Problem: I have a large collection of points. Each of these points has a list with references to other points with the distance between them already calculated and stored. I need to determine the shortest route that begins from an origin and passes through a specific number of points to any destination.
Ex: I'm on vacation and I'm staying in a specific city. I'm making a ONE WAY trip to see ANY four cities and I want to travel the least distance possible. I cannot visit the same city more than once.
Current solution: Right now I'm just iterating through every possibility manually and storing the shortest path. This works but feels inefficient. Also, this problem will eventually be expanded to include searching from multiple origin points to multiple destination points, so I think that might explode the search space.
What is the better way to search for the shortest route?
Answering to the updated post, your solution of checking every possibility is optimal (at least, noone has discovered better algorithms so far). Yes, that's a travelling salesman, whose essense is not touching every city, but touching every city once. If you don't want to search for best solution possible, you may find it useful to use heuristics that work faster, but allow for limited discrepancy from ideal solution.
For future answerers: Floyd-Warshall algorithm and all Floyd-like variations are inapplicable here.
In generally you should to strict bad variants...
I think you should use some variations of Branch_and_bound method
http://en.wikipedia.org/wiki/Branch_and_bound
Either bredth first search as norheim.se said or Dijkstra's algorithm would be my suggestion as well.
This sounds Travelling Salesman-esque? One solution is to use an optimisation technique such as an evolutionary algorithm. Currently you are doing an exhaustive search, which will get very slow very quickly. But I think this is pretty much a travelling salesman problem and it has been tackled for several decades if not centuries, and such there are several possible ways of attack. Google is your friend.
Perhaps this is what the original poster means by "iterating through each possibility manually and storing the shortest path", but I thought I'd like to make explicit what appears to be a baseline solution.
Assume you already have a two-point shortest path algorithm--this has classical solutions for various kinds of graphs. Assume all distances are nonnegative and d(A->B->C) = d(A->B) + d(B->C).
The essentials are that the path starts at S goes through one of intermediate cities "abcd" and ends with E:
e.g. SabcdE, SacbdE, etc...
With only 4 intermediate cities, you enumerate all 24 permutations. For each permutation use your shortest two-point algorithm to compute the path from head to tail, and its total distance.
Then given the start and ending point, there are 12 possibilities attaching to one of abcd and for each two possibilities for the interior. You've computed these distances already, so you add on the distance from S to the head and the tail to E. Choose minimum. So once you've precomputed the intermediate distances for a fixed set of interior cities you need to do 12 two point shortest path problems for any pair of start and end points.
This obviously scales poorly with increasing number of intermediate cities. It's not clear to me that it could do better unless you impose greater restrictions on the graph structure (is this in a physical Euclidenan space? Triangle inequality?).
My thought example: suppose all intermediate distances between cities are O(1). With no restriction on the graph, then the distance from S to any intermediate city might be 1000 except for one being 1. Same for the tail. So you can force the first city to be visited to be anything. Now, go one layer down, take the first city as the "start point". Apply the same argument: you can make the best path go to any of the following cities by manipulating the distances in the graph.
So it seems that the complexity can't be helped without additional assumptions.
This is the very common and real time situation any one can fall in.Google map user interface gives you the path in the same order, you add in the destination list. it doesn't give you the optimal path though their own Google maps API provide the solution.
Google maps API provides the solution for this. In the request to find out the path you have to provide the flag 'optimizeWaypoints: true,'. The request will seem like this.
var request = {
origin: start,
destination: end,
waypoints: waypts,
optimizeWaypoints: true,
travelMode: google.maps.TravelMode.DRIVING
};
and you can see whole code of the utility in the view source as complete utility is developed in javascript and HTML.
I hope it will help.
It appears that the edges of your graph are bidirectional. In this case, the algorithm you're looking for is Dijkstra's algorithm.
Related
I am trying to start on a personal research project that I have been brainstorming for a couple of years now. I am aware of graphs and algorithms for finding the best order in which to visit locations for the quickest time. However I am stuck on the next step of my research, are there research papers / algorithms that can solve this problem? Given a starting point and an end point with a number of "waypoints" that have to be visited. And some waypoints have time restrictions such as waypoint three has to be reached by 4:00 pm. So the algorithm will have to first sort the locations based on the time restrictions of them (if there are any) and then find the best order to visit each of the waypoints.
I have looked into many different algorithms/heuristics and I have searched for research papers on this topic but I cannot find anything definitive.
Thank you for the help in advance.
Never done anything like that but... elaborating on what has already told you BlueRaja, I have to say that most likely you already found your Grail (and, maybe, you are just not realizing it).
The time-related problem you are trying to solve looks like just another way to re-state the same space-related path-finding problem you already had to solve for travelling across your graph.
In other words, it looks like you have two graphs to traverse. The first one is the spatial one, represented by the net of waypoints you have to visit. The second one is the temporal (aka "time-related") graph of "time windows" you have to meet in order to not miss any bus/train/ship/airplane/whatever.
As long as I can see, you could use a regular path-finding/graph-crossing algorithm (Dijkstra, A*, contraction hierarchies, etc.) to traverse the spatial graph and re-use the same algorithm (or a very similar one) to traverse the time-related graph as well.
After all, both graphs are just a mathematical representation of a net of "constrains" (the points to be traversed, being them in space or in time) and can traversed using the same algorithm. Most likely, if you look at the code you are using to sort out your "time windows", you will see that it is already quite similar to a very simple space-related graph-traversing algorithm.
The main problem seems to be finding a good representation of the temporal graph (the net of "time windows" you have to respect). Most likely, it will have to be a graph of time-constrained spatial waypoints (spatial points, or "doors", with a "time window" attached to each of them).
In any case, there is no way to solve two problems with one single operation. First, you will have to find the "shortest path" that connects all of your time windows (in the required order) in the temporal graph (that is: you have to sort them out, as you are already doing). Second, you will have to find the shortest paths between any pair of time windows in the spatial graph (and check if the shortest/fastest path is fast enough to meet the next time window).
I'm coding a simple game and currently doing the AI part. NPC gets a list of his 'interest points' which he needs to visit. Each point has a coordinate on the map. I need to find a fastest path for the character to visit all of the given points.
As far as I understand it, the task could be described as 'finding fastest traverse path in a strongly connected weighted undirected graph'.
I'd like to get either the name of some algorithm to calculate that or if there is no name - some keypoints on programming it myself.
Thanks in advance.
This is very similar to the Travelling Salesman problem, although I'm not going to try to prove equivalency offhand. The TSP is NP-complete, which means that solving the problem exactly may be impractical, depending on the number of interest points. There are approximation algorithms that you may find more useful.
See previous post regarding tree traversals:
Tree traversal algorithm for directory structures with a lot of files
I would use algorithm like: ant algorithm.
Not directly on point but what I did in an MMO emulator was to store waypoint indices along with the rest of the pathing data. If your requirement is to demonstrate solutions to TSP then ignore this. If not, it's worth consideration IMO.
In my case it was the best solution as otherwise the server could have potentially hundreds of mobs (re)spawning and along with all the other AI logic, would have to burn cycles computing route logic.
I am attempting to write (or expand on an existing) graph search algorithm that will let me find the path to get closest to destination node considering there is no guarantee that the nodes will be connected.
To provide a realistic application of this, let's say I need to get from Brampton, Ontario to Hamilton, Ontario. I know my possible options at my start point are Local transit, GO bus or Walking. I know that walking is the least desired way to get to my destination so I look at GO bus first. I know I can take GO to a point close to Hamilton, but at that point the GO bus turns and goes another direction at that closest point is at a place where I have no options (other than walk, but the algorithm would only consider walking for short distances otherwise it will consider the route not feasible)
Using this same example, if the algorithm were to find that I can get there a way that is longer but gets me closer to the destination node (or possible at the destination node) that would be a higher weighted path (The weightings don't matter so much while its searching, only when the results are delivered, it would list by which path was closest to the destination in ascending order). For example, one GO Bus may get me 3km from the destination node, while 3 public transit buses would get me 500m away
So my question is two fold:
1) What algorithm should I start with that does something similar
2) How would I programmaticly explain that it's ok if nodes don't connect so that it doesn't just jump from node A to node R. Would starting from the end and working backward accomplish this
Edit: I forgot to ask how to aim for the best approximate solution because especially with a large graph there will be possibly millions of solutions for this problem.
Thanks,
Michael
Read up on the A* algorithm. It is a generalization of Dijkstra's shortest path algorithm, that allows you to specify a heuristic, which provides a lower bound for distances between two verteces. In your case, the heuristic function would simply return the Euclidean distance.
Run the algorithm and keep track of the vertex with the best characteristic value, which you somehow compute from the graph distance from source and Euclidean distance to target. The only tricky part is to determine when to terminate (unless you want to traverse the entire graph).
Why can't you assume that all nodes are connected? In the real world, they normally are, i.e. you can always walk or call a taxi, etc.?
In this case, you could simply change your model the following way: You have one graph for each transportation method. The nodes that are at the same place are connected with edges of weight 0 (i.e. if you are dropped off by car at an airport or train station).
Then, label each vertex and edge with the transportation type and you can simply use existing routing algorithms. Oh, by the way: A* will not scale well to really big networks. To get something that software like Yahoo/Google/Microsoft Maps actually would use, have a look here. The work of this research group includes the winner of the DIMACS shortest path challenge.
Sounds very much like a travelling salesman problem with additional node characteristics. Just be wary that this type of problem is NP Complete and your best bet would be to go with some sort of approximation algorithm.
I've been playing around with some things and thought up the idea of trying to figure out Kevin Bacon numbers. I have data for a site that for this purpose we can consider a social network. Let's pretend that it's Facebook (for simplification of discussion). I have people and I have a list of their friends, so I have the connections between them. How can I calculate the distance from one person to another (basically, a Kevin Bacon number)?
My best idea is a Bidirectional search, with a depth limit (to limit computational complexity and avoid the problem of people who simply can't be connected in the graph), but I realize this is rather brute force.
Could it be better to make little sub-graphs (say something equivalent to groups on Facebook), calculate the shortest distances between them (ahead of time, perhaps) and then try to use THOSE to find a link? While this requires pre-calculation, it could make it possible to search many fewer nodes (nodes could be groups instead of individuals, making the graph much smaller). This would still be a bidirectional search though.
I could also pre-calculate the number of people an individual is connected to, searching the nodes for "popular" people first since they could have the best chance of connecting to the given destination individual. I realize this would be a trade-off of speed for possible shortest path. I'd think I'd also want to use a depth-first search instead of the breadth-first search I'd plan to use in the other cases.
Can someone think of a simpler/faster way of doing this? I'd like to be able to find the shortest length between two people, so it's not as easy as always having the same end point (such as in the Kevin Bacon problem).
I realize that there are problems like I could get chains of 200 people and such, but that can be solved my having a limit to the depth I'm willing to search.
This is a standard shortest path problem. There are lots of solutions, including Dijkstra's algorithm and Bellman-Ford. You may be particularly interested in looking at the A* algorithm and seeing how it would perform with the cost function relative to the inverse of any particular node's degree. The idea would be to visit more popular nodes (those with higher degree) first.
Sounds like a job for
Dijkstra's algorithm.
ED: Eh, I shouldn't have pulled the trigger so fast. Dijkstra's (and Bellman-Ford) reduces to a breadth-first search when the weights are 1, so this isn't too useful. Oh well.
The A* algorithm, mentioned by tvanfosson, may be ideal for this. The idea is that instead of searching and recursing in whatever order the elements are in each level of the tree (rooted on your start- or end-point), you use some heuristic to determine which element you are going to try first. In your case a good bet would probably be the degree of a node (number of "friends"), but you could possibly want to use the number of people within some arbitrary number of degrees of a given person (i.e., the guy who has has three friends who each have 100 friends is likely to be a better node than the guy who has 20 friends in a clique that shuns outsiders). There's all sorts of other things you could use as a heuristic (friends get 2 points, friends-of-friends get 1 point; whatever, experiment).
Combine this with a depth limit (cut off after 6 degrees of separation, or whatever), and you can vastly improve your average case (worst case is still the same as basic BFS).
run a breadth-first search in both directions (from each endpoint) and stop when you have a connection or reach your depth limit
This one might be better overall Floyd-Warshall the all pairs shortest distance.
I want to solve the following problem:
I have a DAG which contains cities and jobs between them that needs to be done. The jobs are for trucks which can load a definied limit. The more the truck is loaded the better is the tour. Some jobs are for loading something in and some are for loading defined things out. You can always drive from city a to b even if there is no job to be done between them.
The last restriction is that I always need to start in city a and return to a because there is the home of the trucks :)
I first thought of Dijkstra's shortest path algorithm. I could easly turn that into longest path calculation. My problem in mind is now that all these algorithms are for calculating a shortest or longest path from vertex a to b, but I need it from a returning to a - in a circle.
Has some one some kicks for my mind?
Thanks for your feedback!
Marco
This crazy combination of knapsack and travelling salesman is surely NP-hard.
Virtually everywhere, when you want to load your agent with optimal job schedule, or when you want to build a route through all vertexes in the graph, or when you feel that you need to look for a "longest path*", you most likely run into an NP-complete or an NP-hard problem.
That means, that there is no known fast and exact solution to the problem, i.e. the one that runs in a polynomial time.
So you have to create approximations and implement non-optimal algorithms based on your particular conditions. What time loss is acceptable? Are there additional patterns the trucks can drive? Do you know more about the graph (e.g. is the area divided into distant dense regions)? Answer these questions and you'll find a non-strict heuristics that satisfies your customers.
*yes, searching for longest paths is not as easy as you think. Longest path problem is NP-complete, given that your graph is not acyclic.
You're trying to find the smallest possible way to get everything done? This reminds me of a max-flow/min-cut problem. You might be able to approximate the best answer by:
Connect all terminal nodes to a final end node.
Run one of the various maximum flow algorithms to find the max flow between a and end.
Return to city a. Update the graph to reflect what you just did. Repeat until all jobs are done.
The idea is that you get the most bang for every trip. Each trip after the 1st will be less efficient and less efficient, but that's to be expected.
Note: This only works because you have a DAG. Travelling salesman wouldn't be NP-Complete on a DAG, either, and it will likely be impossible to even hit all nodes on the graph. Re-reading your problem, it seems like you don't have a DAG, since you can return to city a - is that true?
You can adjust the traveling sales man problem dynamic programming algorithm to do what you want.
The classic approach says that you want to maximize the optimum function from all cities but you can take in consideration, at each step also the possibility of returning home.
And like Pavel mentioned, this problem is definitively NP-hard. Do you have some upper bounds for the number of cities or maximum number of objects that can be loaded in a truck?
PS: Do you want the BEST solution (maximum profit - might not be realistic in terms of processing time) or you accept some approximation?
Isn't this a Transportation problem?
Depending on the trucks number and starting points, you could add a fake transporations or add costs in order to satisfy your restrictions.
I'd also ask about truck restrictions:
are they all based in the same city?
do you have a fixed number of them?
and what you win if you use less then
you have?
is there a cycle time restriction?