Linq to generic list? - linq

in my DAL I have 3-5 Lists of something:
List<User>, List<Items>, List<bla>
Now I want to modify these Lists generic in a method.
How can I write a method with parameters allowed of all of this? (I tried var but don't allowed in the method head)
P.s.: Don't care about type, I will cast it back easily:
List<User> user; user = (List<User>)MethodName(user);

Your question is somewhat vague, but I suspect you're looking for:
void SomeMethod(IList list)
If you're actually changing the list within the method, you don't need a return value.
An alternatively (a nicer one, frankly) is to make the method generic:
void SomeMethod<T>(IList<T> list)

Related

Kotlin Instantiate Immutable List

I've started using Kotlin as a substitute for java and quite like it. However, I've been unable to find a solution to this without jumping back into java-land:
I have an Iterable<SomeObject> and need to convert it to a list so I can iterate through it more than once. This is an obvious application of an immutable list, as all I need to do is read it several times. How do I actually put that data in the list at the beginning though? (I know it's an interface, but I've been unable to find an implementation of it in documentation)
Possible (if unsatisfactory) solutions:
val valueList = arrayListOf(values)
// iterate through valuelist
or
fun copyIterableToList(values: Iterable<SomeObject>) : List<SomeObject> {
var outList = ArrayList<SomeObject>()
for (value in values) {
outList.add(value)
}
return outList
}
Unless I'm misunderstanding, these end up with MutableLists, which works but feels like a workaround. Is there a similar immutableListOf(Iterable<SomeObject>) method that will instantiate an immutable list object?
In Kotlin, List<T> is a read-only list interface, it has no functions for changing the content, unlike MutableList<T>.
In general, List<T> implementation may be a mutable list (e.g. ArrayList<T>), but if you pass it as a List<T>, no mutating functions will be exposed without casting. Such a list reference is called read-only, stating that the list is not meant to be changed. This is immutability through interfaces which was chosen as the approach to immutability for Kotlin stdlib.
Closer to the question, toList() extension function for Iterable<T> in stdlib will fit: it returns read-only List<T>.
Example:
val iterable: Iterable<Int> = listOf(1, 2, 3)
val list: List<Int> = iterable.toList()

Code solution to avoid if else conditions

I am wondering if anyone can suggest me a design pattern or best way to code the below problem.
1) I have an array list of books like the below
list.add(new Book(title, author);
list.add(new Book(title1, author1);
and so on....
2) And now I would like to find all the books from the list by author
findByAuthor(String author) {
for(Book book : list){
if(book.getAuthor().equals(author)){
return book;
}
}
}
Like wise I have another method called findByTitle(). But, it would be same code except book.getAuthor() will have to be book.getTitle(). Everything will be same.
3) Now i can write a method which is generic to both methods like below;
findByBookProperty (String type, String propertyValue){
for(Book book : list)
if(type.equals("author") && book.getTitle().equals(propertyValue)){
return book;
} //another else if for author
//another else for another property
// if else repeats for all the required finder types...
}
}
4) The problem i have here is;
1. I dont want to use the nasty if/else condition for the finder types.
2. I want to know if there is any design pattern or better way to handle this if else or swich method.
Important note: I get the author name as a request parameter value in my spring controller method.
I appreciate your thoughts.
Use Commons-Collections' Predicates framework:
1) Construct a Predicate instance for each type of test.
2) Use CollectionUtils.select(), passing in the predicate you'd like to use for evaluating objects.
Another alternative is to use Commons-Collections' Transformation framework:
1) Write a Transformer for each type of property you'd like extracted/compared against.
2) Write a generic loop, accepting a Transformer instance as a parameter.

How can I intercept the result of an IQueryProvider query (other than single result)

I'm using Entity Framework and I have a custum IQueryProvider. I use the Execute method so that I can modify the result (a POCO) of a query after is has been executed. I want to do the same for collections. The problem is that the Execute method is only called for single result.
As described on MSDN :
The Execute method executes queries that return a single value
(instead of an enumerable sequence of values). Expression trees that
represent queries that return enumerable results are executed when
their associated IQueryable object is enumerated.
Is there another way to accomplish what I want that I missed?
I know I could write a specific method inside a repository or whatever but I want to apply this to all possible queries.
This is true that the actual signature is:
public object Execute(Expression expression)
public TResult Execute<TResult>(Expression expression)
However, that does not mean that the TResult will always be a single element! It is the type expected to be returned from the expression.
Also, note that there are no constraints over the TResult, not even 'class' or 'new()'.
The TResult is a MyObject when your expression is of singular result, like .FirstOrDefault(). However, the TResult can also be a double when you .Avg() over the query, and also it can be IEnumerable<MyObject> when your query is plain .Select.Where.
Proof(*) - I've just set a breakpoint inside my Execute() implementation, and I've inspected it with Watches:
typeof(TResult).FullName "System.Collections.Generic.IEnumerable`1[[xxxxxx,xxxxx]]"
expression.Type.FullName "System.Linq.IQueryable`1[[xxxxxx,xxxxx]]"
I admit that three overloads, one object, one TResult and one IEnumerable<TResult> would probably be more readable. I think they did not place three of them as extensibility point for future interfaces. I can imagine that in future they came up with something more robust than IEnumerable, and then they'd need to add another overload and so on. With simple this interface can process any type.
Oh, see, we now also have IQueryable in addition to IEnumerable, so it would need at least four overloads:)
The Proof is marked with (*) because I have had a small bug/feature in my IQueryProvider's code that has is obscuring the real behavior of LINQ.
LINQ indeed calls the generic Execute only for singular cases. This is a shortcut, an optimization.
For all other cases, it ... doesn't call Execute() it at all
For those all other cases, the LINQ calls .GetEnumerator on your custom IQueryable<> implementation, that what happens is dictated by .. simply what you wrote there. I mean, assuming that you actually provided custom implementations of IQueryable. That would be strange if you did not - that's just about 15 lines in total, nothing compared to the length of custom provider.
In the project where I got the "proof" from, my implementation looks like:
public System.Collections.IEnumerator GetEnumerator()
{
return Provider.Execute<IEnumerable>( this.Expression ).GetEnumerator();
}
public IEnumerator<TOut> GetEnumerator()
{
return Provider.Execute<IEnumerable<TOut>>( this.Expression ).GetEnumerator();
}
of course, one of them would be explicit due to name collision. Please note that to fetch the enumerator, I actually call the Execute with explicitely stated TResult. This is why in my "proof" those types occurred.
I think that you see the "TResult = Single Element" case, because you wrote i.e. something like this:
public IEnumerator<TOut> GetEnumerator()
{
return Provider.Execute<TOut>( this.Expression ).GetEnumerator();
}
Which really renders your Execute implementation without choice, and must return single element. IMHO, this is just a bug in your code. You could have done it like in my example above, or you could simply use the untyped Execute:
public System.Collections.IEnumerator GetEnumerator()
{
return ((IEnumerable)Provider.Execute( this.Expression )).GetEnumerator();
}
public IEnumerator<TOut> GetEnumerator()
{
return ((IEnumerable<TOut>)Provider.Execute( this.Expression )).GetEnumerator();
}
Of course, your implementation of Execute must make sure to return proper IEnumerables for such queries!
Expression trees that represent queries that return enumerable results are executed when their associated IQueryable object is enumerated.
I recommend enumerating your query:
foreach(T t in query)
{
CustomModification(t);
}
Your IQueryProvider must implement CreateQuery<T>. You get to choose the implemenation of the resulting IQueryable. If you want that IQueryable to do something to each row when enumerated, you get to write that implementation.
The final answer is that it's not possible.

Why isn't .Except (LINQ) comparing things properly? (using IEquatable)

I have two collections of my own reference-type objects that I wrote my own IEquatable.Equals method for, and I want to be able to use LINQ methods on them.
So,
List<CandyType> candy = dataSource.GetListOfCandy();
List<CandyType> lollyPops = dataSource.GetListOfLollyPops();
var candyOtherThanLollyPops = candy.Except( lollyPops );
According to the documentation of .Except, not passing an IEqualityComparer should result in EqualityComparer.Default being used to compare objects. And the documentation for the Default comparer is this:
"The Default property checks whether type T implements the System.IEquatable generic interface and if so returns an EqualityComparer that uses that implementation. Otherwise it returns an EqualityComparer that uses the overrides of Object.Equals and Object.GetHashCode provided by T."
So, because I implement IEquatable for my object, it should use that and work. But, it doesn't. It doesn't work until I override GetHashCode. In fact, if I set a break point, my IEquatable.Equals method never gets executed. This makes me think that it's going with plan B according to its documentation. I understand that overriding GetHashCode is a good idea, anyway, and I can get this working, but I am upset that it is behaving in a way that isn't in line with what its own documentation stated.
Why isn't it doing what it said it would? Thank you.
After investigation, it turns out things aren't quite as bad as I thought. Basically, when everything is implemented properly (GetHashCode, etc.) the documentation is correct, and the behavior is correct. But, if you try to do something like implement IEquatable all by itself, then your Equals method will never get called (this seems to be due to GetHashCode not being implemented properly). So, while the documentation is technically wrong, it's only wrong in a fringe situation that you'd never ever want to do (if this investigation has taught me anything, it's that IEquatable is part of a whole set of methods you should implement atomically (by convention, not by rule, unfortunately)).
Good sources on this are:
Is there a complete IEquatable implementation reference?
MSDN Documentation: IEquatable<T>.Equals(T) Method
SYSK 158: IComparable<T> vs. IEquatable<T>
The interface IEqualityComparer<T> has these two methods:
bool Equals(T x, T y);
int GetHashCode(T obj);
A good implementation of this interface would thus implement both. The Linq extension method Except relies on the hash code in order to use a dictionary or set lookup internally to figure out which objects to skip, and thus requires that proper GetHashCode implementation.
Unfortunately, when you use EqualityComparer<T>.Default, that class does not provide a good GetHashCode implementation by itself, and relies on the object in question, the type T, to provide that part, when it detects that the object implements IEquatable<T>.
The problem here is that IEquatable<T> does not in fact declare GetHashCode so it's much easier to forget to implement that method properly, contrasted with the Equals method that it does declare.
So you have two choices:
Provide a proper IEqualityComparer<T> implementation that implements both Equals and GetHashCode
Make sure that in addition to implementing IEquatable<T> on your object, implement a proper GetHashCode as well
Hazarding a guess, are these different classes? I think by default IEquatable only works with the same class. So it might by falling back to the Object.Equal method.
I wrote a GenericEqualityComparer to be used on the fly for these types of methods: Distinct, Except, Intersect, etc.
Use as follows:
var results = list1.Except(list2, new GenericEqualityComparer<MYTYPE>((a, b) => a.Id == b.Id // OR SOME OTHER COMPARISON RESOLVING TO BOOLEAN));
Here's the class:
public class GenericEqualityComparer<T> : EqualityComparer<T>
{
public Func<T, int> HashCodeFunc { get; set; }
public Func<T, T, Boolean> EqualityFunc { get; set; }
public GenericEqualityComparer(Func<T, T, Boolean> equalityFunc)
{
EqualityFunc = equalityFunc;
HashCodeFunc = null;
}
public GenericEqualityComparer(Func<T, T, Boolean> equalityFunc, Func<T, int> hashCodeFunc) : this(equalityFunc)
{
HashCodeFunc = hashCodeFunc;
}
public override bool Equals(T x, T y)
{
return EqualityFunc(x, y);
}
public override int GetHashCode(T obj)
{
if (HashCodeFunc == null)
{
return 1;
}
else
{
return HashCodeFunc(obj);
}
}
}
I ran into this same problem, and debugging led me to a different answer than most. Most people point out that GetHashCode() must be implemented.
However, in my case - which was LINQ's SequenceEqual() - GetHashCode() was never called. And, despite the fact that every object involved was typed to a specific type T, the underlying problem was that SequenceEqual() called T.Equals(object other), which I had forgotten to implement, rather than calling the expected T.Equals(T other).

What's the best way to refactor a method that has too many (6+) parameters?

Occasionally I come across methods with an uncomfortable number of parameters. More often than not, they seem to be constructors. It seems like there ought to be a better way, but I can't see what it is.
return new Shniz(foo, bar, baz, quux, fred, wilma, barney, dino, donkey)
I've thought of using structs to represent the list of parameters, but that just seems to shift the problem from one place to another, and create another type in the process.
ShnizArgs args = new ShnizArgs(foo, bar, baz, quux, fred, wilma, barney, dino, donkey)
return new Shniz(args);
So that doesn't seem like an improvement. So what is the best approach?
I'm going to assume you mean C#. Some of these things apply to other languages, too.
You have several options:
switch from constructor to property setters. This can make code more readable, because it's obvious to the reader which value corresponds to which parameters. Object Initializer syntax makes this look nice. It's also simple to implement, since you can just use auto-generated properties and skip writing the constructors.
class C
{
public string S { get; set; }
public int I { get; set; }
}
new C { S = "hi", I = 3 };
However, you lose immutability, and you lose the ability to ensure that the required values are set before using the object at compile time.
Builder Pattern.
Think about the relationship between string and StringBuilder. You can get this for your own classes. I like to implement it as a nested class, so class C has related class C.Builder. I also like a fluent interface on the builder. Done right, you can get syntax like this:
C c = new C.Builder()
.SetX(4) // SetX is the fluent equivalent to a property setter
.SetY("hello")
.ToC(); // ToC is the builder pattern analog to ToString()
// Modify without breaking immutability
c = c.ToBuilder().SetX(2).ToC();
// Still useful to have a traditional ctor:
c = new C(1, "...");
// And object initializer syntax is still available:
c = new C.Builder { X = 4, Y = "boing" }.ToC();
I have a PowerShell script that lets me generate the builder code to do all this, where the input looks like:
class C {
field I X
field string Y
}
So I can generate at compile time. partial classes let me extend both the main class and the builder without modifying the generated code.
"Introduce Parameter Object" refactoring. See the Refactoring Catalog. The idea is that you take some of the parameters you're passing and put them in to a new type, and then pass an instance of that type instead. If you do this without thinking, you will end up back where you started:
new C(a, b, c, d);
becomes
new C(new D(a, b, c, d));
However, this approach has the greatest potential to make a positive impact on your code. So, continue by following these steps:
Look for subsets of parameters that make sense together. Just mindlessly grouping all parameters of a function together doesn't get you much; the goal is to have groupings that make sense. You'll know you got it right when the name of the new type is obvious.
Look for other places where these values are used together, and use the new type there, too. Chances are, when you've found a good new type for a set of values that you already use all over the place, that new type will make sense in all those places, too.
Look for functionality that is in the existing code, but belongs on the new type.
For example, maybe you see some code that looks like:
bool SpeedIsAcceptable(int minSpeed, int maxSpeed, int currentSpeed)
{
return currentSpeed >= minSpeed & currentSpeed < maxSpeed;
}
You could take the minSpeed and maxSpeed parameters and put them in a new type:
class SpeedRange
{
public int Min;
public int Max;
}
bool SpeedIsAcceptable(SpeedRange sr, int currentSpeed)
{
return currentSpeed >= sr.Min & currentSpeed < sr.Max;
}
This is better, but to really take advantage of the new type, move the comparisons into the new type:
class SpeedRange
{
public int Min;
public int Max;
bool Contains(int speed)
{
return speed >= min & speed < Max;
}
}
bool SpeedIsAcceptable(SpeedRange sr, int currentSpeed)
{
return sr.Contains(currentSpeed);
}
And now we're getting somewhere: the implementation of SpeedIsAcceptable() now says what you mean, and you have a useful, reusable class. (The next obvious step is to make SpeedRange in to Range<Speed>.)
As you can see, Introduce Parameter Object was a good start, but its real value was that it helped us discover a useful type that has been missing from our model.
The best way would be to find ways to group the arguments together. This assumes, and really only works if, you would end up with multiple "groupings" of arguments.
For instance, if you are passing the specification for a rectangle, you can pass x, y, width, and height or you could just pass a rectangle object that contains x, y, width, and height.
Look for things like this when refactoring to clean it up somewhat. If the arguments really can't be combined, start looking at whether you have a violation of the Single Responsibility Principle.
If it's a constructor, particularly if there are multiple overloaded variants, you should look at the Builder pattern:
Foo foo = new Foo()
.configBar(anything)
.configBaz(something, somethingElse)
// and so on
If it's a normal method, you should think about the relationships between the values being passed, and perhaps create a Transfer Object.
The classic answer to this is to use a class to encapsulate some, or all, of the parameters. In theory that sounds great, but I'm the kind of guy who creates classes for concepts that have meaning in the domain, so it's not always easy to apply this advice.
E.g. instead of:
driver.connect(host, user, pass)
You could use
config = new Configuration()
config.setHost(host)
config.setUser(user)
config.setPass(pass)
driver.connect(config)
YMMV
When I see long parameter lists, my first question is whether this function or object is doing too much. Consider:
EverythingInTheWorld earth=new EverythingInTheWorld(firstCustomerId,
lastCustomerId,
orderNumber, productCode, lastFileUpdateDate,
employeeOfTheMonthWinnerForLastMarch,
yearMyHometownWasIncorporated, greatGrandmothersBloodType,
planetName, planetSize, percentWater, ... etc ...);
Of course this example is deliberately ridiculous, but I've seen plenty of real programs with examples only slightly less ridiculous, where one class is used to hold many barely related or unrelated things, apparently just because the same calling program needs both or because the programmer happened to think of both at the same time. Sometimes the easy solution is to just break the class into multiple pieces each of which does its own thing.
Just slightly more complicated is when a class really does need to deal with multiple logical things, like both a customer order and general information about the customer. In these cases, crate a class for customer and a class for order, and let them talk to each other as necessary. So instead of:
Order order=new Order(customerName, customerAddress, customerCity,
customerState, customerZip,
orderNumber, orderType, orderDate, deliveryDate);
We could have:
Customer customer=new Customer(customerName, customerAddress,
customerCity, customerState, customerZip);
Order order=new Order(customer, orderNumber, orderType, orderDate, deliveryDate);
While of course I prefer functions that take just 1 or 2 or 3 parameters, sometimes we have to accept that, realistically, this function takes a bunch, and that the number of itself does not really create complexity. For example:
Employee employee=new Employee(employeeId, firstName, lastName,
socialSecurityNumber,
address, city, state, zip);
Yeah, it's a bunch of fields, but probably all we're going to do with them is save them to a database record or throw them on a screen or some such. There's not really a lot of processing here.
When my parameter lists do get long, I much prefer if I can give the fields different data types. Like when I see a function like:
void updateCustomer(String type, String status,
int lastOrderNumber, int pastDue, int deliveryCode, int birthYear,
int addressCode,
boolean newCustomer, boolean taxExempt, boolean creditWatch,
boolean foo, boolean bar);
And then I see it called with:
updateCustomer("A", "M", 42, 3, 1492, 1969, -7, true, false, false, true, false);
I get concerned. Looking at the call, it's not at all clear what all these cryptic numbers, codes, and flags mean. This is just asking for errors. A programmer might easily get confused about the order of the parameters and accidentally switch two, and if they're the same data type, the compiler would just accept it. I'd much rather have a signature where all these things are enums, so a call passes in things like Type.ACTIVE instead of "A" and CreditWatch.NO instead of "false", etc.
This is quoted from Fowler and Beck book: "Refactoring"
Long Parameter List
In our early programming days we were taught to pass in as parameters everything needed by
a routine. This was understandable because the alternative was global data, and global data is
evil and usually painful. Objects change this situation because if you don't have something
you need, you can always ask another object to get it for you. Thus with objects you don't
pass in everything the method needs; instead you pass enough so that the method can get to
everything it needs. A lot of what a method needs is available on the method's host class. In
object-oriented programs parameter lists tend to be much smaller than in traditional
programs.
This is good because long parameter lists are hard to understand, because they become
inconsistent and difficult to use, and because you are forever changing them as you need
more data. Most changes are removed by passing objects because you are much more likely
to need to make only a couple of requests to get at a new piece of data.
Use Replace Parameter with Method when you can get the data in one parameter by making
a request of an object you already know about. This object might be a field or it might be
another parameter. Use Preserve Whole Object to take a bunch of data gleaned from an
object and replace it with the object itself. If you have several data items with no logical
object, use Introduce Parameter Object.
There is one important exception to making these changes. This is when you explicitly do
not want to create a dependency from the called object to the larger object. In those cases
unpacking data and sending it along as parameters is reasonable, but pay attention to the pain
involved. If the parameter list is too long or changes too often, you need to rethink your
dependency structure.
I don't want to sound like a wise-crack, but you should also check to make sure the data you are passing around really should be passed around: Passing stuff to a constructor (or method for that matter) smells a bit like to little emphasis on the behavior of an object.
Don't get me wrong: Methods and constructors will have a lot of parameters sometimes. But when encountered, do try to consider encapsulating data with behavior instead.
This kind of smell (since we are talking about refactoring, this horrible word seems appropriate...) might also be detected for objects that have a lot (read: any) properties or getters/setters.
If some of the constructor parameters are optional it makes sense to use a builder, which would get the required parameters in the constructor, and have methods for the optional ones, returning the builder, to be used like this:
return new Shniz.Builder(foo, bar).baz(baz).quux(quux).build();
The details of this are described in Effective Java, 2nd Ed., p. 11. For method arguments, the same book (p. 189) describes three approaches for shortening parameter lists:
Break the method into multiple methods that take fewer arguments
Create static helper member classes to represent groups of parameters, i.e. pass a DinoDonkey instead of dino and donkey
If parameters are optional, the builder above can be adopted for methods, defining an object for all parameters, setting the required ones and then calling some execute method on it
You can try to group your parameter into multiples meaningful struct/class (if possible).
I would generally lean towards the structs approach - presumably the majority of these parameters are related in some way and represent the state of some element that is relevant to your method.
If the set of parameters can't be made into a meaningful object, that's probably a sign that Shniz is doing too much, and the refactoring should involve breaking the method down into separate concerns.
I would use the default constructor and property settors. C# 3.0 has some nice syntax to do this automagically.
return new Shniz { Foo = foo,
Bar = bar,
Baz = baz,
Quuz = quux,
Fred = fred,
Wilma = wilma,
Barney = barney,
Dino = dino,
Donkey = donkey
};
The code improvement comes in simplifying the constructor and not having to support multiple methods to support various combinations. The "calling" syntax is still a little "wordy", but not really any worse than calling the property settors manually.
You haven't provided enough information to warrant a good answer. A long parameter list isn't inherently bad.
Shniz(foo, bar, baz, quux, fred, wilma, barney, dino, donkey)
could be interpreted as:
void Shniz(int foo, int bar, int baz, int quux, int fred,
int wilma, int barney, int dino, int donkey) { ...
In this case you're far better off to create a class to encapsulate the parameters because you give meaning to the different parameters in a way that the compiler can check as well as visually making the code easier to read. It also makes it easier to read and refactor later.
// old way
Shniz(1,2,3,2,3,2,1,2);
Shniz(1,2,2,3,3,2,1,2);
//versus
ShnizParam p = new ShnizParam { Foo = 1, Bar = 2, Baz = 3 };
Shniz(p);
Alternatively if you had:
void Shniz(Foo foo, Bar bar, Baz baz, Quux quux, Fred fred,
Wilma wilma, Barney barney, Dino dino, Donkey donkey) { ...
This is a far different case because all the objects are different (and aren't likely to be muddled up). Agreed that if all objects are necessary, and they're all different, it makes little sense to create a parameter class.
Additionally, are some parameters optional? Are there method override's (same method name, but different method signatures?) These sorts of details all matter as to what the best answer is.
* A property bag can be useful as well, but not specifically better given that there is no background given.
As you can see, there is more than 1 correct answer to this question. Take your pick.
If you have that many parameters, chances are that the method is doing too much, so address this first by splitting the method into several smaller methods. If you still have too many parameters after this try grouping the arguments or turning some of the parameters into instance members.
Prefer small classes/methods over large. Remember the single responsibility principle.
You can trade complexity for source code lines. If the method itself does too much (Swiss knife) try to halve its tasks by creating another method. If the method is simple only it needs too many parameters then the so called parameter objects are the way to go.
If your language supports it, use named parameters and make as many optional (with reasonable defaults) as possible.
I think the method you described is the way to go. When I find a method with a lot of parameters and/or one that is likely to need more in the future, I usually create a ShnizParams object to pass through, like you describe.
How about not setting it in all at once at the constructors but doing it via properties/setters? I have seen some .NET classes that utilize this approach such as Process class:
Process p = new Process();
p.StartInfo.UseShellExecute = false;
p.StartInfo.CreateNoWindow = true;
p.StartInfo.RedirectStandardOutput = true;
p.StartInfo.RedirectStandardError = true;
p.StartInfo.FileName = "cmd";
p.StartInfo.Arguments = "/c dir";
p.Start();
I concur with the approach of moving the parameters into a parameter object (struct). Rather than just sticking them all in one object though, review if other functions use similar groups of parameters. A paramater object is more valuable if its used with multiple functions where you expect that set of parameters to change consistently across those functions. It may be that you only put some of the parameters into the new parameter object.
Named arguments are a good option (presuming a language which supports them) for disambiguating long (or even short!) parameter lists while also allowing (in the case of constructors) the class's properties to be immutable without imposing a requirement for allowing it to exist in a partially-constructed state.
The other option I would look for in doing this sort of refactor would be groups of related parameters which might be better handled as an independent object. Using the Rectangle class from an earlier answer as an example, the constructor which takes parameters for x, y, height, and width could factor x and y out into a Point object, allowing you to pass three parameters to the Rectangle's constructor. Or go a little further and make it two parameters (UpperLeftPoint, LowerRightPoint), but that would be a more radical refactoring.
It depends on what kind of arguments you have, but if they are a lot of boolean values/options maybe you could use a Flag Enum?
I think that problem is deeply tied to the domain of the problem you're trying to solve with the class.
In some cases, a 7-parameter constructor may indicate a bad class hierarchy: in that case, the helper struct/class suggested above is usually a good approach, but then you also tend to end up with loads of structs which are just property bags and don't do anything useful.
The 8-argument constructor might also indicate that your class is too generic / too all-purpose so it needs a lot of options to be really useful. In that case you can either refactor the class or implement static constructors that hide the real complex constructors: eg. Shniz.NewBaz (foo, bar) could actually call the real constructor passing the right parameters.
One consideration is which of the values would be read-only once the object is created?
Publicly writable properties could perhaps be assigned after construction.
Where ultimately do the values come from? Perhaps some values are truely external where as others are really from some configuration or global data that is maintained by the library.
In this case you could conceal the constructor from external use and provide a Create function for it. The create function takes the truely external values and constructs the object, then uses accessors only avaiable to the library to complete the creation of the object.
It would be really strange to have an object that requires 7 or more parameters to give the object a complete state and all truely being external in nature.
When a clas has a constructor that takes too many arguments, it is usually a sign that it has too many responsibilities. It can probably be broken into separate classes that cooperate to give the same functionalities.
In case you really need that many arguments to a constructor, the Builder pattern can help you. The goal is to still pass all the arguments to the constructor, so its state is initialized from the start and you can still make the class immutable if needed.
See below :
public class Toto {
private final String state0;
private final String state1;
private final String state2;
private final String state3;
public Toto(String arg0, String arg1, String arg2, String arg3) {
this.state0 = arg0;
this.state1 = arg1;
this.state2 = arg2;
this.state3 = arg3;
}
public static class TotoBuilder {
private String arg0;
private String arg1;
private String arg2;
private String arg3;
public TotoBuilder addArg0(String arg) {
this.arg0 = arg;
return this;
}
public TotoBuilder addArg1(String arg) {
this.arg1 = arg;
return this;
}
public TotoBuilder addArg2(String arg) {
this.arg2 = arg;
return this;
}
public TotoBuilder addArg3(String arg) {
this.arg3 = arg;
return this;
}
public Toto newInstance() {
// maybe add some validation ...
return new Toto(this.arg0, this.arg1, this.arg2, this.arg3);
}
}
public static void main(String[] args) {
Toto toto = new TotoBuilder()
.addArg0("0")
.addArg1("1")
.addArg2("2")
.addArg3("3")
.newInstance();
}
}
The short answer is that:
You need to group the related parameters or redesigning our model
Below example, the constructor takes 8 parameters
public Rectangle(
int point1X,
int point1Y,
int point2X,
int point2Y,
int point3X,
int point3Y,
int point4X,
int point4Y) {
this.point1X = point1X;
this.point1Y = point1Y;
this.point2X = point2X;
this.point2Y = point2Y;
this.point3X = point3X;
this.point3Y = point3Y;
this.point4X = point4X;
this.point4Y = point4Y;
}
After grouping the related parameters,
Then, the constructor will take ONLY 4 parameters
public Rectangle(
Point point1,
Point point2,
Point point3,
Point point4) {
this.point1 = point1;
this.point2 = point2;
this.point3 = point3;
this.point4 = point4;
}
public Point(int x, int y) {
this.x = x;
this.y= y;
}
Or even make the constructor smarter,
After redesigning our model
Then, the constructor will take ONLY 2 parameters
public Rectangle(
Point leftLowerPoint,
Point rightUpperPoint) {
this.leftLowerPoint = leftLowerPoint;
this.rightUpperPoint = rightUpperPoint;
}

Resources