I need to do a project on Computational Linguistics course. Is there any interesting "linguistic" problem which is data intensive enough to work on using Hadoop map reduce. Solution or algorithm should try and analyse and provide some insight in "lingustic" domain. however it should be applicable to large datasets so that i can use hadoop for it. I know there is a python natural language processing toolkit for hadoop.
If you have large corpora in some "unusual" languages (in the sense of "ones for which limited amounts of computational linguistics have been performed"), repeating some existing computational linguistics work already performed for very popular languages (such as English, Chinese, Arabic, ...) is a perfectly appropriate project (especially in an academic setting, but it might be quite suitable for industry, too -- back when I was in computational linguistics with IBM Research I got interesting mileage from putting together a corpus for Italian, and repeating [[in the relatively new IBM Scientific Center in Rome]] very similar work to what the IBM Research team in Yorktown Heights [[of which I had been a part]] had already done for English.
The hard work is usually finding / preparing such corpora (it was definitely the greatest part of my work back then, despite wholehearted help from IBM Italy to put me in touch with publishing firms who owned relevant data).
So, the question looms large, and only you can answer it: what corpora do you have access to, or can procure access to (and clean up, etc), especially in "unusual" languages? If all you can do is, e.g., English, using already popular corpora, the chances of doing work that's novel and interesting are of course harder, though there may of course be some.
BTW, I assume you're thinking strictly about processing "written" text, right? If you had a corpus of spoken material (ideally with good transcripts), the opportunities would be endless (there has been much less work on processing spoken text, e.g. to parameterize pronunciation variants by different native speakers on the same written text -- indeed, such issues are often not even mentioned in undergrad CL courses!).
One computation-intensive problem in CL is inferring semantics from large corpora. The basic idea is to take a big collection of text and infer the semantic relationships between words (synonyms, antonyms, hyponyms, hypernyms, etc) from their distributions, i.e. what words they occur with or close to.
This involves a lot of data pre-processing and then can involve many nearest neighbor searches and N x N comparisons, which are well-suited for MapReduce-style parallelization.
Have a look at this tutorial:
http://wordspace.collocations.de/doku.php/course:acl2010:start
Download 300M words from 60K OA papers published by BioMed Central. Try to discover propositional attitudes and related sentiment constructions. Point being that the biomed literature is chock full of hedging and related constructions, because of the difficulty of making flat declarative statements about the living world and its creatures - their form and function and genetics and biochemistry.
My feelings about Hadoop is that it's a tool to consider, but to consider after you have done the important tasks of setting goals. Your goals, strategies, and data should dictate how you proceed computationally. Beware the hammer in search of a nail approach to research.
This is part of what my lab is hard at work on.
Bob Futrelle
BioNLP.org
Northeastern University
As you mention there is a Python toolkit called NLTK which can be used with dumbo to make use of Hadoop.
PyCon 2010 had a good talk on just this subject. You can access the slides from the talk using the link below.
The Python and the Elephant: Large Scale Natural Language Processing with NLTK and Dumbo
Related
This topic has many thread. But also I am posting another one. All the post may be a way to do a sentiment analysis, but I found no way.
I want to implement the doing ways of sentiment analysis. So I would request to show me a way. During my research, I found that this is used anyway. I guess Bayesian algorithm is used to calculate positive words and negative words and calculate the probability of the sentence being positive or negative using bag of words.
This is only for the words, I guess we have to do language processing too. So is there anyone who has more knowledge? If yes, can you guide me with some algorithms with their links for reference so that I can implement. Anything in particular that may help me in my analysis.
Also can you prefer me language that I can work with? Some says Java is comparably time consuming so they don't recommend Java to work with.
Any type of help is much appreciated.
First of all, sentiment analysis is done on various levels, such as document, sentence, phrase, and feature level. Which one are you working on? There are many different approaches to each of them. You can find a very good intro to this topic here. For machine-learning approaches, the most important element is feature engineering and it's not limited to bag of words. You can find many other useful features in different applications from the tutorial I linked. What language processing you need to do depends on what features you want to use. You may need POS-tagging if POS information is needed for your features for example.
For classifiers, you can try Support Vector Machines, Maximum Entropy, and Naive Bayes (probably as a baseline) and these are frequently used in the literature, about which you can also find a pretty comprehensive list in the link. The Mallet toolkit contains ME and NB, and if you use SVMlight, you can easily convert the feature formats to the Mallet format with a function. Of course there are many other implementations of these classifiers.
For rule-based methods, Pointwise Mutual Information is frequently used, and some kinds of scoring-based methods, etc.
Hope this helps.
For the text analyzing there is no language stronger than SNOBOL. In SNOBOL-4 the Fortran interpretator, for example, takes only 60 lines.
NLTK offers really good Algorithm for sentiment analysis. It is open source so you can have a look at the source code and check out the algorithm used. You can even download NLTK book which is free and has some good material on sentiment analysis.
Coming to your second point I dont think Java is that slow. I am myself coding in c++ for years but lately also started with java as if you see a lot of very popular open source softwares like lucene, solr, hadoop, neo4j are all written in java.
We know there are like a thousand of classifiers, recently I was told that, some people say adaboost is like the out of the shell one.
Are There better algorithms (with
that voting idea)
What is the state of the art in
the classifiers.Do you have an example?
First, adaboost is a meta-algorithm which is used in conjunction with (on top of) your favorite classifier. Second, classifiers which work well in one problem domain often don't work well in another. See the No Free Lunch wikipedia page. So, there is not going to be AN answer to your question. Still, it might be interesting to know what people are using in practice.
Weka and Mahout aren't algorithms... they're machine learning libraries. They include implementations of a wide range of algorithms. So, your best bet is to pick a library and try a few different algorithms to see which one works best for your particular problem (where "works best" is going to be a function of training cost, classification cost, and classification accuracy).
If it were me, I'd start with naive Bayes, k-nearest neighbors, and support vector machines. They represent well-established, well-understood methods with very different tradeoffs. Naive Bayes is cheap, but not especially accurate. K-NN is cheap during training but (can be) expensive during classification, and while it's usually very accurate it can be susceptible to overtraining. SVMs are expensive to train and have lots of meta-parameters to tweak, but they are cheap to apply and generally at least as accurate as k-NN.
If you tell us more about the problem you're trying to solve, we may be able to give more focused advice. But if you're just looking for the One True Algorithm, there isn't one -- the No Free Lunch theorem guarantees that.
Apache Mahout (open source, java) seems to pick up a lot of steam.
Weka is a very popular and stable Machine Learning library. It has been around for quite a while and written in Java.
Hastie et al. (2013, The Elements of Statistical Learning) conclude that the Gradient Boosting Machine is the best "off-the-shelf" Method. Independent of the Problem you have.
Definition (see page 352):
An “off-the-shelf” method is one that
can be directly applied to the data without requiring a great deal of timeconsuming data preprocessing or careful tuning of the learning procedure.
And a bit older meaning:
In fact, Breiman (NIPS Workshop, 1996) referred to AdaBoost with trees as the “best off-the-shelf classifier in the world” (see also Breiman (1998)).
I'm a mathematician and occasionally do some statistics/machine learning analysis consulting projects on the side. The data I have access to are usually on the smaller side, at most a couple hundred of megabytes (and almost always far less), but I want to learn more about handling and analyzing data on the gigabyte/terabyte scale. What do I need to know and what are some good resources to learn from?
Hadoop/MapReduce is one obvious start.
Is there a particular programming language I should pick up? (I primarily work now in Python, Ruby, R, and occasionally Java, but it seems like C and Clojure are often used for large-scale data analysis?)
I'm not really familiar with the whole NoSQL movement, except that it's associated with big data. What's a good place to learn about it, and is there a particular implementation (Cassandra, CouchDB, etc.) I should get familiar with?
Where can I learn about applying machine learning algorithms to huge amounts of data? My math background is mostly on the theory side, definitely not on the numerical or approximation side, and I'm guessing most of the standard ML algorithms don't really scale.
Any other suggestions on things to learn would be great!
Apache Hadoop is indeed a good start, because it's free, has a large community and is easy to set up.
Hadoop is build in Java, so this can be the language of choice. But it is possible to use ohter languages with Hadoop as well ("pipes" and "streams"). I know, that Python is often used for example.
You can avoid having your data in data bases, if you like to. Originally, Hadoop works with data on the (distributed) file system. But as you already seem to know, there are distributed data bases for Hadoop available.
Did you ever had a look an Mahout? I think that would be a hit for you ;-) Many work you need, may already had been done!?
Read the Quick Start and set up your own (pseudo-distributed?) cluster and run the word-count example.
Let me know, if you have any questions :-) A comment will remind me on this question.
I've done some large scale machine learning (3-5GB datasets), so here are some insights:
First, there are logistics issues at large scales. Can you load all your data into memory? With Java and a 64 bit JVM you can access as much RAM as you have: for example, command line parameter -Xmx8192M will give you access to 8GB (if you have that much). Matlab, being a Java application, can also benefit from this and work with fairly large datasets.
More importantly, the algorithms that you run on your data. Chances are that standard implementations will expect all of the data in memory. You might have to implement a working set approach yourself, where you swap data in and out to the disk, and only work on a portion of data at a time. These are sometimes referred to as chunking, batch or even incremental algorithms, depending on the context.
You are right to suspect that a lot of algorithms do not practically scale, so you might have to go for an approximate solution. The good news is that for almost any algorithm you can find research papers that deal with approximation and/or discuss large scale solutions. The bad news is that you'll most likely have to implement those approaches yourself.
Hadoop is great, but can be a pain in the ass to set up. This is by far the best article I've read on Hadoop setup. I strongly recommend it:
http://www.michael-noll.com/wiki/Running_Hadoop_On_Ubuntu_Linux_%28Single-Node_Cluster%29
Clojure is built on top of Java so it's unlikely that it's going to be any faster than Java. However, it is one of the few languages that does shared memory well, which may or may not be helpful. I'm not a math guy but it seems most math calculations are very parallelizable, with little need of threads sharing memory. Either way, you might want to check out Incanter, which is Clojure's statistical computing library, and clojure-hadoop, which makes writing Hadoop jobs a lot less painful.
In terms of languages, I find that the differences in performance end up being constant factors. It's far better to just find a language you enjoy and focus on improving your algorithms. However, according to some shootout cited by Peter Norvig (scroll down to the colorful table, you may want to shy away from Python and Perl due to their crappiness with arrays.
In a nutshell, NoSQL is great for unstructured/arbitrarily structured data while SQL/RDBMS is great (or at least tolerable) for structured data. Changing/adding fields is expensive in RDBMS so if that's going to happen alot, you might want to shy away from them.
However, in your case, it seems like you're going to be batch processing a ton of data and then getting back an answer as opposed to having data around that you will periodically ask questions about? You could probably just process CSVs/text files in Hadoop. Unless you need a performant way of accessing arbitrary information about your data on the fly, I'm not sure either SQL or NoSQL would be useful.
Having been a hobbyist programmer for 3 years (mainly Python and C) and never having written an application longer than 500 lines of code, I find myself faced with two choices :
(1) Learn the essentials of data structures and algorithm design so I can become a l33t computer scientist.
(2) Learn Qt, which would help me build projects I have been itching to build for a long time.
For learning (1), everyone seems to recommend reading CLRS. Unfortunately, reading CLRS would take me at least an year of study (or more, I'm not Peter Krumins). I also understand that to accomplish any moderately complex task using (2), I will need to understand at least the fundamentals of (1), which brings me to my question : assuming I use C++ as the programming language of choice, which parts of CLRS would give me sufficient knowledge of algorithms and data structures to work on large projects using (2)?
In other words, I need a list of theoretical CompSci topics absolutely essential for everyday application programming tasks. Also, I want to use CLRS as a handy reference, so I don't want to skip any material critical to understanding the later sections of the book.
Don't get me wrong here. Discrete math and the theoretical underpinnings of CompSci have been on my "TODO: URGENT" list for about 6 months now, but I just don't have enough time owing to college work. After a long time, I have 15 days off to do whatever the hell I like, and I want to spend these 15 days building applications I really want to build rather than sitting at my desk, pen and paper in hand, trying to write down the solution to a textbook problem.
(BTW, a less-math-more-code resource on algorithms will be highly appreciated. I'm just out of high school and my math is not at the level it should be.)
Thanks :)
This could be considered heresy, but the vast majority of application code does not require much understanding of algorithms and data structures. Most languages provide libraries which contain collection classes, searching and sorting algorithms, etc. You generally don't need to understand the theory behind how these work, just use them!
However, if you've never written anything longer than 500 lines, then there are a lot of things you DO need to learn, such as how to write your application's code so that it's flexible, maintainable, etc.
For a less-math, more code resource on algorithms than CLRS, check out Algorithms in a Nutshell. If you're going to be writing desktop applications, I don't consider CLRS to be required reading. If you're using C++ I think Sedgewick is a more appropriate choice.
Try some online comp sci courses. Berkeley has some, as does MIT. Software engineering radio is a great podcast also.
See these questions as well:
What are some good computer science resources for a blind programmer?
https://stackoverflow.com/questions/360542/plumber-programmers-vs-computer-scientists#360554
Heed the wisdom of Don and just do it. Can you define the features that you want your application to have? Can you break those features down into smaller tasks? Can you organize the code produced by those tasks into a coherent structure?
Of course you can. Identify any 'risky' areas (areas that you do not understand, e.g. something that requires more math than you know, or special algorithms you would have to research) and either find another solution, prototype a solution, or come back to SO and ask specific questions.
Moving from 500 loc to a real (eve if small) application it's not that easy.
As Don was pointing out, you'll need to learn a lot of things about code (flexibility, reuse, etc), you need to learn some very basic of configuration management as well (visual source safe, svn?)
But the main issue is that you need a way to don't be overwhelmed by your functiononalities/code pair. That it's not easy. What I can suggest you is to put in place something to 'automatically' test your code (even in a very basic way) via some regression tests. Otherwise it's going to be hard.
As you can see I think it's no related at all to data structure, algorithms or whatever.
Good luck and let us know
I must say that sitting down with a dry old textbook and reading it through is not the way to learn how to do anything effectively, even if you are making notes. Doing it is the best way to learn, using the textbooks as a reference. Indeed, using sites like this as a reference.
As for data structures - learn which one is good for whatever situation you envision: Sets (sorted and unsorted), Lists (ArrayList, LinkedList), Maps (HashMap, TreeMap). Complexity of doing basic operations - adding, removing, searching, sorting, etc. That will help you to select an appropriate library data structure to use in your application.
And also make sure you're reasonably warm with MVC - i.e., ensure your model is separate from your view (the QT front-end) as best as possible. Best would be to have the model and algorithms working on their own, and then put the GUI on top. Or a unit test on top. Etc...
Good luck!
It's like saying you want to move to France, so should you learn french from a book, and what are the essential words - or should you just go to France and find out which words you need to know from experience and from copying the locals.
Writing code is part of learning computer science. I was writing code long before I'd even heard of the term, and lots of people were writing code before the term was invented.
Besides, you say you're itching to write certain applications. That can't be taught, so just go ahead and do it. Some things you only learn by doing.
(The theoretical foundations will just give you a deeper understanding of what you wind up doing anyway, which will mainly be copying other people's approaches. The only caveat is that in some cases the theoretical stuff will tell you what's futile to attempt - e.g. if one of your itches is to solve an NP complete problem, you probably won't succeed :-)
I would say the practical aspects of coding are more important. In particular, source control is vital if you don't use that already. I like bzr as an easy to set up and use system, though GUI support isn't as mature as it could be.
I'd then move on to one or both of the classics about the craft of coding, namely
The Pragmatic Programmer
Code Complete 2
You could also check out the list of recommended books on Stack Overflow.
I was wondering how common it is to find genetic algorithm approaches in commercial code.
It always seemed to me that some kinds of schedulers could benefit from a GA engine, as a supplement to the main algorithm.
Genetic Algorithms have been widely used commercially. Optimizing train routing was an early application. More recently fighter planes have used GAs to optimize wing designs. I have used GAs extensively at work to generate solutions to problems that have an extremely large search space.
Many problems are unlikely to benefit from GAs. I disagree with Thomas that they are too hard to understand. A GA is actually very simple. We found that there is a huge amount of knowledge to be gained from optimizing the GA to a particular problem that might be difficult and as always managing large amounts of parallel computation continue to be a problem for many programmers.
A problem that would benefit from a GA is going to have the following characteristics:
A good way to encode potential solutions
A way to compute an a numerical score to evaluate the quality of the solution
A large multi-dimensional search space where the answer is non-obvious
A good solution is good enough and a perfect solution is not required
There are many problems that could probably benefit from GAs and in the future they will probably be more widely deployed. I believe that GAs are used in cutting edge engineering more than people think however most people (like my company does) guards those secrets extremely closely. It is only long after the fact that it is revealed that GAs were used.
Most people that deal with "normal" applications probably don't have much use for them though.
If you want to find an example, look at Postgres's Query Planner. It uses many techniques, and one just so happens to be genetic.
http://developer.postgresql.org/pgdocs/postgres/geqo-pg-intro.html
I used GA in my Master's thesis, but after that I haven't found anything in my daily work a GA could solve that I couldn't solve faster with some other Algorithm.
I don't think it is particularly common to find genetic algorithms in everyday-commercial code. They are more commonly found in academic/research code where the need to find the "best algorithm" is less important than the need to just find a good solution to a problem.
Nonetheless, I have consulted on a couple of commercial projects that do use GAs (chiefly as a result of my involvement with GAUL). I think the most interesting example was at a Biotech company. They used the GA to optimise scoring functions that were used for virtual screening, as part of their drug discovery application.
Earlier this year, with my current company, I added a new feature to one of our products that uses another GA. I think we might be marketing this from next month. Basically, the GA is used to explore molecules that have the potential for binding to a protein, and could therefore be further investigated as drugs targeting that protein. A competing product that also uses a GA is EA inventor.
As part of my thesis I wrote a generic java framework for the multi-objective optimisation algorithm mPOEMS (Multiobjective prototype optimization with evolved improvement steps), which is a GA using evolutionary concepts. It is generic in a way that all problem-independent parts have been separated from the problem-dependent parts, and an interface is povided to use the framework with only adding the problem-dependent parts. Thus one who wants to use the algorithm does not have to begin from zero, and it facilitates work a lot.
You can find the code here.
The solutions which you can find with this algorithm have been compared in a scientific work with state-of-the-art algorithms SPEA-2 and NSGA, and it has been proven that
the algorithm performes comparable or even better, depending on the metrics you take to measure the performance, and especially depending on the optimization-problem you are looking on.
You can find it here.
Also as part of my thesis and proof of work I applied this framework to the project selection problem found in portfolio management. It is about selecting the projects which add the most value to the company, support most the strategy of the company or support any other arbitrary goal. E.g. selection of a certain number of projects from a specific category, or maximization of project synergies, ...
My thesis which applies this framework to the project selection problem:
http://www.ub.tuwien.ac.at/dipl/2008/AC05038968.pdf
After that I worked in a portfolio management department in one of the fortune 500, where they used a commercial software which also applied a GA to the project selection problem / portfolio optimization.
Further resources:
The documentation of the framework:
http://thomaskremmel.com/mpoems/mpoems_in_java_documentation.pdf
mPOEMS presentation paper:
http://portal.acm.org/citation.cfm?id=1792634.1792653
Actually with a bit of enthusiasm everybody could easily adapt the code of the generic framework to an arbitrary multi-objective optimisation problem.
I haven't but I've heard of this company (can't remember their name) which uses mutating, genetic algos to calculate placements and lengths of antennas (or something) from a friend of mine. And they're supposed to (according to my friend) have huge success with this. I guess GA is just too complex for "average Joe developer" to become mainstream. Kind of like Map Reduce - spectacularly cool, but WAY too advanced to hit the "mainstream"...
LibreOffice Calc uses it in its Solver module.