What is the fastest way in R to compute a recursive sequence defined as
x[1] <- x1
x[n] <- f(x[n-1])
I am assuming that the vector x of proper length is preallocated. Is there a smarter way than just looping?
Variant: extend this to vectors:
x[,1] <- x1
x[,n] <- f(x[,n-1])
Solve the recurrence relationship ;)
In terms of the question of whether this can be fully "vectorized" in any way, I think the answer is probably "no". The fundamental idea behind array programming is that operations apply to an entire set of values at the same time. Similarly for questions of "embarassingly parallel" computation. In this case, since your recursive algorithm depends on each prior state, there would be no way to gain speed from parallel processing: it must be run serially.
That being said, the usual advice for speeding up your program applies. For instance, do as much of the calculation outside of your recursive function as possible. Sort everything. Predefine your array lengths so they don't have to grow during the looping. Etc. See this question for a similar discussion. There is also a pseudocode example in Tim Hesterberg's article on efficient S-Plus Programming.
You could consider writing it in C / C++ / Fortran and use the handy inline package to deal with the compiling, linking and loading for you.
Of course, your function f() may be a real constraint if that one needs to remain an R function. There is a callback-from-C++-to-R example in Rcpp but this requires a bit more work than just using inline.
Well if you need the entire sequence how fast it can be? assuming that the function is O(1), you cannot do better than O(n), and looping through will give you just that.
In general, the syntax x$y <- f(z) will have to reallocate x every time, which would be very slow if x is a large object. But, it turns out that R has some tricks so that the list replacement function [[<- doesn't reallocate the whole list every time. So I think you can reasonably efficiently do:
x[[1]] <- x1
for (m in seq(2, n))
x[[m]] <- f(x[[m-1]])
The only wasteful aspect here is that you have to generate an array of length n-1 for the for loop, which isn't ideal, but it's probably not a giant issue. You could replace it by a while loop if you preferred. The usual vectorization tricks (lapply, etc.) won't work here...
(The double brackets give you a list element, which is what you probably want, rather than a singleton list.)
For more details, see Chambers (2008). Software for Data Analysis. p. 473-474.
Related
I have a loop where "i" depends on "i-1" value, so I cannot vectorize it.
I've read that I can use a sparse matrix in order to vectorize it and so to speed up my code, but I don't understand how this work.
Any help?
Thanks
You are referring to this technique, as referenced from this (rather old) how to speed up octave article.
I'll rephrase the gist here in case the link dies in the future.
Suppose you have the following loop:
p1(1) = 0;
for i = 2 : N
t = t + dt;
p1(i) = p1(i - 1) + dt * 2 * t;
endfor
You note here that, purely from a mathematical point of view, the last step in the loop could be rephrased as:
-1 * p1(i - 1) + 1 * p1(i) = dt * 2 * t
This makes it possible to recast the problem as a sparse matrix solve, by thinking of p1 as the vector of unknowns, and each iteration of the loop as a row in a (sparse) system of equations. E.g.:
Given that t is a known vector, this makes the above a straightforward problem that can be solved via a simple matrix division operation, which is guaranteed to be fast.
Having said that, presumably this 'trick' is only useful if you are able to recast the problem in this manner in the first place. Presumably this will only be the case for linear problems of your unknown. I don't think this can necessarily be used for more complicated loops.
Also, as Cris has mentioned in the comments, if this method does not work for you, there's a chance you can optimize your loop in other ways (or even that the loop solution may not necessarily be slow in the first place).
By the way, in theory, Octave provides jit-speedup like matlab does, though unlike matlab you need to enable it explicitly (in the sense that you need to compile your octave with jit options, which tends not to be the default), and my personal experience is that this is mostly experimental and may not do much except in the simplest of loops (see this post).
Having left Fortran for several years, now I have to pick it up and start to work with it again.
I'd like to construct a matrix with entry(i,j) in the form f(x_i,y_j), where f is a function of two variables, e.g., f(x,y)=cos(x-y). In Matlab or Python(Numpy), there are efficient ways to handle this kind of specific issue. I wonder whether there is such optimization in Fortran.
BTW, is it also true in Fortran that a vectorized operation is faster than a do/for loop (as is the case in Matlab and Numpy) ?
If you mean by vectorized the same as you mean in Matlab and Python, the short form you call on whole array then no, these forms are often slower, because they mey be harder to optimize than simple loops. What is faster is when the compiler actually uses the vector instructions of the CPU, but that is something else. And it is easier for the compiler to use them for simple loops.
Fortran has elemental functions, do concurrent, forall and where constructs, implied loops and array constructors. There is no point repeating them here, they have been described many times on this site or in tutorials.
Your example is most simply done using a loop
do j = 1, ny
do i = 1, nx
entry(i,j) = f(x(i), y(j))
end do
end do
One of the short ways, you probably meant by Python-like vectorization, would be the whole-array operations, e.g.,
A = cos(B)
C = A * B
D = f(A*B)
and similar. The function (which is called on each element of the array), must be elemental. These operations are not necessarily efficient. For example, the last call may require a temporary array to be created, which would be avoided when using a loop.
I would like to verify whether an element is present in a MATLAB matrix.
At the beginning, I implemented as follows:
if ~isempty(find(matrix(:) == element))
which is obviously slow. Thus, I changed to:
if sum(matrix(:) == element) ~= 0
but this is again slow: I am calling a lot of times the function that contains this instruction, and I lose 14 seconds each time!
Is there a way of further optimize this instruction?
Thanks.
If you just need to know if a value exists in a matrix, using the second argument of find to specify that you just want one value will be slightly faster (25-50%) and even a bit faster than using sum, at least on my machine. An example:
matrix = randi(100,1e4,1e4);
element = 50;
~isempty(find(matrix(:)==element,1))
However, in recent versions of Matlab (I'm using R2014b), nnz is finally faster for this operation, so:
matrix = randi(100,1e4,1e4);
element = 50;
nnz(matrix==element)~=0
On my machine this is about 2.8 times faster than any other approach (including using any, strangely) for the example provided. To my mind, this solution also has the benefit of being the most readable.
In my opinion, there are several things you could try to improve performance:
following your initial idea, i would go for the function any to test is any of the equality tests had a success:
if any(matrix(:) == element)
I tested this on a 1000 by 1000 matrix and it is faster than the solutions you have tested.
I do not think that the unfolding matrix(:) is penalizing since it is equivalent to a reshape and Matlab does this in a smart way where it does not actually allocate and move memory since you are not modifying the temporary object matrix(:)
If your does not change between the calls to the function or changes rarely you could simply use another vector containing all the elements of your matrix, but sorted. This way you could use a more efficient search algorithm O(log(N)) test for the presence of your element.
I personally like the ismember function for this kind of problems. It might not be the fastest but for non critical parts of the code it greatly improves readability and code maintenance (and I prefer to spend one hour coding something that will take day to run than spending one day to code something that will run in one hour (this of course depends on how often you use this program, but it is something one should never forget)
If you can have a sorted copy of the elements of your matrix, you could consider using the undocumented Matlab function ismembc but remember that inputs must be sorted non-sparse non-NaN values.
If performance really is critical you might want to write your own mex file and for this task you could even include some simple parallelization using openmp.
Hope this helps,
Adrien.
Recently I realized I have been doing too much branching without caring the negative impact on performance it had, therefore I have made up my mind to attempt to learn all about not branching. And here is a more extreme case, in attempt to make the code to have as little branch as possible.
Hence for the code
if(expression)
A = C; //A and C have to be the same type here obviously
expression can be A == B, or Q<=B, it could be anything that resolve to true or false, or i would like to think of it in term of the result being 1 or 0 here
I have come up with this non branching version
A += (expression)*(C-A); //Edited with thanks
So my question would be, is this a good solution that maximize efficiency?
If yes why and if not why?
Depends on the compiler, instruction set, optimizer, etc. When you use a boolean expression as an int value, e.g., (A == B) * C, the compiler has to do the compare, and the set some register to 0 or 1 based on the result. Some instruction sets might not have any way to do that other than branching. Generally speaking, it's better to write simple, straightforward code and let the optimizer figure it out, or find a different algorithm that branches less.
Jeez, no, don't do that!
Anyone who "penalize[s] [you] a lot for branching" would hopefully send you packing for using something that awful.
How is it awful, let me count the ways:
There's no guarantee you can multiply a quantity (e.g., C) by a boolean value (e.g., (A==B) yields true or false). Some languages will, some won't.
Anyone casually reading it is going observe a calculation, not an assignment statement.
You're replacing a comparison, and a conditional branch with two comparisons, two multiplications, a subtraction, and an addition. Seriously non-optimal.
It only works for integral numeric quantities. Try this with a wide variety of floating point numbers, or with an object, and if you're really lucky it will be rejected by the compiler/interpreter/whatever.
You should only ever consider doing this if you had analyzed the runtime properties of the program and determined that there is a frequent branch misprediction here, and that this is causing an actual performance problem. It makes the code much less clear, and its not obvious that it would be any faster in general (this is something you would also have to measure, under the circumstances you are interested in).
After doing research, I came to the conclusion that when there are bottleneck, it would be good to include timed profiler, as these kind of codes are usually not portable and are mainly used for optimization.
An exact example I had after reading the following question below
Why is it faster to process a sorted array than an unsorted array?
I tested my code on C++ using that, that my implementation was actually slower due to the extra arithmetics.
HOWEVER!
For this case below
if(expression) //branched version
A += C;
//OR
A += (expression)*(C); //non-branching version
The timing was as of such.
Branched Sorted list was approximately 2seconds.
Branched unsorted list was aproximately 10 seconds.
My implementation (whether sorted or unsorted) are both 3seconds.
This goes to show that in an unsorted area of bottleneck, when we have a trivial branching that can be simply replaced by a single multiplication.
It is probably more worthwhile to consider the implementation that I have suggested.
** Once again it is mainly for the areas that is deemed as the bottleneck **
I am a Mechanical engineer with a computer scientist question. This is an example of what the equations I'm working with are like:
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
The situation is this:
I need r to find x, but I need x to find z. I also need x to find f which is a part of finding z. So I guess a value for x, and then I use that value to find r and f. Then I go back and use the value I found for r and f to find x. I keep doing this until the guess and the calculated are the same.
My question is:
How do I get the computer to do this? I've been using mathcad, but an example in another language like C++ is fine.
The very first thing you should do faced with iterative algorithms is write down on paper the sequence that will result from your idea:
Eg.:
x_0 = ..., f_0 = ..., r_0 = ...
x_1 = ..., f_1 = ..., r_1 = ...
...
x_n = ..., f_n = ..., r_n = ...
Now, you have an idea of what you should implement (even if you don't know how). If you don't manage to find a closed form expression for one of the x_i, r_i or whatever_i, you will need to solve one dimensional equations numerically. This will imply more work.
Now, for the implementation part, if you never wrote a program, you should seriously ask someone live who can help you (or hire an intern and have him write the code). We cannot help you beginning from scratch with, eg. C programming, but we are willing to help you with specific problems which should arise when you write the program.
Please note that your algorithm is not guaranteed to converge, even if you strongly think there is a unique solution. Solving non linear equations is a difficult subject.
It appears that mathcad has many abstractions for iterative algorithms without the need to actually implement them directly using a "lower level" language. Perhaps this question is better suited for the mathcad forums at:
http://communities.ptc.com/index.jspa
If you are using Mathcad, it has the functionality built in. It is called solve block.
Start with the keyword "given"
Given
define the guess values for all unknowns
x:=2
f:=3
r:=2
...
define your constraints
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
calculate the solution
find(x, y, z, r, ...)=
Check Mathcad help or Quicksheets for examples of the exact syntax.
The simple answer to your question is this pseudo-code:
X = startingX;
lastF = Infinity;
F = 0;
tolerance = 1e-10;
while ((lastF - F)^2 > tolerance)
{
lastF = F;
X = ?;
R = ?;
F = FunctionOf(X,R);
}
This may not do what you expect at all. It may give a valid but nonsense answer or it may loop endlessly between alternate wrong answers.
This is standard substitution to convergence. There are more advanced techniques like DIIS but I'm not sure you want to go there. I found this article while figuring out if I want to go there.
In general, it really pays to think about how you can transform your problem into an easier problem.
In my experience it is better to pose your problem as a univariate bounded root-finding problem and use Brent's Method if you can
Next worst option is multivariate minimization with something like BFGS.
Iterative solutions are horrible, but are more easily solved once you think of them as X2 = f(X1) where X is the input vector and you're trying to reduce the difference between X1 and X2.
As the commenters have noted, the mathematical aspects of your question are beyond the scope of the help you can expect here, and are even beyond the help you could be offered based on the detail you posted.
However, I think that even if you understood the mathematics thoroughly there are computer science aspects to your question that should be addressed.
When you write your code, try to make organize it into functions that depend only upon the parameters you are passing in to a subroutine. So write a subroutine that takes in values for y, z, and r and returns you x. Make another that takes in f,L,D,G and returns z. Now you have testable routines that you can check to make sure they are computing correctly. Check the input values to your routines in the routines - for instance in computing x you will get a divide by 0 error if you pass in a 0 for r. Think about how you want to handle this.
If you are going to solve this problem interatively you will need a method that will decide, based on the results of one iteration, what the values for the next iteration will be. This also should be encapsulated within a subroutine. Now if you are using a language that allows only one value to be returned from a subroutine (which is most common computation languages C, C++, Java, C#) you need to package up all your variables into some kind of data structure to return them. You could use an array of reals or doubles, but it would be nicer to choose to make an object and then you can reference the variables by their name and not their position (less chance of error).
Another aspect of iteration is knowing when to stop. Certainly you'll do so when you get a solution that converges. Make this decision into another subroutine. Now when you need to change the convergence criteria there is only one place in the code to go to. But you need to consider other reasons for stopping - what do you do if your solution starts diverging instead of converging? How many iterations will you allow the run to go before giving up?
Another aspect of iteration of a computer is round-off error. Mathematically 10^40/10^38 is 100. Mathematically 10^20 + 1 > 10^20. These statements are not true in most computations. Your calculations may need to take this into account or you will end up with numbers that are garbage. This is an example of a cross-cutting concern that does not lend itself to encapsulation in a subroutine.
I would suggest that you go look at the Python language, and the pythonxy.com extensions. There are people in the associated forums that would be a good resource for helping you learn how to do iterative solving of a system of equations.