I stumbled upon this question:
7 power 7 is 823543. Which higher power of 7 ends with 823543 ?
How should I go about it ? The one I came up with is very slow, it keeps on multiplying by 7 and checks last 6 digits of the result for a match.
I tried with Lou's code:
int x=1;
for (int i=3;i<=100000000;i=i+4){
x=(x*7)%1000000;
System.out.println("i="+ i+" x= "+x);
if (x==823543){
System.out.println("Ans "+i);}
}
And CPU sounds like a pressure cooker but couldn't get the answer :(
Multiply modulo 10^6. See this Lua code.
local x=1
for i=1,100000 do
x=(x*7) % 1e6
if x==823543 then print(i) end
end
You could use Euler's generalization of Fermat's little theorem which applied to your case says that for any number a that is not divisible by two or five, a to the power 400000 is equal to 1 modulo 10^6. Which means that 7^400000 is equal to one and 7^400007 is equal to 823543 modulo 10^6
There may be smaller powers of 7 that are also equal to one modulo 10^6. Any such power should be a divisor of 400000. So if you search all divisors of 400000 you should find your answer.
Brute-force solution in Python:
def check():
i = 8
while True:
if str(7**i)[-6:] == "823543":
print i, 7**i
break
i += 1
if __name__ == "__main__":
check()
Runs in a tad more then 10 seconds on my machine:
$ time python 7\*\*7.py
5007 25461638709540284156782446957365168367138070393489656084508152816071765490828583739345420574947301301356529652113030016806506783009529977928336772622054260724106711204039012806363481521302203821096274017061906820115931889920385802499836705571461280700786627503189500663279772123190279763997339608040949194040289041117811256914511855302927500076094761237077649092849658261309060277197389760351907599243227298336309204635761799394324969277220810221310805265921431367291459357151617279190810954501590069774137519833706444943573459910208627100504003480684029216932299650285683013274883359754231186580602570771682084721896446416234857382909168309309630688331305154545352580787700878011742720440707156231891841057992434850068501355342227582074144717324718396296563918284728120322255330707786227631084119636101174217518654320128390401231343058708073280898554293777842571799775647325449392944570725467462072394864457569308219294304248413378339223195121800534783732295135735588409249690562213409520783181313960347723827308102920022860541043691808218543350580271593107019737918976365348051012746817678592727727988993175444584453532474156202438866838819565827414970029052602274354173178190323239427022953097424087683011937130778414189673555875258508014323428137406618951161046883845551087123412471364400737145434714864392224194773030522352601143771552489895838728148761974811275894561985163094852437703080985644653666048979901975905667811053289029958524703063742007291722490298429637413913574845245364780928447142275001431370017543206188428912106120676556219532197108435997375879569102044435752697298456147512203108094030745606163915437604076966518127099543894645297945324345093247636119593298654296614887389164509070158924404441687810434488061150620012547321097786493748417764592151734279632949607485719050349385098350202294648324398902047614892248381794929374952059877187100434970751833289677556040879755065563758085919673107576808662549999202791489324437408075089456174056904323973798979207791446889016369166632636035638123394649891606479407561222474471530411700646266636732205895085248823824764170316644547100628119484733814900100986786082211477261114056206393554335903410036064553032366200714266053598548735147707681592574886559888869327771461046450774938490837810526377213647071217152427693219479552580138352651791476758476864761332281826701978038126122728967682552206820425685782165630494478519812498630475776384700259524274670258777572341538755828794632819515842335609785884327007667337426644594091547392441314523035569100326662245947022517857248412004291423280879791576077952474202068318934524092750814844945529148131063116233331840380254781283689084385600858175504170157015630699919186013526052643206240745256569669847298952477441594748635701081031979500954081732722211598460098426985932512920424237248250698541558227081975966598720056015879151923686438360541128221854058867910136449528237543680180470919685862102358708465872395643586424250239281775923511452769821487580471289910257908740451431952197725174728917413539539795856895884961513784804247268727165303942024508367184898248006123651950710237279288601317817391869969699767431782664773248447758526620050588927086506013616563459173620496200348863132442180734592661348887012997849309740799709045762939781801481205704629203758859772476278892928066844445088880207986848424855774325574728566649552154520262460969975214802828263093097997124519153537792591659204109087699977445745067857471581656151077039286563447099850537157044829081400190710358959493358343935904669416958301921942118288210835104022359479660409954097409669785908666166908117346073702337825511531650740900904200220658196171839969860945908503151878488455004283026700303698398069644419655035582904253655945381261383285097911378914794161551292914993411444083214513058414480129560671193659591364146612550890288116403596333209446976453193340267725222134755872075133141618388704912211996423838163706006930973361661094103734887312836613195349528793780496172839376426055357343094188450140671138356505144988151110902047791487250988374130384058324229250761311655685931891857894126054047458969174494155762486464149775147410127618088224310828566286409277000561087588768230619606746804073498788244935099280434916850444895829823543
real 0m10.779s
user 0m10.709s
sys 0m0.024s
Not so much an answer, more a hint:
Observe that the pattern of rightmost digits of powers of 7 goes 1,7,9,3,1,7,9,3,1,7,... so you only need to generate every 4th power of 7 from the 3rd. Further study might show a pattern for the two (three, four, ...) rightmost digits, but I haven't done studied them for you.
Be prepared for some very large numbers, Mathematica reports that the next power of 7 with the sought-for rightmost digits is the 5007th.
Which I guess answers your question -- a faster approach is to post on SO and wait for someone to tell you the answer ! You could even try Wolfram Alpha if you don't like the SO algorithm.
The Fermat's little theorem approach is a mathematically sensible one, and just mulitplying over and over by 7 mod 10^6 is the simplest code, but there's another approach you could take that is computationally efficient (but requires more complex code). First, note that when multiplying by 7 the last digit depends only on the last digit before (i.e. we're doing everything mod 10). We multiply repeatedly by 7 to get
7 (4)9 (6)3 (2)1 (0)7 ...
Okay, great, so if we want a 3, we start at 7^3 and go up every 7^4 from there. Now, we note that when multiplying by 7^4, the last two digits depend only on the last two digits of 7^4 and the last two digits of the previous answer. 7^4 is 2401. So in fact the last two digits will always be the same when going up by 7^4.
What about the last three? Well, 7^3 = 343 and 7^4 ends with 401, so mod 1000 we get
343 543 743 943 143 343
We've got our first three digits in column #2 (543), and we see that the the sequence repeats ever 5, so we should go up from there by 7^20.
We can play this trick over and over again: find how often the next block of digits repeats, find the right subsequence within that block, and then multiply up not by 7 but by 7^n.
What we're really doing is finding a (multiplicative) ring over the m'th digit, and then multiplying the sizes of all the rings together to get the span between successive powers that have the same N digits if we follow this method. Here's some Scala code (2.8.0 Beta1) that does just this:
def powRing(bigmod: BigInt, checkmod: BigInt, mul: BigInt) = {
val powers = Stream.iterate(1:BigInt)(i => (i*mul)%bigmod)
powers.take( 2+powers.tail.indexWhere(_ % checkmod == 1) ).toList
}
def ringSeq(digits: Int, mod: BigInt, mul: BigInt): List[(BigInt,List[BigInt])] = {
if (digits<=1) List( (10:BigInt , powRing(mod,10,mul)) )
else {
val prevSeq = ringSeq(digits-1, mod, mul)
val prevRing = prevSeq.head
val nextRing = powRing(mod,prevRing._1*10,prevRing._2.last)
(prevRing._1*10 , nextRing) :: prevSeq
}
}
def interval(digits: Int, mul: Int) = {
val ring = ringSeq(digits, List.fill(digits)(10:BigInt).reduceLeft(_*_), mul)
(1L /: ring)((p,r) => p * (r._2.length-1))
}
So, if we've found one case of the digits that we want, we can now find all of them by finding the size of the appropriate ring. In our case, with 6 digits (i.e. mod 10^6) and base 7, we find a repeat size of:
scala> interval(6,7)
res0: Long = 5000
So, we've got our answer! 7^7 is the first, 7^5007 is the second, 7^10007 is the third, etc..
Since this is generic, we can try other answers...11^11 = 285311670611 (an 8 digit number). Let's look at the interval:
scala> interval(12,11)
res1: Long = 50000000000
So, this tells us that 11^50000000007 is the next number after 11^11 with the same initial set of 12 digits. Check by hand if you're curious!
Let's also check with 3^3--what's the next power of 3 whose decimal expansion ends with 27?
scala> interval(2,3)
res2: Long = 20
Should be 3^23. Checking:
scala> List.fill(23)(3L).reduceLeft((l,r) => {println(l*r) ; l*r})
9
27
81
243
729
2187
6561
19683
59049
177147
531441
1594323
4782969
14348907
43046721
129140163
387420489
1162261467
3486784401
10460353203
31381059609
94143178827
Yup!
(Switched code in edits to use BigInt so it could handle arbitrary numbers of digits. The code doesn't detect degenerate cases, though, so make sure you use a prime for the power....)
Another hint: You are only interested in the last N digits: you can perform calculations modulo 10^N and keep the result fit nicely into an integer
Related
I need to write a function that takes the sixth root of something (equivalently, raises something to the 1/6 power), and checks if the answer is an integer. I want this function to be as fast and as optimized as possible, and since this function needs to run a lot, I'm thinking it might be best to not have to calculate the whole root.
How would I write a function (language agnostic, although Python/C/C++ preferred) that returns False (or 0 or something equivalent) before having to compute the entirety of the sixth root? For instance, if I was taking the 6th root of 65, then my function should, upon realizing that that the result is not an int, stop calculating and return False, instead of first computing that the 6th of 65 is 2.00517474515, then checking if 2.00517474515 is an int, and finally returning False.
Of course, I'm asking this question under the impression that it is faster to do the early termination thing than the complete computation, using something like
print(isinstance(num**(1/6), int))
Any help or ideas would be greatly appreciated. I would also be interested in answers that are generalizable to lots of fractional powers, not just x^(1/6).
Here are some ideas of things you can try that might help eliminate non-sixth-powers quickly. For actual sixth powers, you'll still end up eventually needing to compute the sixth root.
Check small cases
If the numbers you're given have a reasonable probability of being small (less than 12 digits, say), you could build a table of small cases and check against that. There are only 100 sixth powers smaller than 10**12. If your inputs will always be larger, then there's little value in this test, but it's still a very cheap test to make.
Eliminate small primes
Any small prime factor must appear with an exponent that's a multiple of 6. To avoid too many trial divisions, you can bundle up some of the small factors.
For example, 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 = 223092870, which is small enough to fit in single 30-bit limb in Python, so a single modulo operation with that modulus should be fast.
So given a test number n, compute g = gcd(n, 223092870), and if the result is not 1, check that n is exactly divisible by g ** 6. If not, n is not a sixth power, and you're done. If n is exactly divisible by g**6, repeat with n // g**6.
Check the value modulo 124488 (for example)
If you carried out the previous step, then at this point you have a value that's not divisible by any prime smaller than 25. Now you can do a modulus test with a carefully chosen modulus: for example, any sixth power that's relatively prime to 124488 = 8 * 9 * 7 * 13 * 19 is congruent to one of the six values [1, 15625, 19657, 28729, 48385, 111385] modulo 124488. There are larger moduli that could be used, at the expense of having to check more possible residues.
Check whether it's a square
Any sixth power must be a square. Since Python (at least, Python >= 3.8) has a built-in integer square root function that's reasonably fast, it's efficient to check whether the value is a square before going for computing a full sixth root. (And if it is a square and you've already computed the square root, now you only need to extract a cube root rather than a sixth root.)
Use floating-point arithmetic
If the input is not too large, say 90 digits or smaller, and it's a sixth power then floating-point arithmetic has a reasonable chance of finding the sixth root exactly. However, Python makes no guarantees about the accuracy of a power operation, so it's worth making some additional checks to make sure that the result is within the expected range. For larger inputs, there's less chance of floating-point arithmetic getting the right result. The sixth root of (2**53 + 1)**6 is not exactly representable as a Python float (making the reasonable assumption that Python's float type matches the IEEE 754 binary64 format), and once n gets past 308 digits or so it's too large to fit into a float anyway.
Use integer arithmetic
Once you've exhausted all the cheap tricks, you're left with little choice but to compute the floor of the sixth root, then compare the sixth power of that with the original number.
Here's some Python code that puts together all of the tricks listed above. You should do your own timings targeting your particular use-case, and choose which tricks are worth keeping and which should be adjusted or thrown out. The order of the tricks will also be significant.
from math import gcd, isqrt
# Sixth powers smaller than 10**12.
SMALL_SIXTH_POWERS = {n**6 for n in range(100)}
def is_sixth_power(n):
"""
Determine whether a positive integer n is a sixth power.
Returns True if n is a sixth power, and False otherwise.
"""
# Sanity check (redundant with the small cases check)
if n <= 0:
return n == 0
# Check small cases
if n < 10**12:
return n in SMALL_SIXTH_POWERS
# Try a floating-point check if there's a realistic chance of it working
if n < 10**90:
s = round(n ** (1/6.))
if n == s**6:
return True
elif (s - 1) ** 6 < n < (s + 1)**6:
return False
# No conclusive result; fall through to the next test.
# Eliminate small primes
while True:
g = gcd(n, 223092870)
if g == 1:
break
n, r = divmod(n, g**6)
if r:
return False
# Check modulo small primes (requires that
# n is relatively prime to 124488)
if n % 124488 not in {1, 15625, 19657, 28729, 48385, 111385}:
return False
# Find the square root using math.isqrt, throw out non-squares
s = isqrt(n)
if s**2 != n:
return False
# Compute the floor of the cube root of s
# (which is the same as the floor of the sixth root of n).
# Code stolen from https://stackoverflow.com/a/35276426/270986
a = 1 << (s.bit_length() - 1) // 3 + 1
while True:
d = s//a**2
if a <= d:
return a**3 == s
a = (2*a + d)//3
Lagrange's four-square theorem proves that any natural number can be written as the sum of four square numbers. What I need is to find any one way to write a natural number x as sum of four square numbers for all 0 <= x <= N for any given upper limit N.
What I have done so far is find two-square sum representation for all the numbers <= N for which it is possible to find one, and saved them in an array called two_square_div. Then I used a greedy approach like following:
last_two_square_sum = 0
for num in 0..N
if num can be written as sum of two square
last_two_square_sum = num
other_last_two_square_sum = num - last_two_square_sum
four_square_div[num] = (two_square_div[last_two_square_sum], two_square_div[other_last_two_square_sum]
But this approach does not work for numbers like 23, for which last_two_square_sum = 20 other_last_two_square_sum = 3. But 3 can not be written as sum of two squares so this method fails.
So could anybody provide a correct O(N) solution or any helpful hint? Thank you.
Your algorithm should make more than one attempt (if it already does, then the exit condition must be improved).
23 can be written as 3 + 20, yes; but 3 is not a decomposable of order two and can't lead to a solution.
So you go on: next you try 4 + 19, and this time it's 19 that is rejected. Next you try 5, so 23-5 is 18, and 5 is 12 + 22 while 18 is 32 + 32.
(Of course this is not O(N) at all).
It is not clear to me how you arrive at 20 and not accept previous solutions; try posting the whole of the code.
Also, try asking on Math StackExchange.
Can anyone help me with some algorithm for this problem?
We have a big number (19 digits) and, in a loop, we subtract one of the digits of that number from the number itself.
We continue to do this until the number reaches zero. We want to calculate the minimum number of subtraction that makes a given number reach zero.
The algorithm must respond fast, for a 19 digits number (10^19), within two seconds. As an example, providing input of 36 will give 7:
1. 36 - 6 = 30
2. 30 - 3 = 27
3. 27 - 7 = 20
4. 20 - 2 = 18
5. 18 - 8 = 10
6. 10 - 1 = 9
7. 9 - 9 = 0
Thank you.
The minimum number of subtractions to reach zero makes this, I suspect, a very thorny problem, one that will require a great deal of backtracking potential solutions, making it possibly too expensive for your time limitations.
But the first thing you should do is a sanity check. Since the largest digit is a 9, a 19-digit number will require about 1018 subtractions to reach zero. Code up a simple program to continuously subtract 9 from 1019 until it becomes less than ten. If you can't do that within the two seconds, you're in trouble.
By way of example, the following program (a):
#include <stdio.h>
int main (int argc, char *argv[]) {
unsigned long long x = strtoull(argv[1], NULL, 10);
x /= 1000000000;
while (x > 9)
x -= 9;
return x;
}
when run with the argument 10000000000000000000 (1019), takes a second and a half clock time (and CPU time since it's all calculation) even at gcc insane optimisation level of -O3:
real 0m1.531s
user 0m1.528s
sys 0m0.000s
And that's with the one-billion divisor just before the while loop, meaning the full number of iterations would take about 48 years.
So a brute force method isn't going to help here, what you need is some serious mathematical analysis which probably means you should post a similar question over at https://math.stackexchange.com/ and let the math geniuses have a shot.
(a) If you're wondering why I'm getting the value from the user rather than using a constant of 10000000000000000000ULL, it's to prevent gcc from calculating it at compile time and turning it into something like:
mov $1, %eax
Ditto for the return x which will prevent it noticing I don't use the final value of x and hence optimise the loop out of existence altogether.
I don't have a solution that can solve 19 digit numbers in 2 seconds. Not even close. But I did implement a couple of algorithms (including a dynamic programming algorithm that solves for the optimum), and gained some insight that I believe is interesting.
Greedy Algorithm
As a baseline, I implemented a greedy algorithm that simply picks the largest digit in each step:
uint64_t countGreedy(uint64_t inputVal) {
uint64_t remVal = inputVal;
uint64_t nStep = 0;
while (remVal > 0) {
uint64_t digitVal = remVal;
uint_fast8_t maxDigit = 0;
while (digitVal > 0) {
uint64_t nextDigitVal = digitVal / 10;
uint_fast8_t digit = digitVal - nextDigitVal * 10;
if (digit > maxDigit) {
maxDigit = digit;
}
digitVal = nextDigitVal;
}
remVal -= maxDigit;
++nStep;
}
return nStep;
}
Dynamic Programming Algorithm
The idea for this is that we can calculate the optimum incrementally. For a given value, we pick a digit, which adds one step to the optimum number of steps for the value with the digit subtracted.
With the target function (optimum number of steps) for a given value named optSteps(val), and the digits of the value named d_i, the following relationship holds:
optSteps(val) = 1 + min(optSteps(val - d_i))
This can be implemented with a dynamic programming algorithm. Since d_i is at most 9, we only need the previous 9 values to build on. In my implementation, I keep a circular buffer of 10 values:
static uint64_t countDynamic(uint64_t inputVal) {
uint64_t minSteps[10] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
uint_fast8_t digit0 = 0;
for (uint64_t val = 10; val <= inputVal; ++val) {
digit0 = val % 10;
uint64_t digitVal = val;
uint64_t minPrevStep = 0;
bool prevStepSet = false;
while (digitVal > 0) {
uint64_t nextDigitVal = digitVal / 10;
uint_fast8_t digit = digitVal - nextDigitVal * 10;
if (digit > 0) {
uint64_t prevStep = 0;
if (digit > digit0) {
prevStep = minSteps[10 + digit0 - digit];
} else {
prevStep = minSteps[digit0 - digit];
}
if (!prevStepSet || prevStep < minPrevStep) {
minPrevStep = prevStep;
prevStepSet = true;
}
}
digitVal = nextDigitVal;
}
minSteps[digit0] = minPrevStep + 1;
}
return minSteps[digit0];
}
Comparison of Results
This may be considered a surprise: I ran both algorithms on all values up to 1,000,000. The results are absolutely identical. This suggests that the greedy algorithm actually calculates the optimum.
I don't have a formal proof that this is indeed true for all possible values. It intuitively kind of makes sense to me. If in any given step, you choose a smaller digit than the maximum, you compromise the immediate progress with the goal of getting into a more favorable situation that allows you to catch up and pass the greedy approach. But in all the scenarios I thought about, the situation after taking a sub-optimal step just does not get significantly more favorable. It might make the next step bigger, but that is at most enough to get even again.
Complexity
While both algorithms look linear in the size of the value, they also loop over all digits in the value. Since the number of digits corresponds to log(n), I believe the complexity is O(n * log(n)).
I think it's possible to make it linear by keeping counts of the frequency of each digit, and modifying them incrementally. But I doubt it would actually be faster. It requires more logic, and turns a loop over all digits in the value (which is in the range of 2-19 for the values we are looking at) into a fixed loop over 10 possible digits.
Runtimes
Not surprisingly, the greedy algorithm is faster to calculate a single value. For example, for value 1,000,000,000, the runtimes on my MacBook Pro are:
greedy: 3 seconds
dynamic: 36 seconds
On the other hand, the dynamic programming approach is obviously much faster at calculating all the values, since its incremental approach needs them as intermediate results anyway. For calculating all values from 10 to 1,000,000:
greedy: 19 minutes
dynamic: 0.03 seconds
As already shown in the runtimes above, the greedy algorithm gets about as high as 9 digit input values within the targeted runtime of 2 seconds. The implementations aren't really tuned, and it's certainly possible to squeeze out some more time, but it would be fractional improvements.
Ideas
As already explored in another answer, there's no chance of getting the result for 19 digit numbers in 2 seconds by subtracting digits one by one. Since we subtract at most 9 in each step, completing this for a value of 10^19 needs more than 10^18 steps. We mostly use computers that perform in the rough range of 10^9 operations/second, which suggests that it would take about 10^9 seconds.
Therefore, we need something that can take shortcuts. I can think of scenarios where that's possible, but haven't been able to generalize it to a full strategy so far.
For example, if your current value is 9999, you know that you can subtract 9 until you reach 9000. So you can calculate that you will make 112 steps ((9999 - 9000) / 9 + 1) where you subtract 9, which can be done in a few operations.
As said in comments already, and agreeing with #paxdiablo’s other answer, I’m not sure if there is an algorithm to find the ideal solution without some backtracking; and the size of the number and the time constraint might be tough as well.
A general consideration though: You might want to find a way to decide between always subtracting the highest digit (which will decrease your current number by the largest possible amount, obviously), and by looking at your current digits and subtracting which of those will give you the largest “new” digit.
Say, your current number only consists of digits between 0 and 5 – then you might be tempted to subtract the 5 to decrease your number by the highest possible value, and continue with the next step. If the last digit of your current number is 3 however, then you might want to subtract 4 instead – since that will give you 9 as new digit at the end of the number, instead of “only” 8 you would be getting if you subtracted 5.
Whereas if you have a 2 and two 9 in your digits already, and the last digit is a 1 – then you might want to subtract the 9 anyway, since you will be left with the second 9 in the result (at least in most cases; in some edge cases it might get obliterated from the result as well), so subtracting the 2 instead would not have the advantage of giving you a “high” 9 that you would otherwise not have in the next step, and would have the disadvantage of not lowering your number by as high an amount as subtracting the 9 would …
But every digit you subtract will not only affect the next step directly, but the following steps indirectly – so again, I doubt there is a way to always chose the ideal digit for the current step without any backtracking or similar measures.
Let's assume we will consider binary numbers which has length 2n and n might be about 1000. We are looking for kth number (k is limited by 10^9) which has following properties:
Amount of 1's is equal to amount of 0's what can be described as following: #(1) = #(0)
Every prefix of this number has to contain atleast as much 0's as 1's. It might be easier to understand it after negating the sentence, which is: There is no prefix which would contain more 1's than 0's.
And basically that's it.
So to make it clear let's do some example:
n=2, k=2
we have to take binary number of length 2n:
0000
0001
0010
0011
0100
0101
0110
0111
1000
and so on...
And now we have to find 2nd number which fulfill those two requirements. So we see 0011 is the first one, and 0101 is second one.
If we change k=3, then answer doesn't exist since there are number which have same amount of opposite bits, but for 0110, there is prefix 011 so number doesn't fulfill second constraint and same would be with all numbers which has 1 as most significant bit.
So what I did so far to find algorithm?
Well my first idea was to generate all possible bits settings, and check whether it has those two properties, but generate them all would take O(2^(2n)) which is not an option for n=1000.
Additionally I realize there is no need to check all numbers which are smaller than 0011 for n=2, 000111 for n=3, and so on... frankly speaking those which half of most significant bits remains "untouched" because those numbers have no possibility to fulfill #(1) = #(0) condition. Using that I can reduce n by half, but it doesn't help much. Instead of 2 * forever I have forever running algorithm. It's still O(2^n) complexity, which is way too big.
Any idea for algorithm?
Conclusion
This text has been created as a result of my thoughts after reading Andy Jones post.
First of all I wouldn't post code I have used since it's point 6 in following document from Andy's post Kasa 2009. All you have to do is consider nr as that what I described as k. Unranking Dyck words algorithm, would help us find out answer much faster. However it has one bottleneck.
while (k >= C(n-i,j))
Considering that n <= 1000, Catalan number can be quite huge, even C(999,999). We can use some big number arithmetic, but on the other hand I came up with little trick to overpass it and use standard integer.
We don't want to know how big actually Catalan number is as long as it's bigger than k. So now we will create Catalan numbers caching partial sums in n x n table.
... ...
5 | 42 ...
4 | 14 42 ...
3 | 5 14 28 ...
2 | 2 5 9 14 ...
1 | 1 2 3 4 5 ...
0 | 1 1 1 1 1 1 ...
---------------------------------- ...
0 1 2 3 4 5 ...
To generate it is quite trivial:
C(x,0) = 1
C(x,y) = C(x,y-1) + C(x-1,y) where y > 0 && y < x
C(x,y) = C(x,y-1) where x == y
So what we can see only this:
C(x,y) = C(x,y-1) + C(x-1,y) where y > 0 && y < x
can cause overflow.
Let's stop at this point and provide definition.
k-flow - it's not real overflow of integer but rather information that value of C(x,y) is bigger than k.
My idea is to check after each running of above formula whether C(x,y) is grater than k or any of sum components is -1. If it is we put -1 instead, which would act as a marker, that k-flow has happened. I guess it quite obvious that if k-flow number is sum up with any positive number it's still be k-flowed in particular sum of 2 k-flowed numbers is k-flowed.
The last what we have to prove is that there is no possibility to create real overflow. Real overflow might only happen if we sum up a + b which non of them is k-flowed but as sum they generated the real overflow.
Of course it's impossible since maximum value can be described as a + b <= 2 * k <= 2*10^9 <= 2,147,483,647 where last value in this inequality is value of int with sign. I assume also that int has 32 bits, as in my case.
The numbers you are describing correspond to Dyck words. Pt 2 of Kasa 2009 gives a simple algorithm for enumerating them in lexicographic order. Its references should be helpful if you want to do any further reading.
As an aside (and be warned I'm half asleep as I write this, so it might be wrong), the wikipedia article notes that the number of Dyck words of length 2n is the n th Catalan number, C(n). You might want to find the smallest n such that C(n) is larger than the k you're looking for, and then enumerate Dyck words starting from X^n Y^n.
I'm sorry for misunderstood this problem last time, so I edit it and now I can promise the correction and you can test the code first, the complexity is O(n^2), the detail answer is follow
First, we can equal the problem to the next one
We are looking for kth largest number (k is limited by 10^9) which has following properties:
Amount of 1's is equal to amount of 0's what can be described as following: #(1) = #(0)
Every prefix of this number has to contain at least as much [[1's as 0's]], which means: There is no prefix which would contain more [[0's than 1's]].
Let's give an example to explain it: let n=3 and k=4, the amount of satisfied numbers is 5, and the picture below has explain what we should determine in previous problem and new problem:
| 000111 ------> 111000 ^
| 001011 ------> 110100 |
| 001101 ------> 110010 |
| previous 4th number 010011 ------> 101100 new 4th largest number |
v 010101 ------> 101010 |
so after we solve the new problem, we just need to bitwise not.
Now the main problem is how to solve the new problem. First, let A be the array, so A[m]{1<=m<=2n} only can be 1 or 0, let DP[v][q] be the amount of numbers which satisfy condition2 and condition #(1)=q in {A[2n-v+1]~A[2n]}, so the DP[2n][n] is the amount of satisfied numbers.
A[1] only can be 1 or 0, if A[1]=1, the amount of numbers is DP[2n-1][n-1], if A[1]=0, the amount of numbers is DP[2n-1][n], now we want to find the kth largest number, if k<=DP[2n-1][n-1], kth largest number's A[1] must be 1, then we can judge A[2] with DP[2n-2][n-2]; if k>DP[2n-1][n-1], kth largest number's A[1] must be 0 and k=k-DP[2n-1][n-1], then we can judge A[2] with DP[2n-2][n-1]. So with the same theory, we can judge A[j] one by one until there is no number to compare. Now we can give a example to understand (n=3, k=4)
(We use dynamic programming to determine DP matrix, the DP equation is DP[v][q]=DP[v-1][q-1]+DP[v-1][q])
Intention: we need the number in leftest row can be compared,
so we add a row on DP's left row, but it's not include by DP matrix
in the row, all the number is 1.
the number include by bracket are initialized by ourselves
the theory of initialize just follow the mean of DP matrix
DP matrix = (1) (0) (0) (0) 4<=DP[5][2]=5 --> A[1]=1
(1) (1) (0) (0) 4>DP[4][1]=3 --> A[2]=0, k=4-3=1
(1) (2) (0) (0) 1<=DP[3][1]=3 --> A[3]=1
(1) (3) 2 (0) 1<=1 --> a[4]=1
(1) (4) 5 (0) no number to compare, A[5]~A[6]=0
(1) (5) 9 5 so the number is 101100
If you have not understand clearly, you can use the code to understand
Intention:DP[2n][n] increase very fast, so the code can only work when n<=19, in the problem n<1000, so you can use big number programming, and the code can be optimize by bit operation, so the code is just a reference
/*--------------------------------------------------
Environment: X86 Ubuntu GCC
Author: Cong Yu
Blog: aimager.com
Mail: funcemail#gmail.com
Build_Date: Mon Dec 16 21:52:49 CST 2013
Function:
--------------------------------------------------*/
#include <stdio.h>
int DP[2000][1000];
// kth is the result
int kth[1000];
void Oper(int n, int k){
int i,j,h;
// temp is the compare number
// jishu is the
int temp,jishu=0;
// initialize
for(i=1;i<=2*n;i++)
DP[i-1][0]=i-1;
for(j=2;j<=n;j++)
for(i=1;i<=2*j-1;i++)
DP[i-1][j-1]=0;
for(i=1;i<=2*n;i++)
kth[i-1]=0;
// operate DP matrix with dynamic programming
for(j=2;j<=n;j++)
for(i=2*j;i<=2*n;i++)
DP[i-1][j-1]=DP[i-2][j-2]+DP[i-2][j-1];
// the main thought
if(k>DP[2*n-1][n-1])
printf("nothing\n");
else{
i=2*n;
j=n;
for(;j>=1;i--,jishu++){
if(j==1)
temp=1;
else
temp=DP[i-2][j-2];
if(k<=temp){
kth[jishu]=1;
j--;
}
else{
kth[jishu]=0;
if(j==1)
k-=1;
else
k-=DP[i-2][j-2];
}
}
for(i=1;i<=2*n;i++){
kth[i-1]=1-kth[i-1];
printf("%d",kth[i-1]);
}
printf("\n");
}
}
int main(){
int n,k;
scanf("%d",&n);
scanf("%d",&k);
Oper(n,k);
return 0;
}
Scroll down to see latest edit, I left all this text here just so that I don't invalidate the replies this question has received so far!
I have the following brain teaser I'd like to get a solution for, I have tried to solve this but since I'm not mathematically that much above average (that is, I think I'm very close to average) I can't seem wrap my head around this.
The problem: Given number x should be split to a serie of multipliers, where each multiplier <= y, y being a constant like 10 or 16 or whatever. In the serie (technically an array of integers) the last number should be added instead of multiplied to be able to convert the multipliers back to original number.
As an example, lets assume x=29 and y=10. In this case the expected array would be {10,2,9} meaning 10*2+9. However if y=5, it'd be {5,5,4} meaning 5*5+4 or if y=3, it'd be {3,3,3,2} which would then be 3*3*3+2.
I tried to solve this by doing something like this:
while x >= y, store y to multipliers, then x = x - y
when x < y, store x to multipliers
Obviously this didn't work, I also tried to store the "leftover" part separately and add that after everything else but that didn't work either. I believe my main problem is that I try to think this in a way too complex manner while the solution is blatantly obvious and simple.
To reiterate, these are the limits this algorithm should have:
has to work with 64bit longs
has to return an array of 32bit integers (...well, shorts are OK too)
while support for signed numbers (both + and -) would be nice, if it helps the task only unsigned numbers is a must
And while I'm doing this using Java, I'd rather take any possible code examples as pseudocode, I specifically do NOT want readily made answers, I just need a nudge (well, more of a strong kick) so that I can solve this at least partly myself. Thanks in advance.
Edit: Further clarification
To avoid some confusion, I think I should reword this a bit:
Every integer in the result array should be less or equal to y, including the last number.
Yes, the last number is just a magic number.
No, this is isn't modulus since then the second number would be larger than y in most cases.
Yes, there is multiple answers to most of the numbers available, however I'm looking for the one with least amount of math ops. As far as my logic goes, that means finding the maximum amount of as big multipliers as possible, for example x=1 000 000,y=100 is 100*100*100 even though 10*10*10*10*10*10 is equally correct answer math-wise.
I need to go through the given answers so far with some thought but if you have anything to add, please do! I do appreciate the interest you've already shown on this, thank you all for that.
Edit 2: More explanations + bounty
Okay, seems like what I was aiming for in here just can't be done the way I thought it could be. I was too ambiguous with my goal and after giving it a bit of a thought I decided to just tell you in its entirety what I'd want to do and see what you can come up with.
My goal originally was to come up with a specific method to pack 1..n large integers (aka longs) together so that their String representation is notably shorter than writing the actual number. Think multiples of ten, 10^6 and 1 000 000 are the same, however the representation's length in characters isn't.
For this I wanted to somehow combine the numbers since it is expected that the numbers are somewhat close to each other. I firsth thought that representing 100, 121, 282 as 100+21+161 could be the way to go but the saving in string length is neglible at best and really doesn't work that well if the numbers aren't very close to each other. Basically I wanted more than ~10%.
So I came up with the idea that what if I'd group the numbers by common property such as a multiplier and divide the rest of the number to individual components which I can then represent as a string. This is where this problem steps in, I thought that for example 1 000 000 and 100 000 can be expressed as 10^(5|6) but due to the context of my aimed usage this was a bit too flaky:
The context is Web. RESTful URL:s to be specific. That's why I mentioned of thinking of using 64 characters (web-safe alphanumberic non-reserved characters and then some) since then I could create seemingly random URLs which could be unpacked to a list of integers expressing a set of id numbers. At this point I thought of creating a base 64-like number system for expressing base 10/2 numbers but since I'm not a math genius I have no idea beyond this point how to do it.
The bounty
Now that I have written the whole story (sorry that it's a long one), I'm opening a bounty to this question. Everything regarding requirements for the preferred algorithm specified earlier is still valid. I also want to say that I'm already grateful for all the answers I've received so far, I enjoy being proven wrong if it's done in such a manner as you people have done.
The conclusion
Well, bounty is now given. I spread a few comments to responses mostly for future reference and myself, you can also check out my SO Uservoice suggestion about spreading bounty which is related to this question if you think we should be able to spread it among multiple answers.
Thank you all for taking time and answering!
Update
I couldn't resist trying to come up with my own solution for the first question even though it doesn't do compression. Here is a Python solution using a third party factorization algorithm called pyecm.
This solution is probably several magnitudes more efficient than Yevgeny's one. Computations take seconds instead of hours or maybe even weeks/years for reasonable values of y. For x = 2^32-1 and y = 256, it took 1.68 seconds on my core duo 1.2 ghz.
>>> import time
>>> def test():
... before = time.time()
... print factor(2**32-1, 256)
... print time.time()-before
...
>>> test()
[254, 232, 215, 113, 3, 15]
1.68499994278
>>> 254*232*215*113*3+15
4294967295L
And here is the code:
def factor(x, y):
# y should be smaller than x. If x=y then {y, 1, 0} is the best solution
assert(x > y)
best_output = []
# try all possible remainders from 0 to y
for remainder in xrange(y+1):
output = []
composite = x - remainder
factors = getFactors(composite)
# check if any factor is larger than y
bad_remainder = False
for n in factors.iterkeys():
if n > y:
bad_remainder = True
break
if bad_remainder: continue
# make the best factors
while True:
results = largestFactors(factors, y)
if results == None: break
output += [results[0]]
factors = results[1]
# store the best output
output = output + [remainder]
if len(best_output) == 0 or len(output) < len(best_output):
best_output = output
return best_output
# Heuristic
# The bigger the number the better. 8 is more compact than 2,2,2 etc...
# Find the most factors you can have below or equal to y
# output the number and unused factors that can be reinserted in this function
def largestFactors(factors, y):
assert(y > 1)
# iterate from y to 2 and see if the factors are present.
for i in xrange(y, 1, -1):
try_another_number = False
factors_below_y = getFactors(i)
for number, copies in factors_below_y.iteritems():
if number in factors:
if factors[number] < copies:
try_another_number = True
continue # not enough factors
else:
try_another_number = True
continue # a factor is not present
# Do we want to try another number, or was a solution found?
if try_another_number == True:
continue
else:
output = 1
for number, copies in factors_below_y.items():
remaining = factors[number] - copies
if remaining > 0:
factors[number] = remaining
else:
del factors[number]
output *= number ** copies
return (output, factors)
return None # failed
# Find prime factors. You can use any formula you want for this.
# I am using elliptic curve factorization from http://sourceforge.net/projects/pyecm
import pyecm, collections, copy
getFactors_cache = {}
def getFactors(n):
assert(n != 0)
# attempt to retrieve from cache. Returns a copy
try:
return copy.copy(getFactors_cache[n])
except KeyError:
pass
output = collections.defaultdict(int)
for factor in pyecm.factors(n, False, True, 10, 1):
output[factor] += 1
# cache result
getFactors_cache[n] = output
return copy.copy(output)
Answer to first question
You say you want compression of numbers, but from your examples, those sequences are longer than the undecomposed numbers. It is not possible to compress these numbers without more details to the system you left out (probability of sequences/is there a programmable client?). Could you elaborate more?
Here is a mathematical explanation as to why current answers to the first part of your problem will never solve your second problem. It has nothing to do with the knapsack problem.
This is Shannon's entropy algorithm. It tells you the theoretical minimum amount of bits you need to represent a sequence {X0, X1, X2, ..., Xn-1, Xn} where p(Xi) is the probability of seeing token Xi.
Let's say that X0 to Xn is the span of 0 to 4294967295 (the range of an integer). From what you have described, each number is as likely as another to appear. Therefore the probability of each element is 1/4294967296.
When we plug it into Shannon's algorithm, it will tell us what the minimum number of bits are required to represent the stream.
import math
def entropy():
num = 2**32
probability = 1./num
return -(num) * probability * math.log(probability, 2)
# the (num) * probability cancels out
The entropy unsurprisingly is 32. We require 32 bits to represent an integer where each number is equally likely. The only way to reduce this number, is to increase the probability of some numbers, and decrease the probability of others. You should explain the stream in more detail.
Answer to second question
The right way to do this is to use base64, when communicating with HTTP. Apparently Java does not have this in the standard library, but I found a link to a free implementation:
http://iharder.sourceforge.net/current/java/base64/
Here is the "pseudo-code" which works perfectly in Python and should not be difficult to convert to Java (my Java is rusty):
def longTo64(num):
mapping = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"
output = ""
# special case for 0
if num == 0:
return mapping[0]
while num != 0:
output = mapping[num % 64] + output
num /= 64
return output
If you have control over your web server and web client, and can parse the entire HTTP requests without problem, you can upgrade to base85. According to wikipedia, url encoding allows for up to 85 characters. Otherwise, you may need to remove a few characters from the mapping.
Here is another code example in Python
def longTo85(num):
mapping = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_.~!*'();:#&=+$,/?%#[]"
output = ""
base = len(mapping)
# special case for 0
if num == 0:
return mapping[0]
while num != 0:
output = mapping[num % base] + output
num /= base
return output
And here is the inverse operation:
def stringToLong(string):
mapping = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_.~!*'();:#&=+$,/?%#[]"
output = 0
base = len(mapping)
place = 0
# check each digit from the lowest place
for digit in reversed(string):
# find the number the mapping of symbol to number, then multiply by base^place
output += mapping.find(digit) * (base ** place)
place += 1
return output
Here is a graph of Shannon's algorithm in different bases.
As you can see, the higher the radix, the less symbols are needed to represent a number. At base64, ~11 symbols are required to represent a long. At base85, it becomes ~10 symbols.
Edit after final explanation:
I would think base64 is the best solution, since there are standard functions that deal with it, and variants of this idea don't give much improvement. This was answered with much more detail by others here.
Regarding the original question, although the code works, it is not guaranteed to run in any reasonable time, as was answered as well as commented on this question by LFSR Consulting.
Original Answer:
You mean something like this?
Edit - corrected after a comment.
shortest_output = {}
foreach (int R = 0; R <= X; R++) {
// iteration over possible remainders
// check if the rest of X can be decomposed into multipliers
newX = X - R;
output = {};
while (newX > Y) {
int i;
for (i = Y; i > 1; i--) {
if ( newX % i == 0) { // found a divider
output.append(i);
newX = newX /i;
break;
}
}
if (i == 1) { // no dividers <= Y
break;
}
}
if (newX != 1) {
// couldn't find dividers with no remainder
output.clear();
}
else {
output.append(R);
if (output.length() < shortest_output.length()) {
shortest_output = output;
}
}
}
It sounds as though you want to compress random data -- this is impossible for information theoretic reasons. (See http://www.faqs.org/faqs/compression-faq/part1/preamble.html question 9.) Use Base64 on the concatenated binary representations of your numbers and be done with it.
The problem you're attempting to solve (you're dealing with a subset of the problem, given you're restriction of y) is called Integer Factorization and it cannot be done efficiently given any known algorithm:
In number theory, integer factorization is the breaking down of a composite number into smaller non-trivial divisors, which when multiplied together equal the original integer.
This problem is what makes a number of cryptographic functions possible (namely RSA which uses 128 bit keys - long is half of that.) The wiki page contains some good resources that should move you in the right direction with your problem.
So, your brain teaser is indeed a brain teaser... and if you solve it efficiently we can elevate your math skills to above average!
Updated after the full story
Base64 is most likely your best option. If you want a custom solution you can try implementing a Base 65+ system. Just remember that just because 10000 can be written as "10^4" doesn't mean that everything can be written as 10^n where n is an integer. Different base systems are the simplest way to write numbers and the higher the base the less digits the number requires. Plus most framework libraries contain algorithms for Base64 encoding. (What language you are using?).
One way to further pack the urls is the one you mentioned but in Base64.
int[] IDs;
IDs.sort() // So IDs[i] is always smaller or equal to IDs[i-1].
string url = Base64Encode(IDs[0]);
for (int i = 1; i < IDs.length; i++) {
url += "," + Base64Encode(IDs[i-1] - IDs[i]);
}
Note that you require some separator as the initial ID can be arbitrarily large and the difference between two IDs CAN be more than 63 in which case one Base64 digit is not enough.
Updated
Just restating that the problem is unsolvable. For Y = 64 you can't write 87681 in multipliers + remainder where each of these is below 64. In other words, you cannot write any of the numbers 87617..87681 with multipliers that are below 64. Each of these numbers has an elementary term over 64. 87616 can be written in elementary terms below 64 but then you'd need those + 65 and so the remainder will be over 64.
So if this was just a brainteaser, it's unsolvable. Was there some practical purpose for this which could be achieved in some way other than using multiplication and a remainder?
And yes, this really should be a comment but I lost my ability to comment at some point. :p
I believe the solution which comes closest is Yevgeny's. It is also easy to extend Yevgeny's solution to remove the limit for the remainder in which case it would be able to find solution where multipliers are smaller than Y and remainder as small as possible, even if greater than Y.
Old answer:
If you limit that every number in the array must be below the y then there is no solution for this. Given large enough x and small enough y, you'll end up in an impossible situation. As an example with y of 2, x of 12 you'll get 2 * 2 * 2 + 4 as 2 * 2 * 2 * 2 would be 16. Even if you allow negative numbers with abs(n) below y that wouldn't work as you'd need 2 * 2 * 2 * 2 - 4 in the above example.
And I think the problem is NP-Complete even if you limit the problem to inputs which are known to have an answer where the last term is less than y. It sounds quite much like the [Knapsack problem][1]. Of course I could be wrong there.
Edit:
Without more accurate problem description it is hard to solve the problem, but one variant could work in the following way:
set current = x
Break current to its terms
If one of the terms is greater than y the current number cannot be described in terms greater than y. Reduce one from current and repeat from 2.
Current number can be expressed in terms less than y.
Calculate remainder
Combine as many of the terms as possible.
(Yevgeny Doctor has more conscise (and working) implementation of this so to prevent confusion I've skipped the implementation.)
OP Wrote:
My goal originally was to come up with
a specific method to pack 1..n large
integers (aka longs) together so that
their String representation is notably
shorter than writing the actual
number. Think multiples of ten, 10^6
and 1 000 000 are the same, however
the representation's length in
characters isn't.
I have been down that path before, and as fun as it was to learn all the math, to save you time I will just point you to: http://en.wikipedia.org/wiki/Kolmogorov_complexity
In a nutshell some strings can be easily compressed by changing your notation:
10^9 (4 characters) = 1000000000 (10 characters)
Others cannot:
7829203478 = some random number...
This is a great great simplification of the article I linked to above, so I recommend that you read it instead of taking my explanation at face value.
Edit:
If you are trying to make RESTful urls for some set of unique data, why wouldn't you use a hash, such as MD5? Then include the hash as part of the URL, then look up the data based on the hash. Or am I missing something obvious?
The original method you chose (a * b + c * d + e) would be very difficult to find optimal solutions for simply due to the large search space of possibilities. You could factorize the number but it's that "+ e" that complicates things since you need to factorize not just that number but quite a few immediately below it.
Two methods for compression spring immediately to mind, both of which give you a much-better-than-10% saving on space from the numeric representation.
A 64-bit number ranges from (unsigned):
0 to
18,446,744,073,709,551,616
or (signed):
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
In both cases, you need to reduce the 20-characters taken (without commas) to something a little smaller.
The first is to simply BCD-ify the number the base64 encode it (actually a slightly modified base64 since "/" would not be kosher in a URL - you should use one of the acceptable characters such as "_").
Converting it to BCD will store two digits (or a sign and a digit) into one byte, giving you an immediate 50% reduction in space (10 bytes). Encoding it base 64 (which turns every 3 bytes into 4 base64 characters) will turn the first 9 bytes into 12 characters and that tenth byte into 2 characters, for a total of 14 characters - that's a 30% saving.
The only better method is to just base64 encode the binary representation. This is better because BCD has a small amount of wastage (each digit only needs about 3.32 bits to store [log210], but BCD uses 4).
Working on the binary representation, we only need to base64 encode the 64-bit number (8 bytes). That needs 8 characters for the first 6 bytes and 3 characters for the final 2 bytes. That's 11 characters of base64 for a saving of 45%.
If you wanted maximum compression, there are 73 characters available for URL encoding:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789$-_.+!*'(),
so technically you could probably encode base-73 which, from rough calculations, would still take up 11 characters, but with more complex code which isn't worth it in my opinion.
Of course, that's the maximum compression due to the maximum values. At the other end of the scale (1-digit) this encoding actually results in more data (expansion rather than compression). You can see the improvements only start for numbers over 999, where 4 digits can be turned into 3 base64 characters:
Range (bytes) Chars Base64 chars Compression ratio
------------- ----- ------------ -----------------
< 10 (1) 1 2 -100%
< 100 (1) 2 2 0%
< 1000 (2) 3 3 0%
< 10^4 (2) 4 3 25%
< 10^5 (3) 5 4 20%
< 10^6 (3) 6 4 33%
< 10^7 (3) 7 4 42%
< 10^8 (4) 8 6 25%
< 10^9 (4) 9 6 33%
< 10^10 (5) 10 7 30%
< 10^11 (5) 11 7 36%
< 10^12 (5) 12 7 41%
< 10^13 (6) 13 8 38%
< 10^14 (6) 14 8 42%
< 10^15 (7) 15 10 33%
< 10^16 (7) 16 10 37%
< 10^17 (8) 17 11 35%
< 10^18 (8) 18 11 38%
< 10^19 (8) 19 11 42%
< 2^64 (8) 20 11 45%
Update: I didn't get everything, thus I rewrote the whole thing in a more Java-Style fashion. I didn't think of the prime number case that is bigger than the divisor. This is fixed now. I leave the original code in order to get the idea.
Update 2: I now handle the case of the big prime number in another fashion . This way a result is obtained either way.
public final class PrimeNumberException extends Exception {
private final long primeNumber;
public PrimeNumberException(long x) {
primeNumber = x;
}
public long getPrimeNumber() {
return primeNumber;
}
}
public static Long[] decompose(long x, long y) {
try {
final ArrayList<Long> operands = new ArrayList<Long>(1000);
final long rest = x % y;
// Extract the rest so the reminder is divisible by y
final long newX = x - rest;
// Go into recursion, actually it's a tail recursion
recDivide(newX, y, operands);
} catch (PrimeNumberException e) {
// return new Long[0];
// or do whatever you like, for example
operands.add(e.getPrimeNumber());
} finally {
// Add the reminder to the array
operands.add(rest);
return operands.toArray(new Long[operands.size()]);
}
}
// The recursive method
private static void recDivide(long x, long y, ArrayList<Long> operands)
throws PrimeNumberException {
while ((x > y) && (y != 1)) {
if (x % y == 0) {
final long rest = x / y;
// Since y is a divisor add it to the list of operands
operands.add(y);
if (rest <= y) {
// the rest is smaller than y, we're finished
operands.add(rest);
}
// go in recursion
x = rest;
} else {
// if the value x isn't divisible by y decrement y so you'll find a
// divisor eventually
if (--y == 1) {
throw new PrimeNumberException(x);
}
}
}
}
Original: Here some recursive code I came up with. I would have preferred to code it in some functional language but it was required in Java. I didn't bother converting the numbers to integer but that shouldn't be that hard (yes, I'm lazy ;)
public static Long[] decompose(long x, long y) {
final ArrayList<Long> operands = new ArrayList<Long>();
final long rest = x % y;
// Extract the rest so the reminder is divisible by y
final long newX = x - rest;
// Go into recursion, actually it's a tail recursion
recDivide(newX, y, operands);
// Add the reminder to the array
operands.add(rest);
return operands.toArray(new Long[operands.size()]);
}
// The recursive method
private static void recDivide(long newX, long y, ArrayList<Long> operands) {
long x = newX;
if (x % y == 0) {
final long rest = x / y;
// Since y is a divisor add it to the list of operands
operands.add(y);
if (rest <= y) {
// the rest is smaller than y, we're finished
operands.add(rest);
} else {
// the rest can still be divided, go one level deeper in recursion
recDivide(rest, y, operands);
}
} else {
// if the value x isn't divisible by y decrement y so you'll find a divisor
// eventually
recDivide(x, y-1, operands);
}
}
Are you married to using Java? Python has an entire package dedicated just for this exact purpose. It'll even sanitize the encoding for you to be URL-safe.
Native Python solution
The standard module I'm recommending is base64, which converts arbitrary stings of chars into sanitized base64 format. You can use it in conjunction with the pickle module, which handles conversion from lists of longs (actually arbitrary size) to a compressed string representation.
The following code should work on any vanilla installation of Python:
import base64
import pickle
# get some long list of numbers
a = (854183415,1270335149,228790978,1610119503,1785730631,2084495271,
1180819741,1200564070,1594464081,1312769708,491733762,243961400,
655643948,1950847733,492757139,1373886707,336679529,591953597,
2007045617,1653638786)
# this gets you the url-safe string
str64 = base64.urlsafe_b64encode(pickle.dumps(a,-1))
print str64
>>> gAIoSvfN6TJKrca3S0rCEqMNSk95-F9KRxZwakqn3z58Sh3hYUZKZiePR0pRlwlfSqxGP05KAkNPHUo4jooOSixVFCdK9ZJHdEqT4F4dSvPY41FKaVIRFEq9fkgjSvEVoXdKgoaQYnRxAC4=
# this unwinds it
a64 = pickle.loads(base64.urlsafe_b64decode(str64))
print a64
>>> (854183415, 1270335149, 228790978, 1610119503, 1785730631, 2084495271, 1180819741, 1200564070, 1594464081, 1312769708, 491733762, 243961400, 655643948, 1950847733, 492757139, 1373886707, 336679529, 591953597, 2007045617, 1653638786)
Hope that helps. Using Python is probably the closest you'll get from a 1-line solution.
Wrt the original algorithm request: Is there a limit on the size of the last number (beyond that it must be stored in a 32b int)?
(The original request is all I'm able to tackle lol.)
The one that produces the shortest list is:
bool negative=(n<1)?true:false;
int j=n%y;
if(n==0 || n==1)
{
list.append(n);
return;
}
while((long64)(n-j*y)>MAX_INT && y>1) //R has to be stored in int32
{
y--;
j=n%y;
}
if(y<=1)
fail //Number has no suitable candidate factors. This shouldn't happen
int i=0;
for(;i<j;i++)
{
list.append(y);
}
list.append(n-y*j);
if(negative)
list[0]*=-1;
return;
A little simplistic compared to most answers given so far but it achieves the desired functionality of the original post... It's a little dirty but hopefully useful :)
Isn't this modulus?
Let / be integer division (whole numbers) and % be modulo.
int result[3];
result[0] = y;
result[1] = x / y;
result[2] = x % y;
Just set x:=x/n where n is the largest number that is less both than x and y. When you end up with x<=y, this is your last number in the sequence.
Like in my comment above, I'm not sure I understand exactly the question. But assuming integers (n and a given y), this should work for the cases you stated:
multipliers[0] = n / y;
multipliers[1] = y;
addedNumber = n % y;