Algorithm for solving set problem - algorithm

If I have a set of values (which I'll call x), and a number of subsets of x:
What is the best way to work out all possible combinations of subsets whose union is equal to x, but none of whom intersect with each other.
An example might be:
if x is the set of the numbers 1 to 100, and I have four subsets:
a = 0-49
b = 50-100
c = 50-75
d = 76-100
then the possible combinations would be:
a + b
a + c + d

What you describe is called the Exact cover problem. The general solution is Knuth's Algorithm X, with the Dancing Links algorithm being a concrete implementation.

Given a well-order on the elements of x (make one up if necessary, this is always possible for finite or countable sets):
Let "sets chosen so far" be empty. Consider the smallest element of x. Find all sets which contain x and which do not intersect with any of the sets chosen so far. For each such set in turn recurse, adding the chosen set to "sets chosen so far", and looking at the smallest element of x not in any chosen set. If you reach a point where there is no element of x left, then you've found a solution. If you reach a point where there is no unchosen set containing the element you're looking for, and which does not intersect with any of the sets that you already have selected, then you've failed to find a solution, so backtrack.
This uses stack proportional to the number of non-intersecting subsets, so watch out for that. It also uses a lot of time - you can be far more efficient if, as in your example, the subsets are all contiguous ranges.

here's a bad way (recursive, does a lot of redundant work). But at least its actual code and is probably halfway to the "efficient" solution.
def unique_sets(sets, target):
if not sets and not target:
yield []
for i, s in enumerate(sets):
intersect = s.intersection(target) and not s.difference(target)
sets_without_s = sets[:i] + sets[i+1:]
if intersect:
for us in unique_sets(sets_without_s, target.difference(s)):
yield us + [s]
else:
for us in unique_sets(sets_without_s, target):
yield us
class named_set(set):
def __init__(self, items, name):
set.__init__(self, items)
self.name = name
def __repr__(self):
return self.name
a = named_set(range(0, 50), name='a')
b = named_set(range(50, 100), name='b')
c = named_set(range(50, 75), name='c')
d = named_set(range(75, 100), name='d')
for s in unique_sets([a,b,c,d], set(range(0, 100))):
print s

A way (may not be the best way) is:
Create a set of all the pairs of subsets which overlap.
For every combination of the original subsets, say "false" if the combination contains one or more of the pairs listed in Step 1, else say "true" if the union of the subsets equals x (e.g. if the total number of elements in the subsets is x)

The actual algorithm seems largely dependent on the choice of subsets, product operation, and equate operation. For addition (+), it seems like you could find a summation to suit your needs (the sum of 1 to 100 is similar to your a + b example). If you can do this, your algorithm is obviously O(1).
If you have a tougher product or equate operator (let's say taking a product of two terms means summing the strings and finding the SHA-1 hash), you may be stuck doing nested loops, which would be O(n^x) where x is the number of terms/variables.

Depending on the subsets you have to work with, it might be advantageous to use a more naive algorithm. One where you don't have to compare the entire subset, but only upper and lower bounds.
If you are talking random subsets, not necesserily a range, then Nick Johnson's suggestion will probably be the best choice.

Related

Algorithm for grouping non-transitive pairs of items into maximal (overlapping) subsets

I'm working on an algorithm to combine matching pairs of items into larger groups. The problem is that these pairs are not transitive; 1=2 and 2=3 does not necessarily mean that 1=3. They are, however, commutative, so 1=2 implies 2=1.
Each item can belong to multiple groups, but each group should be as large as possible; for example, if 1=2, 1=3, 1=4, 1=5, 2=3, 3=4, and 4=5, then we'd want to end up with groups of 1-2-3, 1-3-4, and 1-4-5.
The best solution I've come up with to this so far is to work recursively: for any given item, iterate through every later item, and if they match, recurse and iterate through every later item than that to see if it matches all of the ones you've collected so far. (and then check to make sure there isn't a larger group that already contains that combination, so e.g. in the above example I'd be about to output 4-5 but then would go back and find that they were already incorporated in 1-4-5)
The sets involved are not enormous - rarely more than 40 or 50 items - but I might be working with thousands of these little sets in a single operation. So computational-complexity-wise it's totally fine if it's O(n²) or whatever because it's not going to have to scale to enormous sets, but I'd like it to be as fast as possible on those little 50-item sets.
Anyway, while I can probably make do with the above solution, it feels needlessly awkward and slow, so if there's a better approach I'd love to hear about it.
If you want ALL maximal groups, then there is no subexponential algorithm for this problem. As https://cstheory.stackexchange.com/questions/8390/the-number-of-cliques-in-a-graph-the-moon-and-moser-1965-result points out, the number of maximal cliques to find may itself grow exponentially in the size of the graph.
If you want just a set of maximal groups that covers all of the original relationships, then you can solve this in polynomial time (though not with a great bound).
def maximal_groups (pairs):
related = {}
not_included = {}
for pair in pairs:
for i in [0, 1]:
if pair[i] not in related:
related[pair[i]] = set()
not_included[pair[i]] = set()
if pair[1-i] not in related:
related[pair[1-i]] = set()
not_included[pair[1-i]] = set()
related[pair[0]].add(pair[1])
related[pair[1]].add(pair[0])
not_included[pair[0]].add(pair[1])
not_included[pair[1]].add(pair[0])
groups = []
for item in sorted(related.keys()):
while 0 < len(not_included[item]):
other_item = not_included[item].pop()
not_included[other_item].remove(item)
group = [item, other_item]
available = [x for x in sorted(related[item]) if x in related[other_item]]
while 0 < len(available):
next_item = available[0]
for prev_item in group:
if prev_item in not_included[next_item]:
not_included[next_item].remove(prev_item)
not_included[prev_item].remove(next_item)
group.append(next_item)
available = [x for x in available if x in related[next_item]]
groups.append(group)
return groups
print(maximal_groups([[1,2], [1,3], [1,4], [1,5], [2,3], [3,4], [4,5]]))

Find minimum distance between points

I have a set of points (x,y).
i need to return two points with minimal distance.
I use this:
http://www.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf
but , i dont really understand how the algo is working.
Can explain in more simple how the algo working?
or suggest another idea?
Thank!
If the number of points is small, you can use the brute force approach i.e:
for each point find the closest point among other points and save the minimum distance with the current two indices till now.
If the number of points is large, I think you may find the answer in this thread:
Shortest distance between points algorithm
Solution for Closest Pair Problem with minimum time complexity O(nlogn) is divide-and-conquer methodology as it mentioned in the document that you have read.
Divide-and-conquer Approach for Closest-Pair Problem
Easiest way to understand this algorithm is reading an implementation of it in a high-level language (because sometimes understanding the algorithms or pseudo-codes can be harder than understanding the real codes) like Python:
# closest pairs by divide and conquer
# David Eppstein, UC Irvine, 7 Mar 2002
from __future__ import generators
def closestpair(L):
def square(x): return x*x
def sqdist(p,q): return square(p[0]-q[0])+square(p[1]-q[1])
# Work around ridiculous Python inability to change variables in outer scopes
# by storing a list "best", where best[0] = smallest sqdist found so far and
# best[1] = pair of points giving that value of sqdist. Then best itself is never
# changed, but its elements best[0] and best[1] can be.
#
# We use the pair L[0],L[1] as our initial guess at a small distance.
best = [sqdist(L[0],L[1]), (L[0],L[1])]
# check whether pair (p,q) forms a closer pair than one seen already
def testpair(p,q):
d = sqdist(p,q)
if d < best[0]:
best[0] = d
best[1] = p,q
# merge two sorted lists by y-coordinate
def merge(A,B):
i = 0
j = 0
while i < len(A) or j < len(B):
if j >= len(B) or (i < len(A) and A[i][1] <= B[j][1]):
yield A[i]
i += 1
else:
yield B[j]
j += 1
# Find closest pair recursively; returns all points sorted by y coordinate
def recur(L):
if len(L) < 2:
return L
split = len(L)/2
L = list(merge(recur(L[:split]), recur(L[split:])))
# Find possible closest pair across split line
# Note: this is not quite the same as the algorithm described in class, because
# we use the global minimum distance found so far (best[0]), instead of
# the best distance found within the recursive calls made by this call to recur().
for i in range(len(E)):
for j in range(1,8):
if i+j < len(E):
testpair(E[i],E[i+j])
return L
L.sort()
recur(L)
return best[1]
closestpair([(0,0),(7,6),(2,20),(12,5),(16,16),(5,8),\
(19,7),(14,22),(8,19),(7,29),(10,11),(1,13)])
# returns: (7,6),(5,8)
Taken from: https://www.ics.uci.edu/~eppstein/161/python/closestpair.py
Detailed explanation:
First we define an Euclidean distance aka Square distance function to prevent code repetition.
def square(x): return x*x # Define square function
def sqdist(p,q): return square(p[0]-q[0])+square(p[1]-q[1]) # Define Euclidean distance function
Then we are taking the first two points as our initial best guess:
best = [sqdist(L[0],L[1]), (L[0],L[1])]
This is a function definition for comparing Euclidean distances of next pair with our current best pair:
def testpair(p,q):
d = sqdist(p,q)
if d < best[0]:
best[0] = d
best[1] = p,q
def merge(A,B): is just a rewind function for the algorithm to merge two sorted lists that previously divided to half.
def recur(L): function definition is the actual body of the algorithm. So I will explain this function definition in more detail:
if len(L) < 2:
return L
with this part, algorithm terminates the recursion if there is only one element/point left in the list of points.
Split the list to half: split = len(L)/2
Create a recursion (by calling function's itself) for each half: L = list(merge(recur(L[:split]), recur(L[split:])))
Then lastly this nested loops will test whole pairs in the current half-list with each other:
for i in range(len(E)):
for j in range(1,8):
if i+j < len(E):
testpair(E[i],E[i+j])
As the result of this, if a better pair is found best pair will be updated.
So they solve for the problem in Many dimensions using a divide-and-conquer approach. Binary search or divide-and-conquer is mega fast. Basically, if you can split a dataset into two halves, and keep doing that until you find some info you want, you are doing it as fast as humanly and computerly possible most of the time.
For this question, it means that we divide the data set of points into two sets, S1 and S2.
All the points are numerical, right? So we have to pick some number where to divide the dataset.
So we pick some number m and say it is the median.
So let's take a look at an example:
(14, 2)
(11, 2)
(5, 2)
(15, 2)
(0, 2)
What's the closest pair?
Well, they all have the same Y coordinate, so we can look at Xs only... X shortest distance is 14 to 15, a distance of 1.
How can we figure that out using divide-and-conquer?
We look at the greatest value of X and the smallest value of X and we choose the median as a dividing line to make our two sets.
Our median is 7.5 in this example.
We then make 2 sets
S1: (0, 2) and (5, 2)
S2: (11, 2) and (14, 2) and (15, 2)
Median: 7.5
We must keep track of the median for every split, because that is actually a vital piece of knowledge in this algorithm. They don't show it very clearly on the slides, but knowing the median value (where you split a set to make two sets) is essential to solving this question quickly.
We keep track of a value they call delta in the algorithm. Ugh I don't know why most computer scientists absolutely suck at naming variables, you need to have descriptive names when you code so you don't forget what the f000 you coded 10 years ago, so instead of delta let's call this value our-shortest-twig-from-the-median-so-far
Since we have the median value of 7.5 let's go and see what our-shortest-twig-from-the-median-so-far is for Set1 and Set2, respectively:
Set1 : shortest-twig-from-the-median-so-far 2.5 (5 to m where m is 7.5)
Set 2: shortest-twig-from-the-median-so-far 3.5 (looking at 11 to m)
So I think the key take-away from the algorithm is that this shortest-twig-from-the-median-so-far is something that you're trying to improve upon every time you divide a set.
Since S1 in our case has 2 elements only, we are done with the left set, and we have 3 in the right set, so we continue dividing:
S2 = { (11,2) (14,2) (15,2) }
What do you do? You make a new median, call it S2-median
S2-median is halfway between 15 and 11... or 13, right? My math may be fuzzy, but I think that's right so far.
So let's look at the shortest-twig-so-far-for-our-right-side-with-median-thirteen ...
15 to 13 is... 2
11 to 13 is .... 2
14 to 13 is ... 1 (!!!)
So our m value or shortest-twig-from-the-median-so-far is improved (where we updated our median from before because we're in a new chunk or Set...)
Now that we've found it we know that (14, 2) is one of the points that satisfies the shortest pair equation. You can then check exhaustively against the points in this subset (15, 11, 14) to see which one is the closer one.
Clearly, (15,2) and (14,2) are the winning pair in this case.
Does that make sense? You must keep track of the median when you cut the set, and keep a new median for everytime you cut the set until you have only 2 elements remaining on each side (or in our case 3)
The magic is in the median or shortest-twig-from-the-median-so-far
Thanks for asking this question, I went in not knowing how this algorithm worked but found the right highlighted bullet point on the slide and rolled with it. Do you get it now? I don't know how to explain the median magic other than binary search is f000ing awesome.

What data structure is conducive to discrete sampling? [duplicate]

Recently I needed to do weighted random selection of elements from a list, both with and without replacement. While there are well known and good algorithms for unweighted selection, and some for weighted selection without replacement (such as modifications of the resevoir algorithm), I couldn't find any good algorithms for weighted selection with replacement. I also wanted to avoid the resevoir method, as I was selecting a significant fraction of the list, which is small enough to hold in memory.
Does anyone have any suggestions on the best approach in this situation? I have my own solutions, but I'm hoping to find something more efficient, simpler, or both.
One of the fastest ways to make many with replacement samples from an unchanging list is the alias method. The core intuition is that we can create a set of equal-sized bins for the weighted list that can be indexed very efficiently through bit operations, to avoid a binary search. It will turn out that, done correctly, we will need to only store two items from the original list per bin, and thus can represent the split with a single percentage.
Let's us take the example of five equally weighted choices, (a:1, b:1, c:1, d:1, e:1)
To create the alias lookup:
Normalize the weights such that they sum to 1.0. (a:0.2 b:0.2 c:0.2 d:0.2 e:0.2) This is the probability of choosing each weight.
Find the smallest power of 2 greater than or equal to the number of variables, and create this number of partitions, |p|. Each partition represents a probability mass of 1/|p|. In this case, we create 8 partitions, each able to contain 0.125.
Take the variable with the least remaining weight, and place as much of it's mass as possible in an empty partition. In this example, we see that a fills the first partition. (p1{a|null,1.0},p2,p3,p4,p5,p6,p7,p8) with (a:0.075, b:0.2 c:0.2 d:0.2 e:0.2)
If the partition is not filled, take the variable with the most weight, and fill the partition with that variable.
Repeat steps 3 and 4, until none of the weight from the original partition need be assigned to the list.
For example, if we run another iteration of 3 and 4, we see
(p1{a|null,1.0},p2{a|b,0.6},p3,p4,p5,p6,p7,p8) with (a:0, b:0.15 c:0.2 d:0.2 e:0.2) left to be assigned
At runtime:
Get a U(0,1) random number, say binary 0.001100000
bitshift it lg2(p), finding the index partition. Thus, we shift it by 3, yielding 001.1, or position 1, and thus partition 2.
If the partition is split, use the decimal portion of the shifted random number to decide the split. In this case, the value is 0.5, and 0.5 < 0.6, so return a.
Here is some code and another explanation, but unfortunately it doesn't use the bitshifting technique, nor have I actually verified it.
A simple approach that hasn't been mentioned here is one proposed in Efraimidis and Spirakis. In python you could select m items from n >= m weighted items with strictly positive weights stored in weights, returning the selected indices, with:
import heapq
import math
import random
def WeightedSelectionWithoutReplacement(weights, m):
elt = [(math.log(random.random()) / weights[i], i) for i in range(len(weights))]
return [x[1] for x in heapq.nlargest(m, elt)]
This is very similar in structure to the first approach proposed by Nick Johnson. Unfortunately, that approach is biased in selecting the elements (see the comments on the method). Efraimidis and Spirakis proved that their approach is equivalent to random sampling without replacement in the linked paper.
Here's what I came up with for weighted selection without replacement:
def WeightedSelectionWithoutReplacement(l, n):
"""Selects without replacement n random elements from a list of (weight, item) tuples."""
l = sorted((random.random() * x[0], x[1]) for x in l)
return l[-n:]
This is O(m log m) on the number of items in the list to be selected from. I'm fairly certain this will weight items correctly, though I haven't verified it in any formal sense.
Here's what I came up with for weighted selection with replacement:
def WeightedSelectionWithReplacement(l, n):
"""Selects with replacement n random elements from a list of (weight, item) tuples."""
cuml = []
total_weight = 0.0
for weight, item in l:
total_weight += weight
cuml.append((total_weight, item))
return [cuml[bisect.bisect(cuml, random.random()*total_weight)] for x in range(n)]
This is O(m + n log m), where m is the number of items in the input list, and n is the number of items to be selected.
I'd recommend you start by looking at section 3.4.2 of Donald Knuth's Seminumerical Algorithms.
If your arrays are large, there are more efficient algorithms in chapter 3 of Principles of Random Variate Generation by John Dagpunar. If your arrays are not terribly large or you're not concerned with squeezing out as much efficiency as possible, the simpler algorithms in Knuth are probably fine.
It is possible to do Weighted Random Selection with replacement in O(1) time, after first creating an additional O(N)-sized data structure in O(N) time. The algorithm is based on the Alias Method developed by Walker and Vose, which is well described here.
The essential idea is that each bin in a histogram would be chosen with probability 1/N by a uniform RNG. So we will walk through it, and for any underpopulated bin which would would receive excess hits, assign the excess to an overpopulated bin. For each bin, we store the percentage of hits which belong to it, and the partner bin for the excess. This version tracks small and large bins in place, removing the need for an additional stack. It uses the index of the partner (stored in bucket[1]) as an indicator that they have already been processed.
Here is a minimal python implementation, based on the C implementation here
def prep(weights):
data_sz = len(weights)
factor = data_sz/float(sum(weights))
data = [[w*factor, i] for i,w in enumerate(weights)]
big=0
while big<data_sz and data[big][0]<=1.0: big+=1
for small,bucket in enumerate(data):
if bucket[1] is not small: continue
excess = 1.0 - bucket[0]
while excess > 0:
if big==data_sz: break
bucket[1] = big
bucket = data[big]
bucket[0] -= excess
excess = 1.0 - bucket[0]
if (excess >= 0):
big+=1
while big<data_sz and data[big][0]<=1: big+=1
return data
def sample(data):
r=random.random()*len(data)
idx = int(r)
return data[idx][1] if r-idx > data[idx][0] else idx
Example usage:
TRIALS=1000
weights = [20,1.5,9.8,10,15,10,15.5,10,8,.2];
samples = [0]*len(weights)
data = prep(weights)
for _ in range(int(sum(weights)*TRIALS)):
samples[sample(data)]+=1
result = [float(s)/TRIALS for s in samples]
err = [a-b for a,b in zip(result,weights)]
print(result)
print([round(e,5) for e in err])
print(sum([e*e for e in err]))
The following is a description of random weighted selection of an element of a
set (or multiset, if repeats are allowed), both with and without replacement in O(n) space
and O(log n) time.
It consists of implementing a binary search tree, sorted by the elements to be
selected, where each node of the tree contains:
the element itself (element)
the un-normalized weight of the element (elementweight), and
the sum of all the un-normalized weights of the left-child node and all of
its children (leftbranchweight).
the sum of all the un-normalized weights of the right-child node and all of
its chilren (rightbranchweight).
Then we randomly select an element from the BST by descending down the tree. A
rough description of the algorithm follows. The algorithm is given a node of
the tree. Then the values of leftbranchweight, rightbranchweight,
and elementweight of node is summed, and the weights are divided by this
sum, resulting in the values leftbranchprobability,
rightbranchprobability, and elementprobability, respectively. Then a
random number between 0 and 1 (randomnumber) is obtained.
if the number is less than elementprobability,
remove the element from the BST as normal, updating leftbranchweight
and rightbranchweight of all the necessary nodes, and return the
element.
else if the number is less than (elementprobability + leftbranchweight)
recurse on leftchild (run the algorithm using leftchild as node)
else
recurse on rightchild
When we finally find, using these weights, which element is to be returned, we either simply return it (with replacement) or we remove it and update relevant weights in the tree (without replacement).
DISCLAIMER: The algorithm is rough, and a treatise on the proper implementation
of a BST is not attempted here; rather, it is hoped that this answer will help
those who really need fast weighted selection without replacement (like I do).
This is an old question for which numpy now offers an easy solution so I thought I would mention it. Current version of numpy is version 1.2 and numpy.random.choice allows the sampling to be done with or without replacement and with given weights.
Suppose you want to sample 3 elements without replacement from the list ['white','blue','black','yellow','green'] with a prob. distribution [0.1, 0.2, 0.4, 0.1, 0.2]. Using numpy.random module it is as easy as this:
import numpy.random as rnd
sampling_size = 3
domain = ['white','blue','black','yellow','green']
probs = [.1, .2, .4, .1, .2]
sample = rnd.choice(domain, size=sampling_size, replace=False, p=probs)
# in short: rnd.choice(domain, sampling_size, False, probs)
print(sample)
# Possible output: ['white' 'black' 'blue']
Setting the replace flag to True, you have a sampling with replacement.
More info here:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.choice.html#numpy.random.choice
We faced a problem to randomly select K validators of N candidates once per epoch proportionally to their stakes. But this gives us the following problem:
Imagine probabilities of each candidate:
0.1
0.1
0.8
Probabilities of each candidate after 1'000'000 selections 2 of 3 without replacement became:
0.254315
0.256755
0.488930
You should know, those original probabilities are not achievable for 2 of 3 selection without replacement.
But we wish initial probabilities to be a profit distribution probabilities. Else it makes small candidate pools more profitable. So we realized that random selection with replacement would help us – to randomly select >K of N and store also weight of each validator for reward distribution:
std::vector<int> validators;
std::vector<int> weights(n);
int totalWeights = 0;
for (int j = 0; validators.size() < m; j++) {
int value = rand() % likehoodsSum;
for (int i = 0; i < n; i++) {
if (value < likehoods[i]) {
if (weights[i] == 0) {
validators.push_back(i);
}
weights[i]++;
totalWeights++;
break;
}
value -= likehoods[i];
}
}
It gives an almost original distribution of rewards on millions of samples:
0.101230
0.099113
0.799657

Fast solution to Subset sum

Consider this way of solving the Subset sum problem:
def subset_summing_to_zero (activities):
subsets = {0: []}
for (activity, cost) in activities.iteritems():
old_subsets = subsets
subsets = {}
for (prev_sum, subset) in old_subsets.iteritems():
subsets[prev_sum] = subset
new_sum = prev_sum + cost
new_subset = subset + [activity]
if 0 == new_sum:
new_subset.sort()
return new_subset
else:
subsets[new_sum] = new_subset
return []
I have it from here:
http://news.ycombinator.com/item?id=2267392
There is also a comment which says that it is possible to make it "more efficient".
How?
Also, are there any other ways to solve the problem which are at least as fast as the one above?
Edit
I'm interested in any kind of idea which would lead to speed-up. I found:
https://en.wikipedia.org/wiki/Subset_sum_problem#cite_note-Pisinger09-2
which mentions a linear time algorithm. But I don't have the paper, perhaps you, dear people, know how it works? An implementation perhaps? Completely different approach perhaps?
Edit 2
There is now a follow-up:
Fast solution to Subset sum algorithm by Pisinger
I respect the alacrity with which you're trying to solve this problem! Unfortunately, you're trying to solve a problem that's NP-complete, meaning that any further improvement that breaks the polynomial time barrier will prove that P = NP.
The implementation you pulled from Hacker News appears to be consistent with the pseudo-polytime dynamic programming solution, where any additional improvements must, by definition, progress the state of current research into this problem and all of its algorithmic isoforms. In other words: while a constant speedup is possible, you're very unlikely to see an algorithmic improvement to this solution to the problem in the context of this thread.
However, you can use an approximate algorithm if you require a polytime solution with a tolerable degree of error. In pseudocode blatantly stolen from Wikipedia, this would be:
initialize a list S to contain one element 0.
for each i from 1 to N do
let T be a list consisting of xi + y, for all y in S
let U be the union of T and S
sort U
make S empty
let y be the smallest element of U
add y to S
for each element z of U in increasing order do
//trim the list by eliminating numbers close to one another
//and throw out elements greater than s
if y + cs/N < z ≤ s, set y = z and add z to S
if S contains a number between (1 − c)s and s, output yes, otherwise no
Python implementation, preserving the original terms as closely as possible:
from bisect import bisect
def ssum(X,c,s):
""" Simple impl. of the polytime approximate subset sum algorithm
Returns True if the subset exists within our given error; False otherwise
"""
S = [0]
N = len(X)
for xi in X:
T = [xi + y for y in S]
U = set().union(T,S)
U = sorted(U) # Coercion to list
S = []
y = U[0]
S.append(y)
for z in U:
if y + (c*s)/N < z and z <= s:
y = z
S.append(z)
if not c: # For zero error, check equivalence
return S[bisect(S,s)-1] == s
return bisect(S,(1-c)*s) != bisect(S,s)
... where X is your bag of terms, c is your precision (between 0 and 1), and s is the target sum.
For more details, see the Wikipedia article.
(Additional reference, further reading on CSTheory.SE)
While my previous answer describes the polytime approximate algorithm to this problem, a request was specifically made for an implementation of Pisinger's polytime dynamic programming solution when all xi in x are positive:
from bisect import bisect
def balsub(X,c):
""" Simple impl. of Pisinger's generalization of KP for subset sum problems
satisfying xi >= 0, for all xi in X. Returns the state array "st", which may
be used to determine if an optimal solution exists to this subproblem of SSP.
"""
if not X:
return False
X = sorted(X)
n = len(X)
b = bisect(X,c)
r = X[-1]
w_sum = sum(X[:b])
stm1 = {}
st = {}
for u in range(c-r+1,c+1):
stm1[u] = 0
for u in range(c+1,c+r+1):
stm1[u] = 1
stm1[w_sum] = b
for t in range(b,n+1):
for u in range(c-r+1,c+r+1):
st[u] = stm1[u]
for u in range(c-r+1,c+1):
u_tick = u + X[t-1]
st[u_tick] = max(st[u_tick],stm1[u])
for u in reversed(range(c+1,c+X[t-1]+1)):
for j in reversed(range(stm1[u],st[u])):
u_tick = u - X[j-1]
st[u_tick] = max(st[u_tick],j)
return st
Wow, that was headache-inducing. This needs proofreading, because, while it implements balsub, I can't define the right comparator to determine if the optimal solution to this subproblem of SSP exists.
I don't know much python, but there is an approach called meet in the middle.
Pseudocode:
Divide activities into two subarrays, A1 and A2
for both A1 and A2, calculate subsets hashes, H1 and H2, the way You do it in Your question.
for each (cost, a1) in H1
if(H2.contains(-cost))
return a1 + H2[-cost];
This will allow You to double the number of elements of activities You can handle in reasonable time.
I apologize for "discussing" the problem, but a "Subset Sum" problem where the x values are bounded is not the NP version of the problem. Dynamic programing solutions are known for bounded x value problems. That is done by representing the x values as the sum of unit lengths. The Dynamic programming solutions have a number of fundamental iterations that is linear with that total length of the x's. However, the Subset Sum is in NP when the precision of the numbers equals N. That is, the number or base 2 place values needed to state the x's is = N. For N = 40, the x's have to be in the billions. In the NP problem the unit length of the x's increases exponentially with N.That is why the dynamic programming solutions are not a polynomial time solution to the NP Subset Sum problem. That being the case, there are still practical instances of the Subset Sum problem where the x's are bounded and the dynamic programming solution is valid.
Here are three ways to make the code more efficient:
The code stores a list of activities for each partial sum. It is more efficient in terms of both memory and time to just store the most recent activity needed to make the sum, and work out the rest by backtracking once a solution is found.
For each activity the dictionary is repopulated with the old contents (subsets[prev_sum] = subset). It is faster to simply grow a single dictionary
Splitting the values in two and applying a meet in the middle approach.
Applying the first two optimisations results in the following code which is more than 5 times faster:
def subset_summing_to_zero2 (activities):
subsets = {0:-1}
for (activity, cost) in activities.iteritems():
for prev_sum in subsets.keys():
new_sum = prev_sum + cost
if 0 == new_sum:
new_subset = [activity]
while prev_sum:
activity = subsets[prev_sum]
new_subset.append(activity)
prev_sum -= activities[activity]
return sorted(new_subset)
if new_sum in subsets: continue
subsets[new_sum] = activity
return []
Also applying the third optimisation results in something like:
def subset_summing_to_zero3 (activities):
A=activities.items()
mid=len(A)//2
def make_subsets(A):
subsets = {0:-1}
for (activity, cost) in A:
for prev_sum in subsets.keys():
new_sum = prev_sum + cost
if new_sum and new_sum in subsets: continue
subsets[new_sum] = activity
return subsets
subsets = make_subsets(A[:mid])
subsets2 = make_subsets(A[mid:])
def follow_trail(new_subset,subsets,s):
while s:
activity = subsets[s]
new_subset.append(activity)
s -= activities[activity]
new_subset=[]
for s in subsets:
if -s in subsets2:
follow_trail(new_subset,subsets,s)
follow_trail(new_subset,subsets2,-s)
if len(new_subset):
break
return sorted(new_subset)
Define bound to be the largest absolute value of the elements.
The algorithmic benefit of the meet in the middle approach depends a lot on bound.
For a low bound (e.g. bound=1000 and n=300) the meet in the middle only gets a factor of about 2 improvement other the first improved method. This is because the dictionary called subsets is densely populated.
However, for a high bound (e.g. bound=100,000 and n=30) the meet in the middle takes 0.03 seconds compared to 2.5 seconds for the first improved method (and 18 seconds for the original code)
For high bounds, the meet in the middle will take about the square root of the number of operations of the normal method.
It may seem surprising that meet in the middle is only twice as fast for low bounds. The reason is that the number of operations in each iteration depends on the number of keys in the dictionary. After adding k activities we might expect there to be 2**k keys, but if bound is small then many of these keys will collide so we will only have O(bound.k) keys instead.
Thought I'd share my Scala solution for the discussed pseudo-polytime algorithm described in wikipedia. It's a slightly modified version: it figures out how many unique subsets there are. This is very much related to a HackerRank problem described at https://www.hackerrank.com/challenges/functional-programming-the-sums-of-powers. Coding style might not be excellent, I'm still learning Scala :) Maybe this is still helpful for someone.
object Solution extends App {
var input = "1000\n2"
System.setIn(new ByteArrayInputStream(input.getBytes()))
println(calculateNumberOfWays(readInt, readInt))
def calculateNumberOfWays(X: Int, N: Int) = {
val maxValue = Math.pow(X, 1.0/N).toInt
val listOfValues = (1 until maxValue + 1).toList
val listOfPowers = listOfValues.map(value => Math.pow(value, N).toInt)
val lists = (0 until maxValue).toList.foldLeft(List(List(0)): List[List[Int]]) ((newList, i) =>
newList :+ (newList.last union (newList.last.map(y => y + listOfPowers.apply(i)).filter(z => z <= X)))
)
lists.last.count(_ == X)
}
}

Algorithm/Data Structure for finding combinations of minimum values easily

I have a symmetric matrix like shown in the image attached below.
I've made up the notation A.B which represents the value at grid point (A, B). Furthermore, writing A.B.C gives me the minimum grid point value like so: MIN((A,B), (A,C), (B,C)).
As another example A.B.D gives me MIN((A,B), (A,D), (B,D)).
My goal is to find the minimum values for ALL combinations of letters (not repeating) for one row at a time e.g for this example I need to find min values with respect to row A which are given by the calculations:
A.B = 6
A.C = 8
A.D = 4
A.B.C = MIN(6,8,6) = 6
A.B.D = MIN(6, 4, 4) = 4
A.C.D = MIN(8, 4, 2) = 2
A.B.C.D = MIN(6, 8, 4, 6, 4, 2) = 2
I realize that certain calculations can be reused which becomes increasingly important as the matrix size increases, but the problem is finding the most efficient way to implement this reuse.
Can point me in the right direction to finding an efficient algorithm/data structure I can use for this problem?
You'll want to think about the lattice of subsets of the letters, ordered by inclusion. Essentially, you have a value f(S) given for every subset S of size 2 (that is, every off-diagonal element of the matrix - the diagonal elements don't seem to occur in your problem), and the problem is to find, for each subset T of size greater than two, the minimum f(S) over all S of size 2 contained in T. (And then you're interested only in sets T that contain a certain element "A" - but we'll disregard that for the moment.)
First of all, note that if you have n letters, that this amounts to asking Omega(2^n) questions, roughly one for each subset. (Excluding the zero- and one-element subsets and those that don't include "A" saves you n + 1 sets and a factor of two, respectively, which is allowed for big Omega.) So if you want to store all these answers for even moderately large n, you'll need a lot of memory. If n is large in your applications, it might be best to store some collection of pre-computed data and do some computation whenever you need a particular data point; I haven't thought about what would work best, but for example computing data only for a binary tree contained in the lattice would not necessarily help you anything beyond precomputing nothing at all.
With these things out of the way, let's assume you actually want all the answers computed and stored in memory. You'll want to compute these "layer by layer", that is, starting with the three-element subsets (since the two-element subsets are already given by your matrix), then four-element, then five-element, etc. This way, for a given subset S, when we're computing f(S) we will already have computed all f(T) for T strictly contained in S. There are several ways that you can make use of this, but I think the easiest might be to use two such subset S: let t1 and t2 be two different elements of T that you may select however you like; let S be the subset of T that you get when you remove t1 and t2. Write S1 for S plus t1 and write S2 for S plus t2. Now every pair of letters contained in T is either fully contained in S1, or it is fully contained in S2, or it is {t1, t2}. Look up f(S1) and f(S2) in your previously computed values, then look up f({t1, t2}) directly in the matrix, and store f(T) = the minimum of these 3 numbers.
If you never select "A" for t1 or t2, then indeed you can compute everything you're interested in while not computing f for any sets T that don't contain "A". (This is possible because the steps outlined above are only interesting whenever T contains at least three elements.) Good! This leaves just one question - how to store the computed values f(T). What I would do is use a 2^(n-1)-sized array; represent each subset-of-your-alphabet-that-includes-"A" by the (n-1) bit number where the ith bit is 1 whenever the (i+1)th letter is in that set (so 0010110, which has bits 2, 4, and 5 set, represents the subset {"A", "C", "D", "F"} out of the alphabet "A" .. "H" - note I'm counting bits starting at 0 from the right, and letters starting at "A" = 0). This way, you can actually iterate through the sets in numerical order and don't need to think about how to iterate through all k-element subsets of an n-element set. (You do need to include a special case for when the set under consideration has 0 or 1 element, in which case you'll want to do nothing, or 2 elements, in which case you just copy the value from the matrix.)
Well, it looks simple to me, but perhaps I misunderstand the problem. I would do it like this:
let P be a pattern string in your notation X1.X2. ... .Xn, where Xi is a column in your matrix
first compute the array CS = [ (X1, X2), (X1, X3), ... (X1, Xn) ], which contains all combinations of X1 with every other element in the pattern; CS has n-1 elements, and you can easily build it in O(n)
now you must compute min (CS), i.e. finding the minimum value of the matrix elements corresponding to the combinations in CS; again you can easily find the minimum value in O(n)
done.
Note: since your matrix is symmetric, given P you just need to compute CS by combining the first element of P with all other elements: (X1, Xi) is equal to (Xi, X1)
If your matrix is very large, and you want to do some optimization, you may consider prefixes of P: let me explain with an example
when you have solved the problem for P = X1.X2.X3, store the result in an associative map, where X1.X2.X3 is the key
later on, when you solve a problem P' = X1.X2.X3.X7.X9.X10.X11 you search for the longest prefix of P' in your map: you can do this by starting with P' and removing one component (Xi) at a time from the end until you find a match in your map or you end up with an empty string
if you find a prefix of P' in you map then you already know the solution for that problem, so you just have to find the solution for the problem resulting from combining the first element of the prefix with the suffix, and then compare the two results: in our example the prefix is X1.X2.X3, and so you just have to solve the problem for
X1.X7.X9.X10.X11, and then compare the two values and choose the min (don't forget to update your map with the new pattern P')
if you don't find any prefix, then you must solve the entire problem for P' (and again don't forget to update the map with the result, so that you can reuse it in the future)
This technique is essentially a form of memoization.

Resources