other, with their X's very close to one another but they are saved from touching by having just enough Y distance between them.
So... to make this work, you must scale the maximum of dx and dy to be (for all cases) at least the radius (or was it double the radius?).
Corrected code is here: http://ideone.com/EQ03g http://ideone.com/VRyyo
Tested again in GnuPlot, it produces beautiful little circles of boxes where sometimes just 1 or 2 boxes are exactly touching. Problem solved! :)
(These images are wider than they are tall because GnuPlot didn't know I wanted proportional layout. Just imagine the whole works squeezed into a square shape :) )
I would calculate an upper bound of the minimum radius, by working with circles enclosing the squares instead of with the squares themselves.
My calculation results in:
Rmin <= X / (sqrt(2) * sin (180/N) )
Where:
X is the square side length, and N is the required number of squares.
I assume that the circles are positioned such that their centers fall on the big circle's circumference.
-- EDIT --
Using the idea of Dave in the comment below, we can also calculate a nice lower bound, by considering the circles to be inside the squares (thus having radius X/2). This bound is:
Rmin >= X / (2 * sin (180/N) )
As already noted, the problem of positioning n points equally spaced round the circumference of a circle is trivial. The (not-terribly) difficult part of the problem is to figure out the radius of the circle needed to give a pleasing layout of the squares. I suggest you follow one of the other answers and think of the squares being inside a circular 'buffer' big enough to contain the square and enough space to satisfy your aesthetic requirements. Then check the formula for the chord length between the centres of neighbouring squares. Now you have the angle, at the centre of the circle, subtended by the chord between square centres, and can easily compute the radius of the circle from the trigonometry of a triangle.
And, as to your follow up question: I suggest that you work out the problem for squares of side length min(h,w) on a circle, then transform the squares to rectangles and the circle to an ellipse with eccentricity h/w (or w/h).
I would solve it like this:
To find the relation between the radius r and length l let's analyze dimensionless representation
get the centres on a circle (x1,y1)..(xn,yn)
from each center get lower right corner of the i-th square and upper left corner of the i+1-th square
the two points should either have equal x or equal y, whichever yields smaller l
procedure should be repeated for each center and the one that yields smallest l is the final solution.
This is the optimal solution and can be solved it terms of r = f(l).
The solution can be adapted to rectangles by adjusting the formula for xLR[i] and yUL[i+1].
Will try to give some pseudo code.
EDIT:
There's a bug in the procedure, lower right and upper left are not necessary closest points for two neighbouring squares/rectangles.
Let's assume you solved the problem for 3 or 4 squares.
If you have n >= 5 squares, and position one square at the top of the circle, you'll have another square fall into the first quadrant of a cartesian plane concentric with your circle.
The problem is then to find a radius r for the circle such that the left side of the circle next to the top one, and the right side of the top circle do not 'cross' each other.
The x coordinate of the right side of the top circle is x1 = L/2, where L is the side of a square. The x coordinate of the left side of the circle next to the top one is x2 = r cos a - L/2, where r is the radius and a is the angle between each pair of square centres (a = 360/n degrees).
So we need to solve x1 <= x2, which leads to
r >= L / cos a.
L and a are known, so we're done :-)
You start with an arbitrary circle (e.g., with a diameter of (* n l)) and position the squares evenly on the circumference. Then you go through each pair of adjacent squares and:
calculate the straight line connecting their mid points,
calculate the intersection of this line with the intervening square sides (M1 and M2 are the mid points, S1 and S2 the corresponding intersections with the square side:
S2 S1
M1--------------*----------*---------------M2
------------------------
| |
| |
| |
| |
| M1 |
| \ |
| \ |
| -------*------- +--------
| | \ | |
| | \ | |
-------+---------*------ |
| \ |
| M2 |
| |
| |
| |
| |
-------------------------
calculate the scale factor you would need to make S1 and S2 fall together (simply the ratio of the sum of M1-S1 and S2-M2 to M1-M2), and
finally scale the circle by the maximum of the found scale factors.
Edit: This is the exact solution. However, a little thought can optimize this further for speed:
You only need to do this for the squares closest to 45° (if n is even) resp. 45° and 135° (if n is odd; actually, you might prove that only one of these is necessary).
For large n, the optimal spacing of the squares on the circle will quickly approach the length of a diagonal of a square. You could thus precompute the scaling factors for a few small n (up to a dozen or so), and then have a good enough approximation with the diagonal.