Random number generation - algorithm

I need a random number generation algorithm that generates a random number for a specific input. But it will generate the same number every time it gets the same input. If this kind of algorithm available in the internet or i have to build one. If exists and any one knows that please let me know. (c, c++ , java, c# or any pseudo code will help much)
Thanks in advance.

You may want to look at the built in Java class Random. The description fits what you want.

Usually the standard implementation of random number generator depends on seed value.
You can use standard random with seed value set to some hash function of your input.
C# example:
string input = "Foo";
Random rnd = new Random(input.GetHashCode());
int random = rnd.Next();

I would use a hash function like SHA or MD5, this will generate the same output for a given input every time.
An example to generate a hash in java is here.

The Mersenne Twister algorithm is a good predictable random number generator. There are implementations in most languages.

How about..
public int getRandonNumber()
{
// decided by a roll of a dice. Can't get fairer than that!
return 4;
}
Or did you want a random number each time?
:-)

Some code like this should work for you:
MIN_VALUE + ((MAX_VALUE - MIN_VALUE +1) * RANDOM_INPUT / (MAX_VALUE + 1))
MIN_VALUE - Lower Bound
MAX_VALUE - Upper Bound
RANDOM_INPUT - Input Number

All pseudo-random number generators (which is what most RNGs on computers are) will generate the same sequence of numbers from a starting input, the seed. So you can use whatever RNG is available in your programming language of choice.
Given that you want one sample from a given seed, I'd steer clear of Mersenne Twister and other complex RNGs that have good statistical properties since you don't need it. You could use a simple LCG, or you could use a hash function like MD5. One problem with LCG is that often for a small seed the next value is always in the same region since the modulo doesn't apply, so if your input value is typically small I'd use MD5 for example.

Related

Rust GSL library always returns the same number for a random number generator

I am using the rgsl library in Rust that wraps functions from the C GSL math libraries. I was using a random number generator function, but I am always getting the same exact value whenever I generate a new random number. I imagine that the number should vary upon each run of the function. Is there something that I am missing? Do I need to set a new random seed each time or such?
extern crate rgsl;
use rgsl::Rng;
fn main() {
rgsl::RngType::env_setup();
let t = rgsl::rng::default();
let r = Rng::new(&t).unwrap()
let val = rgsl::randist::binomial::binomial(&r, 0.01f64, 1u32);
print!("{}",val);
}
The value I keep getting is 1, which seems really high considering the probability of obtaining a 1 is 0.01.
The documentation for env_setup explains everything you need to know:
This function reads the environment variables GSL_RNG_TYPE and GSL_RNG_SEED and uses their values to set the corresponding library variables gsl_rng_default and gsl_rng_default_seed
If you don’t specify a generator for GSL_RNG_TYPE then gsl_rng_mt19937 is used as the default. The initial value of gsl_rng_default_seed is zero.
(Emphasis mine)
Like all software random number generators, this is really an algorithm that produces pseudo random numbers. The algorithm and the initial seed uniquely identify a sequence of these numbers. Since the seed is always the same, the first (and second, third, ...) number in the sequence will always be the same.
So if I want to generate a new series of random numbers, then I need to change the seed each time. However, if I use the rng to generate a set of random seeds, then I will get the same seeds each time.
That's correct.
Other languages don't seem to have this constraint, meaning that the seed can be manually set if desired, but is otherwise is random.
A classical way to do this is to seed your RNG with the current time. This produces an "acceptable" seed for many cases. You can also get access to true random data from the operating system and use that as a seed or mix it in to produce more random data.
Is there no way to do this in Rust?
This is a very different question. If you just want a random number generator in Rust, use the rand crate. This uses techniques like I described above.
You could even do something crazy like using random values from the rand crate to seed your other random number generator. I just assumed that there is some important reason you are using that crate instead of rand.

Is it possible to reverse a pseudo random number generator?

Is it possible to reverse a pseudo random number generator?
For example, take an array of generated numbers and get the original seed.
If so, how would this be implemented?
This is absolutely possible - you just have to create a PRNG which suits your purposes. It depends on exactly what you need to accomplish - I'd be happy to offer more advice if you describe your situation in more detail.
For general background, here are some resources for inverting a Linear Congruential Generator:
Reversible pseudo-random sequence generator
pseudo random distribution which guarantees all possible permutations of value sequence - C++
And here are some for inverting the mersenne twister:
http://www.randombit.net/bitbashing/2009/07/21/inverting_mt19937_tempering.html
http://b10l.com/reversing-the-mersenne-twister-rng-temper-function/
In general, no. It should be possible for most generators if you have the full array of numbers. If you don't have all of the numbers or know which numbers you have (do you have the 12th or the 300th?), you can't figure it out at all, because you wouldn't know where to stop.
You would have to know the details of the generator. Decoding a linear congruential generator is going to be different from doing so for a counter-based PRNG, which is going to be different from the Mersenne twister, which is going to be different with a Fibonacci generator. Plus you would probably need to know the parameters of the generator. If you had all of that AND the equation to generate a number is invertible, then it is possible. As to how, it really depends on the PRNG.
Use the language Janus a time-reversible language for doing reversible computing.
You could probably do something like create a program that does this (pseudo-code):
x = seed
x = my_Janus_prng(x)
x = reversible_modulus_op(x, N) + offset
Janus has the ability to give to you a program that takes the output number and whatever other data it needs to invert everything, and give you the program that ends with x = seed.
I don't know all the details about Janus or how you could do this, but just thought I would mention it.
Clearly, what you want to do is probably a better idea because if the RNG is not an injective function, then what should it map back to etc.
So you want to write a Janus program that outputs an array. The input to the Janus inverted program would then take an array (ideally).

How to implement a pseudo random function

I want to generate a sequence of random numbers that will be used to pick tiles for a "maze". Each maze will have an id and I want to use that id as a seed to a pseudo random function. That way I can generate the same maze over and over given it's maze id. Preferably I do not want to use a built in pseudo random function in a language since I do not have control over the algorithm and it could change from platform to platform. As such, I would like to know:
How should I go about implementing my own pseudo random function?
Is it even feasible to generate platform independent pseudo random numbers?
Yes, it is possible.
Here is an example of such an algorithm (and its use) for noise generation.
Those particular random functions (Noise1, Noise2, Noise3, ..) use input parameters and calculate the pseudo random values from there.
Their output range is from 0.0 to 1.0.
And there are many more out there (Like mentioned in the comments).
UPDATE 2019
Looking back at this answer, a better suited choice would be the below-mentioned mersenne twister. Or you could find any implementation of xorshift.
The Mersenne Twister may be a good pick for this. As you can see from the pseudocode on wikipedia, you can seed the RNG with whatever you prefer to produce identical values for any instance with that seed. In your case, the maze ID or the hash of the maze ID.
If you are using Python, you can use the random module by typing at the beginning,
import random. Then, to use it, you type-
var = random.randint(1000, 9999)
This gives the var a 4 digit number that can be used for its id
If you are using another language, there is likely a similar module

"Resetting" pseudo-random number generator seed multiple times?

Today, my friend had a thought that setting the seed of a pseudo-random number generator multiple times using the pseudo-random number generated to "make things more randomized".
An example in C#:
// Initiate one with a time-based seed
Random rand = new Random(milliseconds_since_unix_epoch());
// Then loop for a_number_of_times...
for (int i = 0; i < a_number_of_times; i++)
{
// ... to initiate with the next random number generated
rand = new Random(rand.Next());
}
// So is `rand` now really random?
assert(rand.Next() is really_random);
But I was thinking that this could probably increase the chance of getting a repeated seed being used for the pseudo-random number generator.
Will this
make things more randomized,
making it loop through a certain number of seeds used, or
does nothing to the randomness (i.e. neither increase nor decrease)?
Could any expert in pseudo-random number generators give some detailed explanations so that I can convince my friend? I would be happy to see answers explaining further detail in some pseudo-random number generator algorithm.
There are three basic levels of use for pseudorandom numbers. Each level subsumes the one below it.
Unexpected numbers with no particular correlation guarantees. Generators at this level typically have some hidden correlations that might matter to you, or might not.
Statistically-independent number with known non-correlation. These are generally required for numerical simulations.
Cryptographically secure numbers that cannot be guessed. These are always required when security is at issue.
Each of these is deterministic. A random number generator is an algorithm that has some internal state. Applying the algorithm once yields a new internal state and an output number. Seeding the generator means setting up an internal state; it's not always the case that the seed interface allows setting up every possible internal state. As a good rule of thumb, always assume that the default library random() routine operates at only the weakest level, level 1.
To answer your specific question, the algorithm in the question (1) cannot increase the randomness and (2) might decrease it. The expectation of randomness, thus, is strictly lower than seeding it once at the beginning. The reason comes from the possible existence of short iterative cycles. An iterative cycle for a function F is a pair of integers n and k where F^(n) (k) = k, where the exponent is the number of times F is applied. For example, F^(3) (x) = F(F(F(x))). If there's a short iterative cycle, the random numbers will repeat more often than they would otherwise. In the code presented, the iteration function is to seed the generator and then take the first output.
To answer a question you didn't quite ask, but which is relevant to getting an understanding of this, seeding with a millisecond counter makes your generator fail the test of level 3, unguessability. That's because the number of possible milliseconds is cryptographically small, which is a number known to be subject to exhaustive search. As of this writing, 2^50 should be considered cryptographically small. (For what counts as cryptographically large in any year, please find a reputable expert.) Now the number of milliseconds in a century is approximately 2^(41.5), so don't rely on that form of seeding for security purposes.
Your example won't increase the randomness because there is no increase in entropy. It is simply derived from the execution time of the program.
Instead of using something based of the current time, computers maintain an entropy pool, and build it up with data that is statistically random (or at least, unguessable). For example, the timing delay between network packets, or key-strokes, or hard-drive read times.
You should tap into that entropy pool if you want good random numbers. These are known as Cryptographically secure pseudorandom number generators.
In C#, see the Cryptography.RandomNumberGenerator Class for the right way to get a secure random number.
This will not make things more "random".
Our seed determines the random looking but completely determined sequence of numbers that rand.next() gives us.
Instead of making things more random, your code defines a mapping from your initial seed to some final seed, and, given the same initial seed, you will always end up with the same final seed.
Try playing with this code and you will see what I mean (also, here is a link to a version you can run in your browser):
int my_seed = 100; // change my seed to whatever you want
Random rand = new Random(my_seed);
for (int i = 0; i < a_number_of_times; i++)
{
rand = new Random(rand.Next());
}
// does this print the same number every run if we don't change the starting seed?
Console.WriteLine(rand.Next()); // yes, it does
The Random object with this final seed is just like any other Random object. It just took you more time then necessary to create it.

I'm looking for a good psuedo random number generator, that takes two inputs instead of one

I'm looking for a determenistic psuedo random generator that takes two inputs and always returns the same output. I'm looking for things like uniform distribution, unpredictable as possible, and doesn't repeat for a long long time. Ideally the function doesn't rely on previous values. The reason that is a problem is I'm generating terrain data for an extremely large procedurely generated world and can't afford to store previous values.
Any help is appreciated.
i think what you're looking for is perlin noise - it's a way of generating "random" values in 2d (typically) that look like terrain / clouds / etc.
note that this doesn't have much to do with cryptography etc, but a "real" random number source is probably not what you want for synthetic terrain (it looks too noisy/spikey).
there's a good article on perlin noise here.
the implementation of perlin noise does use a source of random numbers, but typically you can use whatever is present on your system (starting with a known seed if you want to reproduce it later).
Is the problem deciding on a PRNG algorithm to use or an algorithm that accepts 2 inputs?
If it's the former, why not use the built in random class - such as Random class in .NET - since it strives for uniform distribution and long cycles. Also, given the same seed it will generate the same sequence of numbers.
If it's the latter, what you can do is map the 2 inputs to a single ouput and use that as a seed to your random algorithm. You can define a simple hash function that takes a string and calculates an integer from it:
s[0] + s[1]^1 + s[2]^2 + ... s[n]^n = seed
Combination of two inputs (by concatenating each other, provided the inputs are binary integers) into one seed will do, for a PRNG, such as Mersenne Twister.

Resources