For a school project, we'll have to implement a ranking system. However, we figured that a dumb rank average would suck: something that one user ranked 5 stars would have a better average that something 188 users ranked 4 stars, and that's just stupid.
So I'm wondering if any of you have an example algorithm of "smart" ranking. It only needs to take in account the rankings given and the number of rankings.
Thanks!
You can use a method inspired by Bayesian probability. The gist of the approach is to have an initial belief about the true rating of an item, and use users' ratings to update your belief.
This approach requires two parameters:
What do you think is the true "default" rating of an item, if you have no ratings at all for the item? Call this number R, the "initial belief".
How much weight do you give to the initial belief, compared to the user ratings? Call this W, where the initial belief is "worth" W user ratings of that value.
With the parameters R and W, computing the new rating is simple: assume you have W ratings of value R along with any user ratings, and compute the average. For example, if R = 2 and W = 3, we compute the final score for various scenarios below:
100 (user) ratings of 4: (3*2 + 100*4) / (3 + 100) = 3.94
3 ratings of 5 and 1 rating of 4: (3*2 + 3*5 + 1*4) / (3 + 3 + 1) = 3.57
10 ratings of 4: (3*2 + 10*4) / (3 + 10) = 3.54
1 rating of 5: (3*2 + 1*5) / (3 + 1) = 2.75
No user ratings: (3*2 + 0) / (3 + 0) = 2
1 rating of 1: (3*2 + 1*1) / (3 + 1) = 1.75
This computation takes into consideration the number of user ratings, and the values of those ratings. As a result, the final score roughly corresponds to how happy one can expect to be about a particular item, given the data.
Choosing R
When you choose R, think about what value you would be comfortable assuming for an item with no ratings. Is the typical no-rating item actually 2.4 out of 5, if you were to instantly have everyone rate it? If so, R = 2.4 would be a reasonable choice.
You should not use the minimum value on the rating scale for this parameter, since an item rated extremely poorly by users should end up "worse" than a default item with no ratings.
If you want to pick R using data rather than just intuition, you can use the following method:
Consider all items with at least some threshold of user ratings (so you can be confident that the average user rating is reasonably accurate).
For each item, assume its "true score" is the average user rating.
Choose R to be the median of those scores.
If you want to be slightly more optimistic or pessimistic about a no-rating item, you can choose R to be a different percentile of the scores, for instance the 60th percentile (optimistic) or 40th percentile (pessimistic).
Choosing W
The choice of W should depend on how many ratings a typical item has, and how consistent ratings are. W can be higher if items naturally obtain many ratings, and W should be higher if you have less confidence in user ratings (e.g., if you have high spammer activity). Note that W does not have to be an integer, and can be less than 1.
Choosing W is a more subjective matter than choosing R. However, here are some guidelines:
If a typical item obtains C ratings, then W should not exceed C, or else the final score will be more dependent on R than on the actual user ratings. Instead, W should be close to a fraction of C, perhaps between C/20 and C/5 (depending on how noisy or "spammy" ratings are).
If historical ratings are usually consistent (for an individual item), then W should be relatively small. On the other hand, if ratings for an item vary wildly, then W should be relatively large. You can think of this algorithm as "absorbing" W ratings that are abnormally high or low, turning those ratings into more moderate ones.
In the extreme, setting W = 0 is equivalent to using only the average of user ratings. Setting W = infinity is equivalent to proclaiming that every item has a true rating of R, regardless of the user ratings. Clearly, neither of these extremes are appropriate.
Setting W too large can have the effect of favoring an item with many moderately-high ratings over an item with slightly fewer exceptionally-high ratings.
I appreciated the top answer at the time of posting, so here it is codified as JavaScript:
const defaultR = 2;
const defaultW = 3; // should not exceed typicalNumberOfRatingsPerAnswers 0 is equivalent to using only average of ratings
function getSortAlgoValue(ratings) {
const allRatings = ratings.reduce((sum, r) => sum + r, 0);
return (defaultR * defaultW + allRatings) / (defaultW + ratings.length);
}
Only listed as a separate answer because the formatting of the code block as a reply wasn't very
Since you've stated that the machine would only be given the rankings and the number of rankings, I would argue that it may be negligent to attempt a calculated weighting method.
First, there are two many unknowns to confirm the proposition that in enough circumstances a larger quantity of ratings are a better indication of quality than a smaller number of ratings. One example is how long have rankings been given? Has there been equal collection duration (equal attention) given to different items ranked with this same method? Others are, which markets have had access to this item and, of course, who specifically ranked it?
Secondly, you've stated in a comment below the question that this is not for front-end use but rather "the ratings are generated by machines, for machines," as a response to my comment that "it's not necessarily only statistical. One person might consider 50 ratings enough, where that might not be enough for another. And some raters' profiles might look more reliable to one person than to another. When that's transparent, it lets the user make a more informed assessment."
Why would that be any different for machines? :)
In any case, if this is about machine-to-machine rankings, the question needs greater detail in order for us to understand how different machines might generate and use the rankings.
Can a ranking generated by a machine be flawed (so as to suggest that more rankings may somehow compensate for those "flawed" rankings? What does that even mean - is it a machine error? Or is it because the item has no use to this particular machine, for example? There are many issues here we might first want to unpack, including if we have access to how the machines are generating the ranking, on some level we may already know the meaning this item may have for this machine, making the aggregated ranking superfluous.
What you can find on different plattforms is the blanking of ratings without enough votings: "This item does not have enough votings"
The problem is you can't do it in an easy formula to calculate a ranking.
I would suggest a hiding of ranking with less than minimum votings but caclulate intern a moving average. I always prefer moving average against total average as it prefers votings from the last time against very old votings which might be given for totaly different circumstances.
Additionally you do not need to have too add a list of all votings. you just have the calculated average and the next voting just changes this value.
newAverage = weight * newVoting + (1-weight) * oldAverage
with a weight about 0.05 for a preference of the last 20 values. (just experiment with this weight)
Additionally I would start with these conditions:
no votings = medium range value (1-5 stars => start with 3 stars)
the average will not be shown if less than 10 votings were given.
A simple solution might be a weighted average:
sum(votes) / number_of_votes
That way, 3 people voting 1 star, and one person voting 5 would give a weighted average of (1+1+1+5)/4 = 2 stars.
Simple, effective, and probably sufficient for your purposes.
Related
I recently created a tournament system that will soon lead into player rankings. Basically, after players are done with the tournament, they are given a rank based on how they did in the tournament. So the person who won the tournament will have the most points and be ranked #1, while the second will have the second most points and be ranked #2, and so on...
However, after they are ranked in the new rankings, they can challenge other members and have a way to play other members and change their ranks. So basically (using a ranking system), if Player A who is ranked #2 beats Player B who is ranked #1, Player A will now become #1.
I've also decided that if a player wants to compete in the rankings but was not present during the tournament, they can sign up after the tournament, and will be given the lowest possible rank with the lowest points (but they have a chance to move up).
So now, I am wanting to know which way should I go about planning this. When I convert the players from tournament to match rankings, I have to identify them with points in order to rank them. I decided this seems like the best way to do it.
1 1000
2 900
3 800
4 700
5 600
6 500
7 400
8 300
9 200
10 100
After looking on the internet I've decided it would be wise to use ELO to give players their new rank after they players have matched against each other.. I went about it on this page: http://www.lifewithalacrity.com/2006/01/ranking_systems.html
So if I go about it this way, lets say I have rank #10 facing rank #1. According to the website above, my formula is:
R' = R + K * (S - E)
and the rating of #10 only has 100 points where #1 has 1,000.
So after doing the math rank #10's expected value of beating #1 is:
1 / [ 1 + 10 ^ ( [1000 - 100] / 400) ]
= 0.55%
So
100 + 32 * (1 - 0.52)
= 115.36
The problem I have with ELO is it makes no sense. After A rank such as #10 beats #1, he should not gain something as low as 15 points. I'm not sure if i'm doing the math wrong, or if I'm splitting up the points wrong. Or maybe I shouldn't use ELO at all? Any suggestions would be very helpful
Don't get offended, it is your table that doesn't make sense.
Elo system is based on the premise that a rating is an accurate estimate of the strength, and difference of ratings accurately predicts an outcome of a match (a player better by 200 point is expected to score 75%). If an actual outcome does not agree with a prediction, it means that ratings do not reflect strength, hence must be adjusted according to how much an actual outcome differs from the predicted.
An official (as in FIDE) Elo system has few arbitrary arbitrary constants (e.g. 200/75 gauge, Erf as predictor, etc); choosing them (reasonably) different may lead to a different rating values, yet would result (in a long run) in the same ranking. There is some interesting math behind this assertion; this is not a right place to get into details.
Now back to your table. It assigns the rating based on the place, not on the points scored. The champion gets 1000 no matter whether she swept the tournament with an absolute 100% result, or barely made it among equals. These points do not estimate the strength of the participants.
So my advise is to abandon the table altogether, assign each new player an entry rating (say, 1000; it really doesn't matter as long as you are consistent), and stick to Elo from the very beginning.
I want to rank item types by comparing the ratio of frequency in basket 1 over frequency in another basket 2.
For example, if item type A has about 5 counts in basket 1 and 0 counts in basket 2, this should rank much higher than type B with say 10 items in basket 1 and 10 items in basket 2. I use the odds ratio abs(log(freq in basket1/freq in basket2)), however this doesn't capture the fact that I should prioritize abs(log(10/100)) as abs(log(1/10)).
I'm thinking whether to add multiply this result by their the total count e.g (10+100)abs(log(10/100)) but then again this amount seems to overwhelm the log value.
What would be a good suggestion to weigh the log values?
The standard approach to these types of tasks is to model the item as a biased coin that produces baskets, B1 with probability p and B2 with 1 - p. Intuitively this means that an item type has an underlying true ratio of baskets which produces a particular split of items between baskets. So a "90% A" might produce [9,1] but also [10,0] or even [0,10] although this result with a pretty low probability.
Then you can look at a sample like [5,0] and [10,1] and calculate a confidence interval for the parameter p, then rank the item types by the lower bound of the interval. This way [10,2] will sort above [5,1]. Even though proportions in both samples are the same, [10,2] will have a narrower confidence interval and thus its lower bound will be higher.
The idea and some more detailed formulas is described at: http://www.evanmiller.org/how-not-to-sort-by-average-rating.html
I'm developing a tournament model for a virtual city commerce game (Urbien.com) and would love to get some algorithm suggestions. Here's the scenario and current "basic" implementation:
Scenario
Entries are paired up duel-style, like on the original Facemash or Pixoto.com.
The "player" is a judge, who gets a stream of dueling pairs and must choose a winner for each pair.
Tournaments never end, people can submit new entries at any time and winners of the day/week/month/millenium are chosen based on the data at that date.
Problems to be solved
Rating algorithm - how to rate tournament entries and how to adjust their ratings after each match?
Pairing algorithm - how to choose the next pair to feed the player?
Current solution
Rating algorithm - the Elo rating system currently used in chess and other tournaments.
Pairing algorithm - our current algorithm recognizes two imperatives:
Give more duels to entries that have had less duels so far
Match people with similar ratings with higher probability
Given:
N = total number of entries in the tournament
D = total number of duels played in the tournament so far by all players
Dx = how many duels player x has had so far
To choose players x and y to duel, we first choose player x with probability:
p(x) = (1 - (Dx / D)) / N
Then choose player y the following way:
Sort the players by rating
Let the probability of choosing player j at index jIdx in the sorted list be:
p(j) = ...
0, if (j == x)
n*r^abs(jIdx - xIdx) otherwise
where 0 < r < 1 is a coefficient to be chosen, and n is a normalization factor.
Basically the probabilities in either direction from x form a geometic series, normalized so they sum to 1.
Concerns
Maximize informational value of a duel - pairing the lowest rated entry against the highest rated entry is very unlikely to give you any useful information.
Speed - we don't want to do massive amounts of calculations just to choose one pair. One alternative is to use something like the Swiss pairing system and pair up all entries at once, instead of choosing new duels one at a time. This has the drawback (?) that all entries submitted in a given timeframe will experience roughly the same amount of duels, which may or may not be desirable.
Equilibrium - Pixoto's ImageDuel algorithm detects when entries are unlikely to further improve their rating and gives them less duels from then on. The benefits of such detection are debatable. On the one hand, you can save on computation if you "pause" half the entries. On the other hand, entries with established ratings may be the perfect matches for new entries, to establish the newbies' ratings.
Number of entries - if there are just a few entries, say 10, perhaps a simpler algorithm should be used.
Wins/Losses - how does the player's win/loss ratio affect the next pairing, if at all?
Storage - what to store about each entry and about the tournament itself? Currently stored:
Tournament Entry: # duels so far, # wins, # losses, rating
Tournament: # duels so far, # entries
instead of throwing in ELO and ad-hoc probability formulae, you could use a standard approach based on the maximum likelihood method.
The maximum likelihood method is a method for parameter estimation and it works like this (example). Every contestant (player) is assigned a parameter s[i] (1 <= i <= N where N is total number of contestants) that measures the strength or skill of that player. You pick a formula that maps the strengths of two players into a probability that the first player wins. For example,
P(i, j) = 1/(1 + exp(s[j] - s[i]))
which is the logistic curve (see http://en.wikipedia.org/wiki/Sigmoid_function). When you have then a table that shows the actual results between the users, you use global optimization (e.g. gradient descent) to find those strength parameters s[1] .. s[N] that maximize the probability of the actually observed match result. E.g. if you have three contestants and have observed two results:
Player 1 won over Player 2
Player 2 won over Player 3
then you find parameters s[1], s[2], s[3] that maximize the value of the product
P(1, 2) * P(2, 3)
Incidentally, it can be easier to maximize
log P(1, 2) + log P(2, 3)
Note that if you use something like the logistics curve, it is only the difference of the strength parameters that matters so you need to anchor the values somewhere, e.g. choose arbitrarily
s[1] = 0
In order to have more recent matches "weigh" more, you can adjust the importance of the match results based on their age. If t measures the time since a match took place (in some time units), you can maximize the value of the sum (using the example)
e^-t log P(1, 2) + e^-t' log P(2, 3)
where t and t' are the ages of the matches 1-2 and 2-3, so that those games that occurred more recently weigh more.
The interesting thing in this approach is that when the strength parameters have values, the P(...) formula can be used immediately to calculate the win/lose probability for any future match. To pair contestants, you can pair those where the P(...) value is close to 0.5, and then prefer those contestants whose time-adjusted number of matches (sum of e^-t1 + e^-t2 + ...) for match ages t1, t2, ... is low. The best thing would be to calculate the total impact of a win or loss between two players globally and then prefer those matches that have the largest expected impact on the ratings, but that could require lots of calculations.
You don't need to run the maximum likelihood estimation / global optimization algorithm all the time; you can run it e.g. once a day as a batch run and use the results for the next day for matching people together. The time-adjusted match masses can be updated real time anyway.
On algorithm side, you can sort the players after the maximum likelihood run base on their s parameter, so it's very easy to find equal-strength players quickly.
I have a 1 to 5 voting system and i'm trying to figure out the best way to find the most popular item voted on, taking into consideration the total possible number of votes cast. To get a vote total, i'm counting "1" votes as -3, "2" votes as -2, "3" votes as +1, "4" votes as +2, "5" votes as +3, so a "1" vote would cancel out a "5" vote and vice versa.
For this example, say we have 3 films playing in 3 different size theaters.
Film 1: 800 seats / Film 2: 400 seats / Film 3: 180 seats
In a way, we're limiting the total amount of votes based on seats, so I would like a way for the film in the smaller theater to not get automatically overwhelmed by the film in the larger theater. It's likely that there will be more votes cast in the larger theater, resulting in a higher total score.
Edit 10/18:
Alright, hopefully I can explain this better. I'm working for a film festival, and we're balloting the first screening of each film in the fest. Therefore, each film will have from 0 to a maximum number of votes based on the size of each theater. I'm looking to find the most popular film in 3 categories: narrative, documentary, short film. By popular I mean a combination of highest average vote and number of votes.
It seems like a weighted average is what i'm looking for, giving less weight to votes from a bigger theater and more weight to votes from a smaller theater to even things out.
You're working with weighted averages.
Instead of just adding up and dividing by the total number of elements (arithmetic mean):
a + b + c
---------
3
You are adding weights to each element, as they are not all evenly distributed:
w1*a + w2*b + w3*c
------------------
3
In your case, the weights could be this:
# of people in current theater
--------------------------------
# of people in all the theaters
Let's try a test case:
Theater 1: 100 people (rating: 1)
Theater 2: 1,000,000 people (rating: 5)
Average = (100 / (100 + 1000000)) * 1 + (1000000/(100 + 1000000)) * 5
-----------------------------------------------------------
2
= 2.49980002
Well, depending on your goals it sounds like you are interested in some sort of weighted average.
Continuing your film example, it sounds to me like you are trying to rate how "good" the films are. To do this, you don't want to factor the number of views of any particular film too highly into the final determination. However, you have to take it into account somewhat since a film that only got viewed 5 times and had an average rating of +2.7 has much less credibility than a film with 10,000 views getting the same rating.
You might consider simply not including a film in the results unless it has a minimum number of votes.
Given a uniform (even) distribution of votes across {1,2,3,4,5}, the expected rating of your film is 0.2. This is because the the votes {1 and 5} cancel eachother out, as do {2 and 4}. But the vote 3 has an expected value of 1/5 = 0.2. So if people give a rating of {1,2,3,4,5} with equal probability, then you would expect a film (no matter how many people see it) to have an average rating close to 0.2.
So I think the best option for you would be to add up all the scores received and simply divide by the number of people who have seen each film. This should be a good guess at people's sentiment toward the film as the average of the distribution should not get larger simply because more people see the film.
If I were you, I would also suggest adding a small penalty term to your final result, to take into account the fact that some people didn't even want to go see the movie. If lots of people didn't want to see the movie in the first place, but the 5 or so people that saw it gave it a 5* rating, that doesn't make it a good movie, does it?
So a final solution I would recommend: Add up all the points as you have described, and divide by the total number of people who have gone to the cinema. While not perfect (whatever perfect means), it should give you some indication of what people like and don't like. This essentially means people who chose not to see a movie are adding zero to the points total, but still affect the average because the end result is divided by a larger number.
Maths isn't my strong point and I'm at a loss here.
Basically, all I need is a simple formula that will give a weighted rating on a scale of 1 to 5. If there are very few votes, they carry less influence and the rating pressess more towards the average (in this case I want it to be 3, not the average of all other ratings).
I've tried a few different bayesian implementations but these haven't worked out. I believe the graphical representation I am looking for could be shown as:
___
/
___/
Cheers
I'd do this this way
1*num(1) + 2*num(2) + 3*num(3) + 4*num(4) + 5*num(5) + A*3
-----------------------------------------------------------
num(1) + num(2) + num(3) + num(4) + num(5) + A
Where num(i) is number of votes for i.
A is a parameter. I can't tell You exact value of it. It depends on what do You mean by "few votes". In general high value of A means that You need many votes to get average different than 3, low value of A means You need few votes to get different value than 3.
If You consider 5 as "few votes" then You can take A=5.
In this solution I just assume that each product starts with A votes for 3 instead of no votes.
Hope it helps.
(sum(ratings) / number(ratings)) * min(number(ratings), 10)/max(number(ratings), 10)
The first part is the un-normalized average rating. The second part will slowly increase the rating towards 5 as the number of individual ratings grows to 10. The question isn't clear enough for me to provide a better answer, but I believe the above formula might be something you can start with and adapt as you go. It goes without saying that you have to check if there are any ratings at all (not to divide by zero).