I saw a few image processing and analysis related questions on this forum and thought I could try this forum for my question. I have a say 30 two-dimensional arrays (to make things simple, although I have a very big data set) which form 30 individual images. Many of these images have similar base structure, but differ in intensities for different pixels. Due to this intensity variation amongst pixels, some images have a prominent pattern (say a larger area with localised intense pixels or high intensity pixels classifying an edge). Some images, also just contain single high intensity pixels randomly distributed without any prominent feature (so basically noise). I am now trying to build an algorithm, which can give a specific score to an image based on different factors like area fraction of high intensity pixels, mean standard deviation, so that I can find out the image with the most prominent pattern (in order words rank them). But these factors depend on a common factor i.e. a user defined threshold, which becomes different for every image. Any inputs on how I can achieve this ranking or a image score in an automated manner (without the use of a threshold)? I initially used Matlab to perform all the processing and area fraction calculations, but now I am using R do the same thing.
Can some amount of machine learning/ random forest stuff help me here? I am not sure. Some inputs would be very valuable.
P.S. If this not the right forum to post, any suggestions on where I can get good advise?
First of all, let me suggest a change in terminology: What you denote as feature is usually called pattern in image prcessing, while what you call factor is usually called feature.
I think that the main weakness of the features you are using (mean, standard deviation) is that they are only based on the statistics of single pixels (1st order statistics) without considering correlations (neighborhood relations of pixels). If you take a highly stuctured image and shuffle the pixels randomly, you will still have the same 1st order statistics.
There are many ways to take these correlations into account. A simple, efficient and therefore popular method is to apply some filters on the image first (high-pass, low-pass etc.) and then get the 1st order statistics of the resulting image. Other methods are based on Fast Fourier Transform (FFT).
Of course machine learning is also an option here. You could try convolutional neural networks for example, but I would try the simple filtering stuff first.
Edit: this is not a duplicate of Determine if an image exists within a larger image, and if so, find it, using Python since I do not know the pattern beforehand
Suppose I have a big image (usually a picture taken with a camera so it might be a bit noisy, but let's assume it's not for now) made up of multiple smaller images all equal among themselves, something like
I need to find the contour of each one of those. The first step is recognizing that there's a recurring image (or unknown pattern) in the 2D image. How can I achieve this first step?
I did read around that I might use a FFT of the original image and search for duplicate frequencies, would that be a feasible approach?
To build a bit on the problem: I do not know the image beforehand, nor its size or how many will there be on the big image. The images can be shot from camera so they might be noisy. The images won't overlap.
You can try to use described keypoints (Sift/SURF/ORB/etc.) to find features in the image and try to detect the same features in the image.
You can see such a result in How to find euclidean distance between keypoints of a single image in opencv where 3x the same image is present and features are detected and linked between those subimages automatically.
In your image the result looks like
so you can see that the different occurances of the same pattern is indeed automatically detected and linked.
Next steps would be to group features to objects, so that the "whole" pattern can be extracted. Once you have a candidate for a pattern, you can extract a homography for each occurance of the pattern (with one reference candidate pattern) to verify that it is a pattern. One open problem is how to find such candidates. Maybe it is worth trying to find "parallel features", so keypoint matches that have parallel lines and/or same length lines (see image). Or maybe there is some graph theory approach.
All in all, this whole approach will have some advantages and disadvantes:
Advantages:
real world applicability - Sift and other keypoints are working quite well even with noise and some perspective effects, so chances are increased to find such patterns.
Disadvantages
slow
parametric (define what it means that two features are successfully
matched)
not suitable for all kind of patterns - your pattern must have some extractable keypoints
Those are some thoughts and probably not complete ;)
Unfortunately no full code yet for your concrete task, but I hope the idea is clear.
For such a clean image, it suffices to segment the patterns by blob analysis and to compare the segments or ROI that contain them. The size is a first matching criterion. The SAD, SSD or correlation similarity scores can do finer comparison.
In practice you will face more difficulties such as
not possible to segment the patterns
geometric variations in size/orientation
partial occlusion
...
Handling these is out of the scope of this answer; it makes things much harder than in the "toy" case.
The goal is to find several equal or very similar patterns which are not known before in a picture. As it is this problem is still a bit ill posed.
Are the patterns exactly equal or only similar (added noise maybe)?
Do you want to have the largest possible patterns or are smaller subpatterns okay too or are all possible patterns needed? Reason is that of course each pattern could consist of equal patterns too.
Is the background always that simple (completely white) or can it be much more difficult? What do we know about it?
Are the patterns always equally oriented, equally scaled, non-overlapping?
For the simple case of non-overlapping patterns with simple background, the answer of Yves Daoust using segmentation is well performing but fails if patterns are very close or overlapping.
For other cases the idea of the keypoints by Micka will help but might not perform well if there is noise or might be slow.
I have one alternative: look at correlations of subblocks of the image.
In pseudocode:
Divide the image in overlapping areas of size MxN for a suitable M,N (pixel width and height chosen to be approximately the size of the desired pattern)
Correlate each subblock with the whole image. Look for local maxima in the correlation. The position of these maxima denotes the position of similar regions.
Choose a global threshold on all correlations (smartly somehow) and find sets of equal patterns.
Determine the fine structure of these patterns by shanging the shape from rectangular (bounding box) to a more sophisticaed shape (maybe by looking at the shape of the peaks in the correlation)
In case the approximate size of the desired patterns is not known before, try with large values of M, N and go down to smaller ones.
To speed up the whole process start on a coarse scale (downscaled version of the image) and then process finer scales only where needed. Needs balancing of zooming in and performing correlations.
Sorry, I cannot make this a full Matlab project right now, but I hope this helps you.
i need a way to determine wheter a picture is a photograph or not. I've got a bunch of random image files (paper document scans, logos and of course photographs taken by a camera) and i need to filter out only the photographs for creating a preview.
The solution proposed at Determine if image is photograph or drawing, quickly only works in a limited way (i.e. some logos are completly black with wite font, some logos have only colors in it - no white areas) and sometimes i've got scan of a white paper containing multiple photographs with white space arround - i need to identify those, too - because then i have to key out the white part and save the photographs on the scan in seperate files.
Your process to do this should probably be similar to the following:
Extract features from the image (pixel values, groups of pixels,
HoG, SIFT, GIST, DCT, Wavelet, Dictionary learning coefficients,
etc. depending on how much time you have)
Aggregate these features somehow so that you get a fixed length
vector (histogram, pyramid scheme)
Apply a standard classification (SVM, k-NN, neural network, Random
Forest) or clustering algorithm (k-means, GMM, etc.) and measure how
well it works (F1 score is usually okay, ROC may be better for
2-class problems)
Repeat from step 1 with different features if you are unsatisfied with the results from 3
The solution you reference seems to be pretty reasonable in terms of steps 1 and 2.
A simple next step in extracting and aggregating features could be to create histograms from all pixel values in the image. If you have a lot of labeled data you should feed these features to a standard classifier. Otherwise, run a clustering algorithm on these histogram features and check the cluster assignments to see if they are correlated with the photograph/non-photograph assignment.
Check the following paper:
http://www.vision.ee.ethz.ch/~gallju/projects/houghforest/houghforest.html . They provide source code.
I believe the program accepts an input file with negative and positive images for training. The output of the classification part of it will be a image voting map (hough map?). You might need to decide on a threshold value to locate regions of interest. So if there two logos in the image it will mark out both of them. The algorithm worked very well for me in a past.
Training on 100 positive and 100 negative images should be enough, I believe. Don't use big images for training also (256x256 should be enough).
I'm trying to analyse two contours and give a percent corresponding to their similarity. Assuming I have all the point's coordinates describing these contours (just like an SVG path), based on which factor should I tell they're almost identical ?
After some Google searches, I found something related to Fourier descriptors, are they relevant for my case ?
Edit
What I want to do is to compare several fonts to another one. Just like would do What the font, but not with an image. Thanks to the produced algorithm, it would be possible to find a font equivalent according to the similarity percentage.
Some scripts just compare the bounding box for each letters, but it's not enough. I need a way to tell that Arial is closest to Verdana than to Webdings. So assuming I can extract the contour from the fonts, I need a way to compare two contours.
For example (with "logical" percent values):
there are two basic ways to approach the general problem (font matching): symbolic and statistical. a good solution will probably combine both in some way.
a symbolic approach uses your knowledge of the problem in a direct way. for example, you can make a list of the things you (as an intelligent human) would use to characterise fonts. the kind of questions that identifont uses. this approach means writing routines that are smart enough to detect the various properties (eg stroke width, whether certain loops are closed, existence of serifs, etc) plus a decision tree (or "rule engine") that puts the yes/no/unsure answers together and comes up with an answer.
the statistical approach sounds more like what you were thinking about, and is probably how what the font works. here the idea is to find some general properties and use those as weights to find a "best" selection. for example, if you have lots of fonts then you can train a neural net (input being pixels at some sample resolution). there you don't need to know "how" the net decides - just that given enough training data it will find a way to do so. or you could just look at the sum of all the dark pixels - that would likely give you results similar to your percentages above.
this sounds simple, but often it's not so easy to find simple statistical measurements that show differences well in all the ways you want.
so then there's a large middle ground between the two. the idea being that if you can pull in some of the ideas from the first group then you can make the approaches in the second much more efficient. while the simplest neural net approach is "all in one" (it includes the calculations and the decisions) you can separate those out. so instead of just giving the net a bunch of pixels you can give it more "meaningful" inputs - things that you know help detect between different fonts. things like stroke width, or the number of "holes" in the character. you can also add some smarts to remove things that might otherwise confuse results - for example, pre-scaling to the same height (if you have a full font set then you can scale everything so that the height of a lowercase "m", say, is constant).
fourier descriptors are a way of characterising the "outside shape" of something and so could be used as an input to a statistical approach as i've described above. in the example you give the fourier descriptors will pick up the "spikiness" of the serifs in the lower G, and so would indicate that it is very different from the G on the left. but they care much less about stroke width and nothing at all about scale (magnification/zoom) (which can be a good or bad thing - if you're being given random letters of different sizes, you don't want to be sensitive to size, but if you've normalized to a standard "m" for an entire alphabet then you certainly do want to include that). since the output is just a spectrum you can compare different letters by cross-correlation of use something like PCA to categorize different types of letter.
other ideas would be 2d cross-correlation (the maximum of the normalised correlation gives you some idea of how similar two things are) or simply seeing what fraction of pixels are common in both letters.
as the comments say, this is a huge problem (and i am not an expert - the above is just random bullshit from being an interested bystander).
but, to finally answer your question, if what you have is an outline, then a fourier descriptor would be a good place to start. since that focuses on shape rather than "weight" i would combine that with something like total area enclosed by the outline. then write some code to calculate those and see what numbers you get for some example alphabets. if it seems to distinguish some letters, but not others, then look for some other measurements that would help in those cases. you will likely end up combining quite a few approaches to get something both fast and reliable.
alternatively, if you just want something simple, try using some easy-to-measure values like height, width, total number of pixels "inside" the contours, how many strokes you cross along vertical or horizontal lines, etc. combining a bunch of those could get you something "good enough" for some purposes, if you aren't comfortable with the maths involved in fourier transforms etc.
Have you considered using a neural network based approach? This paper uses a Self-Organizing Tree map to perform content based image retrieval. With a good training set, it should be possible to create a multilayer network (or SOM) that can give you an accurate similarity measure.
Given two different image files (in whatever format I choose), I need to write a program to predict the chance if one being the illegal copy of another. The author of the copy may do stuff like rotating, making negative, or adding trivial details (as well as changing the dimension of the image).
Do you know any algorithm to do this kind of job?
These are simply ideas I've had thinking about the problem, never tried it but I like thinking about problems like this!
Before you begin
Consider normalising the pictures, if one is a higher resolution than the other, consider the option that one of them is a compressed version of the other, therefore scaling the resolution down might provide more accurate results.
Consider scanning various prospective areas of the image that could represent zoomed portions of the image and various positions and rotations. It starts getting tricky if one of the images are a skewed version of another, these are the sort of limitations you should identify and compromise on.
Matlab is an excellent tool for testing and evaluating images.
Testing the algorithms
You should test (at the minimum) a large human analysed set of test data where matches are known beforehand. If for example in your test data you have 1,000 images where 5% of them match, you now have a reasonably reliable benchmark. An algorithm that finds 10% positives is not as good as one that finds 4% of positives in our test data. However, one algorithm may find all the matches, but also have a large 20% false positive rate, so there are several ways to rate your algorithms.
The test data should attempt to be designed to cover as many types of dynamics as possible that you would expect to find in the real world.
It is important to note that each algorithm to be useful must perform better than random guessing, otherwise it is useless to us!
You can then apply your software into the real world in a controlled way and start to analyse the results it produces. This is the sort of software project which can go on for infinitum, there are always tweaks and improvements you can make, it is important to bear that in mind when designing it as it is easy to fall into the trap of the never ending project.
Colour Buckets
With two pictures, scan each pixel and count the colours. For example you might have the 'buckets':
white
red
blue
green
black
(Obviously you would have a higher resolution of counters). Every time you find a 'red' pixel, you increment the red counter. Each bucket can be representative of spectrum of colours, the higher resolution the more accurate but you should experiment with an acceptable difference rate.
Once you have your totals, compare it to the totals for a second image. You might find that each image has a fairly unique footprint, enough to identify matches.
Edge detection
How about using Edge Detection.
(source: wikimedia.org)
With two similar pictures edge detection should provide you with a usable and fairly reliable unique footprint.
Take both pictures, and apply edge detection. Maybe measure the average thickness of the edges and then calculate the probability the image could be scaled, and rescale if necessary. Below is an example of an applied Gabor Filter (a type of edge detection) in various rotations.
Compare the pictures pixel for pixel, count the matches and the non matches. If they are within a certain threshold of error, you have a match. Otherwise, you could try reducing the resolution up to a certain point and see if the probability of a match improves.
Regions of Interest
Some images may have distinctive segments/regions of interest. These regions probably contrast highly with the rest of the image, and are a good item to search for in your other images to find matches. Take this image for example:
(source: meetthegimp.org)
The construction worker in blue is a region of interest and can be used as a search object. There are probably several ways you could extract properties/data from this region of interest and use them to search your data set.
If you have more than 2 regions of interest, you can measure the distances between them. Take this simplified example:
(source: per2000.eu)
We have 3 clear regions of interest. The distance between region 1 and 2 may be 200 pixels, between 1 and 3 400 pixels, and 2 and 3 200 pixels.
Search other images for similar regions of interest, normalise the distance values and see if you have potential matches. This technique could work well for rotated and scaled images. The more regions of interest you have, the probability of a match increases as each distance measurement matches.
It is important to think about the context of your data set. If for example your data set is modern art, then regions of interest would work quite well, as regions of interest were probably designed to be a fundamental part of the final image. If however you are dealing with images of construction sites, regions of interest may be interpreted by the illegal copier as ugly and may be cropped/edited out liberally. Keep in mind common features of your dataset, and attempt to exploit that knowledge.
Morphing
Morphing two images is the process of turning one image into the other through a set of steps:
Note, this is different to fading one image into another!
There are many software packages that can morph images. It's traditionaly used as a transitional effect, two images don't morph into something halfway usually, one extreme morphs into the other extreme as the final result.
Why could this be useful? Dependant on the morphing algorithm you use, there may be a relationship between similarity of images, and some parameters of the morphing algorithm.
In a grossly over simplified example, one algorithm might execute faster when there are less changes to be made. We then know there is a higher probability that these two images share properties with each other.
This technique could work well for rotated, distorted, skewed, zoomed, all types of copied images. Again this is just an idea I have had, it's not based on any researched academia as far as I am aware (I haven't look hard though), so it may be a lot of work for you with limited/no results.
Zipping
Ow's answer in this question is excellent, I remember reading about these sort of techniques studying AI. It is quite effective at comparing corpus lexicons.
One interesting optimisation when comparing corpuses is that you can remove words considered to be too common, for example 'The', 'A', 'And' etc. These words dilute our result, we want to work out how different the two corpus are so these can be removed before processing. Perhaps there are similar common signals in images that could be stripped before compression? It might be worth looking into.
Compression ratio is a very quick and reasonably effective way of determining how similar two sets of data are. Reading up about how compression works will give you a good idea why this could be so effective. For a fast to release algorithm this would probably be a good starting point.
Transparency
Again I am unsure how transparency data is stored for certain image types, gif png etc, but this will be extractable and would serve as an effective simplified cut out to compare with your data sets transparency.
Inverting Signals
An image is just a signal. If you play a noise from a speaker, and you play the opposite noise in another speaker in perfect sync at the exact same volume, they cancel each other out.
(source: themotorreport.com.au)
Invert on of the images, and add it onto your other image. Scale it/loop positions repetitively until you find a resulting image where enough of the pixels are white (or black? I'll refer to it as a neutral canvas) to provide you with a positive match, or partial match.
However, consider two images that are equal, except one of them has a brighten effect applied to it:
(source: mcburrz.com)
Inverting one of them, then adding it to the other will not result in a neutral canvas which is what we are aiming for. However, when comparing the pixels from both original images, we can definatly see a clear relationship between the two.
I haven't studied colour for some years now, and am unsure if the colour spectrum is on a linear scale, but if you determined the average factor of colour difference between both pictures, you can use this value to normalise the data before processing with this technique.
Tree Data structures
At first these don't seem to fit for the problem, but I think they could work.
You could think about extracting certain properties of an image (for example colour bins) and generate a huffman tree or similar data structure. You might be able to compare two trees for similarity. This wouldn't work well for photographic data for example with a large spectrum of colour, but cartoons or other reduced colour set images this might work.
This probably wouldn't work, but it's an idea. The trie datastructure is great at storing lexicons, for example a dictionarty. It's a prefix tree. Perhaps it's possible to build an image equivalent of a lexicon, (again I can only think of colours) to construct a trie. If you reduced say a 300x300 image into 5x5 squares, then decompose each 5x5 square into a sequence of colours you could construct a trie from the resulting data. If a 2x2 square contains:
FFFFFF|000000|FDFD44|FFFFFF
We have a fairly unique trie code that extends 24 levels, increasing/decreasing the levels (IE reducing/increasing the size of our sub square) may yield more accurate results.
Comparing trie trees should be reasonably easy, and could possible provide effective results.
More ideas
I stumbled accross an interesting paper breif about classification of satellite imagery, it outlines:
Texture measures considered are: cooccurrence matrices, gray-level differences, texture-tone analysis, features derived from the Fourier spectrum, and Gabor filters. Some Fourier features and some Gabor filters were found to be good choices, in particular when a single frequency band was used for classification.
It may be worth investigating those measurements in more detail, although some of them may not be relevant to your data set.
Other things to consider
There are probably a lot of papers on this sort of thing, so reading some of them should help although they can be very technical. It is an extremely difficult area in computing, with many fruitless hours of work spent by many people attempting to do similar things. Keeping it simple and building upon those ideas would be the best way to go. It should be a reasonably difficult challenge to create an algorithm with a better than random match rate, and to start improving on that really does start to get quite hard to achieve.
Each method would probably need to be tested and tweaked thoroughly, if you have any information about the type of picture you will be checking as well, this would be useful. For example advertisements, many of them would have text in them, so doing text recognition would be an easy and probably very reliable way of finding matches especially when combined with other solutions. As mentioned earlier, attempt to exploit common properties of your data set.
Combining alternative measurements and techniques each that can have a weighted vote (dependant on their effectiveness) would be one way you could create a system that generates more accurate results.
If employing multiple algorithms, as mentioned at the begining of this answer, one may find all the positives but have a false positive rate of 20%, it would be of interest to study the properties/strengths/weaknesses of other algorithms as another algorithm may be effective in eliminating false positives returned from another.
Be careful to not fall into attempting to complete the never ending project, good luck!
Read the paper: Porikli, Fatih, Oncel Tuzel, and Peter Meer. “Covariance Tracking Using Model Update Based
on Means on Riemannian Manifolds”. (2006) IEEE Computer Vision and Pattern Recognition.
I was successfully able to detect overlapping regions in images captured from adjacent webcams using the technique presented in this paper. My covariance matrix was composed of Sobel, canny and SUSAN aspect/edge detection outputs, as well as the original greyscale pixels.
An idea:
use keypoint detectors to find scale- and transform- invariant descriptors of some points in the image (e.g. SIFT, SURF, GLOH, or LESH).
try to align keypoints with similar descriptors from both images (like in panorama stitching), allow for some image transforms if necessary (e.g. scale & rotate, or elastic stretching).
if many keypoints align well (exists such a transform, that keypoint alignment error is low; or transformation "energy" is low, etc.), you likely have similar images.
Step 2 is not trivial. In particular, you may need to use a smart algorithm to find the most similar keypoint on the other image. Point descriptors are usually very high-dimensional (like a hundred parameters), and there are many points to look through. kd-trees may be useful here, hash lookups don't work well.
Variants:
Detect edges or other features instead of points.
It is indeed much less simple than it seems :-) Nick's suggestion is a good one.
To get started, keep in mind that any worthwhile comparison method will essentially work by converting the images into a different form -- a form which makes it easier to pick similar features out. Usually, this stuff doesn't make for very light reading ...
One of the simplest examples I can think of is simply using the color space of each image. If two images have highly similar color distributions, then you can be reasonably sure that they show the same thing. At least, you can have enough certainty to flag it, or do more testing. Comparing images in color space will also resist things such as rotation, scaling, and some cropping. It won't, of course, resist heavy modification of the image or heavy recoloring (and even a simple hue shift will be somewhat tricky).
http://en.wikipedia.org/wiki/RGB_color_space
http://upvector.com/index.php?section=tutorials&subsection=tutorials/colorspace
Another example involves something called the Hough Transform. This transform essentially decomposes an image into a set of lines. You can then take some of the 'strongest' lines in each image and see if they line up. You can do some extra work to try and compensate for rotation and scaling too -- and in this case, since comparing a few lines is MUCH less computational work than doing the same to entire images -- it won't be so bad.
http://homepages.inf.ed.ac.uk/amos/hough.html
http://rkb.home.cern.ch/rkb/AN16pp/node122.html
http://en.wikipedia.org/wiki/Hough_transform
In the form described by you, the problem is tough. Do you consider copy, paste of part of the image into another larger image as a copy ? etc.
What we loosely refer to as duplicates can be difficult for algorithms to discern.
Your duplicates can be either:
Exact Duplicates
Near-exact Duplicates. (minor edits of image etc)
perceptual Duplicates (same content, but different view, camera etc)
No1 & 2 are easier to solve. No 3. is very subjective and still a research topic.
I can offer a solution for No1 & 2.
Both solutions use the excellent image hash- hashing library: https://github.com/JohannesBuchner/imagehash
Exact duplicates
Exact duplicates can be found using a perceptual hashing measure.
The phash library is quite good at this. I routinely use it to clean
training data.
Usage (from github site) is as simple as:
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
for img_fn in sorted(image_fns):
hash = imagehash.average_hash(Image.open(image_fn))
if hash in img_hashes:
print( '{} duplicate of {}'.format(image_fn, img_hashes[hash]) )
else:
img_hashes[hash] = image_fn
Near-Exact Duplicates
In this case you will have to set a threshold and compare the hash values for their distance from each
other. This has to be done by trial-and-error for your image content.
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
epsilon = 50
for img_fn1, img_fn2 in zip(image_fns, image_fns[::-1]):
if image_fn1 == image_fn2:
continue
hash1 = imagehash.average_hash(Image.open(image_fn1))
hash2 = imagehash.average_hash(Image.open(image_fn2))
if hash1 - hash2 < epsilon:
print( '{} is near duplicate of {}'.format(image_fn1, image_fn2) )
If you take a step-back, this is easier to solve if you watermark the master images.
You will need to use a watermarking scheme to embed a code into the image. To take a step back, as opposed to some of the low-level approaches (edge detection etc) suggested by some folks, a watermarking method is superior because:
It is resistant to Signal processing attacks
► Signal enhancement – sharpening, contrast, etc.
► Filtering – median, low pass, high pass, etc.
► Additive noise – Gaussian, uniform, etc.
► Lossy compression – JPEG, MPEG, etc.
It is resistant to Geometric attacks
► Affine transforms
► Data reduction – cropping, clipping, etc.
► Random local distortions
► Warping
Do some research on watermarking algorithms and you will be on the right path to solving your problem. (
Note: You can benchmark you method using the STIRMARK dataset. It is an accepted standard for this type of application.
This is just a suggestion, it might not work and I'm prepared to be called on this.
This will generate false positives, but hopefully not false negatives.
Resize both of the images so that they are the same size (I assume that the ratios of widths to lengths are the same in both images).
Compress a bitmap of both images with a lossless compression algorithm (e.g. gzip).
Find pairs of files that have similar file sizes. For instance, you could just sort every pair of files you have by how similar the file sizes are and retrieve the top X.
As I said, this will definitely generate false positives, but hopefully not false negatives. You can implement this in five minutes, whereas the Porikil et. al. would probably require extensive work.
I believe if you're willing to apply the approach to every possible orientation and to negative versions, a good start to image recognition (with good reliability) is to use eigenfaces: http://en.wikipedia.org/wiki/Eigenface
Another idea would be to transform both images into vectors of their components. A good way to do this is to create a vector that operates in x*y dimensions (x being the width of your image and y being the height), with the value for each dimension applying to the (x,y) pixel value. Then run a variant of K-Nearest Neighbours with two categories: match and no match. If it's sufficiently close to the original image it will fit in the match category, if not then it won't.
K Nearest Neighbours(KNN) can be found here, there are other good explanations of it on the web too: http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
The benefits of KNN is that the more variants you're comparing to the original image, the more accurate the algorithm becomes. The downside is you need a catalogue of images to train the system first.
If you're willing to consider a different approach altogether to detecting illegal copies of your images, you could consider watermarking. (from 1.4)
...inserts copyright information into the digital object without the loss of quality. Whenever the copyright of a digital object is in question, this information is extracted to identify the rightful owner. It is also possible to encode the identity of the original buyer along with the identity of the copyright holder, which allows tracing of any unauthorized copies.
While it's also a complex field, there are techniques that allow the watermark information to persist through gross image alteration: (from 1.9)
... any signal transform of reasonable strength cannot remove the watermark. Hence a pirate willing to remove the watermark will not succeed unless they debase the document too much to be of commercial interest.
of course, the faq calls implementing this approach: "...very challenging" but if you succeed with it, you get a high confidence of whether the image is a copy or not, rather than a percentage likelihood.
If you're running Linux I would suggest two tools:
align_image_stack from package hugin-tools - is a commandline program that can automatically correct rotation, scaling, and other distortions (it's mostly intended for compositing HDR photography, but works for video frames and other documents too). More information: http://hugin.sourceforge.net/docs/manual/Align_image_stack.html
compare from package imagemagick - a program that can find and count the amount of different pixels in two images. Here's a neat tutorial: http://www.imagemagick.org/Usage/compare/ uising the -fuzz N% you can increase the error tolerance. The higher the N the higher the error tolerance to still count two pixels as the same.
align_image_stack should correct any offset so the compare command will actually have a chance of detecting same pixels.