Adding the sum of numbers using a loop statement - coding-style

I need serious help dividing the positive numbers and the negative numbers.
I am to accumulate the total of the negative values and separately accumulate the total of the positive values. After the loop, you are then to display the sum of the negative values and the sum of the positive values.
The data is suppose to look like this:
-2.3 -1.9 -1.5 -1.1 -0.7 -0.3 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9
Sum of negative values: -7.8 Sum of positive
values: 12
So far I have this:
int main () {
int num, num2, num3, num4, num5, sum, count, sum1;
int tempVariable = 0;
int numCount = 100;
int newlineCount = 0, newlineCount1 = 0;
float numCount1 = -2.3;
while (numCount <= 150)
{
cout << numCount << " ";
numCount += 2;
newlineCount ++;
if(newlineCount == 6)
{
cout<< " " << endl;
newlineCount = 0;
}
}
**cout << "" << endl;
while (numCount1 <=2.9 )
{
cout << numCount1 << " ";
numCount1 += 0.4;
newlineCount1 ++;
} while ( newlineCount1 <= 0 && newlineCount >= -2.3 );
cout << "The sum is " << newlineCount1 << endl;**
return 0;
}

I do not know C/C++ but here is a general idea of the loop assuming the values are coming from an array. (since I am unaware of how they are coming in, i.e. user input, etc.)
Logic:
Use a for loop structure opposed to a while, to loop over each element of the array.
Initialize two variables to keep count, positiveSum and negativeSum.
At each iteration of the element, check to see if it's greater than 0. That's how you can divide the positive and negative numbers accordingly.
If greater than zero, add the element onto the running positiveSum, else add it to the running sum of negativeSum.
When the loop finishes, positiveSum and negativeSum should have the calculated sum.
If this is homework, (I don't remember if the homework tag was there prior to the question, or was added on later) this pseudo code should point you in the right direction without explicitly doing the entire work for you.
Pseudo Java Code (not tested or compiled)
// as a good convention, I always initialize variables,
// for numbers I always use zero's.
double positiveSum, negativeSum = 0.0;
// assuming array holds the array of values.
for (i=0; i < array.length; i++) {
// if positive, add it to the count
if (array[i] > 0) positiveSum = positiveSum + array[i];
// else negative
else negativeSum = negativeSum + array[i];
}
Once it's completed, both positiveSum and negativeSum should hold the correct calculated sum.
If you have any questions along the way, I can edit my answer to help you achieve the correct answer, I wish I could give it away but that's what your responsibilities are for homework.

I would loop through each number individually, let's call it currentValue
if the number is negative, negativeNumberTotal += currentValue
else if positive, positiveNumberTotal += currentValue
You will get your individual totals that way. Very simple.

You are clearly overcomplicating the problem. First of all you don't need two separate loops for the numbers, as there is a constant 0.4 difference between them, even between -0.3 and 0.1. You only have to check if it's negative or not to know how to sum them up.
Loops are simpler if you use an integer as counter. As you want 14 numbers you can simply count from 0 to 13, and from that you can easily calculate the corresponding floating point value.
Example C# code:
double negSum = 0.0, posSum = 0.0;
for (int i = 0; i < 14; i++) {
double number = -2.3 + (double)i * 0.4;
if (number < 0) {
negSum += number;
} else {
posSum += number;
}
}
You can of course use a floating point number in the loop, but then you need to take into account the inexact nature of floating point numbers. You should make sure to use an ending interval that is something like halfway between the last number that you want and the next.
double negSum = 0.0, posSum = 0.0;
for (double number = -2.3; number < 3.1; number += 0.4) {
if (number < 0) {
negSum += number;
} else {
posSum += number;
}
}
Also, when repeatedly accumulating floating point numbers (like adding 0.4 over and over again), you also accumulate rounding errors. Most numbers can't be represented exactly as floating point numbers, so it's likely that you are actually adding something like 0.3999999999999994225 instead of 0.4 each iteration. It's not likely to add up to something that is enough to show up in this small example, but you should be aware of this effect so that you can anticipate it in situations with more numbers.

You have several magic numbers, whose purpose I'm not sure of, e.g numcount1 = -2.3 In general you want to avoid magic numbers.
You might want to give your variables more descriptive names than num1, num2, etc.
Could you explain more precisely what the parameters are for your assignment?
EDIT:
I've noticed that you are using very weird conditions to control your loop. You are continuing until numcount1 is = 2.9, which is a very fragile sort of setup. The first thing I would do in your shoes is to rewrite your program so that the loop terminates when there are no more numbers to add. (Alternatively, you could just make it stop after, say 12 values.)
EDIT AGAIN:
OK, how about this
int sumOfPos = 0, sumOfNeg = 0, currentValue = -2.3, terminationValue = 2.9;
while (currentValue <= terminationValue) {
if ( /* there is a missing condition here */ ) {
// need a statement here to increment your negative counter
} else {
// need a statement here to increment your positive counter
}
}
// put some statements here to do output

This is easily solvable with pure math:
lowerBound = -2.3
upperBound = 2.9
incAmount = 0.4
signChange = lowerBound % incAmount
numBelowChange = -(lowerBound-signChange)/incAmount
avgNegValue = -(numBelowChange+1)/2.0*incAmount + signChange
sumOfNegative = numBelowChange*avgNegValue
numAboveChange = (upperBound-signChange)/incAmount
avgPosValue = (numAboveChange+1)/2.0*incAmount + signChange
sumOfPositive = numAboveChange*avgPosValue + signChange
It's more accurate, and more efficient than looping and adding.
With the constants you provided,
signChange = 0.1
numBelowChange = 6.0
avgNegValue = -1.3
sumOfNegative = -7.8
numAboveChange = 7.0
avgPosValue = 1.7
sumOfPositive = 12.0
If you're unfamiliar with the % operator, x%y means "divide x by y and return the remainder". So 5%2=1
http://en.wikipedia.org/wiki/Modulo_operator

I'm not a programmer, but I thought it was best to keep the inside of a loop as lean as possible. This version works without any if statements inside the loop, just simple addition. It's late at night, and I've had a couple of whiskies, but I think this algorithm would work (it worked when I tried implementing it in python). It's psuedo code, so you'll have to write it up in yr language of choice:
neg_total =0
abs_total=0
loop with i in all_your_numbers
total += i
abs_total += abs(i)
end
neg_total=(total-abs_total)/2
pos_total=abs_Total+neg_Total
print "sum of negative values =", neg_total
print "sum of positive values =", pos_total
I'm not sure if this is good programming practice, I'm just chuffed that it worked. Points if you can explain how.

Related

C++ srand() repeating the same string of numbers [duplicate]

So, I'm trying to create a random vector (think geometry, not an expandable array), and every time I call my random vector function I get the same x value, though y and z are different.
int main () {
srand ( (unsigned)time(NULL));
Vector<double> a;
a.randvec();
cout << a << endl;
return 0;
}
using the function
//random Vector
template <class T>
void Vector<T>::randvec()
{
const int min=-10, max=10;
int randx, randy, randz;
const int bucket_size = RAND_MAX/(max-min);
do randx = (rand()/bucket_size)+min;
while (randx <= min && randx >= max);
x = randx;
do randy = (rand()/bucket_size)+min;
while (randy <= min && randy >= max);
y = randy;
do randz = (rand()/bucket_size)+min;
while (randz <= min && randz >= max);
z = randz;
}
For some reason, randx will consistently return 8, whereas the other numbers seem to be following the (pseudo) randomness perfectly. However, if I put the call to define, say, randy before randx, randy will always return 8.
Why is my first random number always 8? Am I seeding incorrectly?
The issue is that the random number generator is being seeded with a values that are very close together - each run of the program only changes the return value of time() by a small amount - maybe 1 second, maybe even none! The rather poor standard random number generator then uses these similar seed values to generate apparently identical initial random numbers. Basically, you need a better initial seed generator than time() and a better random number generator than rand().
The actual looping algorithm used is I think lifted from Accelerated C++ and is intended to produce a better spread of numbers over the required range than say using the mod operator would. But it can't compensate for always being (effectively) given the same seed.
I don't see any problem with your srand(), and when I tried running extremely similar code, I did not repeatedly get the same number with the first rand(). However, I did notice another possible issue.
do randx = (rand()/bucket_size)+min;
while (randx <= min && randx >= max);
This line probably does not do what you intended. As long as min < max (and it always should be), it's impossible for randx to be both less than or equal to min and greater than or equal to max. Plus, you don't need to loop at all. Instead, you can get a value in between min and max using:
randx = rand() % (max - min) + min;
I had the same problem exactly. I fixed it by moving the srand() call so it was only called once in my program (previously I had been seeding it at the top of a function call).
Don't really understand the technicalities - but it was problem solved.
Also to mention, you can even get rid of that strange bucket_size variable and use the following method to generate numbers from a to b inclusively:
srand ((unsigned)time(NULL));
const int a = -1;
const int b = 1;
int x = rand() % ((b - a) + 1) + a;
int y = rand() % ((b - a) + 1) + a;
int z = rand() % ((b - a) + 1) + a;
A simple quickfix is to call rand a few times after seeding.
int main ()
{
srand ( (unsigned)time(NULL));
rand(); rand(); rand();
Vector<double> a;
a.randvec();
cout << a << endl;
return 0;
}
Just to explain better, the first call to rand() in four sequential runs of a test program gave the following output:
27592
27595
27598
27602
Notice how similar they are? For example, if you divide rand() by 100, you will get the same number 3 times in a row. Now take a look at the second result of rand() in four sequential runs:
11520
22268
248
10997
This looks much better, doesn't it? I really don't see any reason for the downvotes.
Your implementation, through integer division, ignores the smallest 4-5 bit of the random number. Since your RNG is seeded with the system time, the first value you get out of it will change only (on average) every 20 seconds.
This should work:
randx = (min) + (int) ((max - min) * rand() / (RAND_MAX + 1.0));
where
rand() / (RAND_MAX + 1.0)
is a random double value in [0, 1) and the rest is just shifting it around.
Not directly related to the code in this question, but I had same issue with using
srand ((unsigned)time(NULL)) and still having same sequence of values being returned from following calls to rand().
It turned out that srand needs to called on each thread you are using it on separately. I had a loading thread that was generating random content (that wasn't random cuz of the seed issue). I had just using srand in the main thread and not the loading thread. So added another srand ((unsigned)time(NULL)) to start of loading thread fixed this issue.

Finding a number lucky or not

I'm trying to solve a problem from hacker rank over here.
The question is:
So to solve this, I tried with a simple maths equation:
4x + 7y = lucky_number
For example, to check 15 is a lucky_number or not, I could do start with x, y values 0 and substituting in the above equation until its equal or greater than (if so stop and say its not lucky number)
The above logic works fine. But the problem is with big number, imagine to check number 966888032206353 lucky or not, starting with x,y to 0 wont be an efficient idea.
Any guidance to it?
All numbers from 7*4=28 up (in fact even all mumbers from 18 up) are lucky, for the rest just precompute a smalll table.
Another way to think of it: All you need to do is plot the line
7y = -4x + 966888032206353
and identify any points where both x and y are integers.
So, you don't need a nested loop. Instead:
Iterate y as an integer. for y=0; y<966888032206353 / 7; y++
For each iteration, solve for x, using floating point math.
If x is an integer, the number is lucky.
This will require about 138T iterations.
Here's my code that I submitted to Hackerrank.
#include <bits/stdc++.h>
using namespace std;
int q; long long n; bool dp[1009];
int main() {
cin >> q;
dp[0] = true;
for(int i = 1; i <= 1000; i++) {
if(i >= 4 && dp[i - 4]) dp[i] = true;
if(i >= 7 && dp[i - 7]) dp[i] = true;
}
while(q--) {
cin >> n;
if(n >= 1000 || dp[n]) cout << "Yes" << endl;
else cout << "No" << endl;
}
}
This is dynamic programming, but if n >= 28 it is always ok.
One of your problems is that your problem description is very incomplete. You can infact represent any integer number as 4x + 7y, if you only allowed negative x and y. For example, 1 = 4*2 + (-1)*7 and you can get a solution for any number by multiplying with that factor.
I guess the best solution from an algorithmics point of view is to use dynamic programming. You can simply start checking numbers whether they are lucky in your sense or not. As soon as you find 4 consequtive lucky numbers, you can stop, because any number afterwards will be lucky by just adding 4 an appropriate number of times. I guess you will find a sequence of 4 consequtive lucky numbers very early.

Printing numbers of the form 2^i * 5^j in increasing order

How do you print numbers of form 2^i * 5^j in increasing order.
For eg:
1, 2, 4, 5, 8, 10, 16, 20
This is actually a very interesting question, especially if you don't want this to be N^2 or NlogN complexity.
What I would do is the following:
Define a data structure containing 2 values (i and j) and the result of the formula.
Define a collection (e.g. std::vector) containing this data structures
Initialize the collection with the value (0,0) (the result is 1 in this case)
Now in a loop do the following:
Look in the collection and take the instance with the smallest value
Remove it from the collection
Print this out
Create 2 new instances based on the instance you just processed
In the first instance increment i
In the second instance increment j
Add both instances to the collection (if they aren't in the collection yet)
Loop until you had enough of it
The performance can be easily tweaked by choosing the right data structure and collection.
E.g. in C++, you could use an std::map, where the key is the result of the formula, and the value is the pair (i,j). Taking the smallest value is then just taking the first instance in the map (*map.begin()).
I quickly wrote the following application to illustrate it (it works!, but contains no further comments, sorry):
#include <math.h>
#include <map>
#include <iostream>
typedef __int64 Integer;
typedef std::pair<Integer,Integer> MyPair;
typedef std::map<Integer,MyPair> MyMap;
Integer result(const MyPair &myPair)
{
return pow((double)2,(double)myPair.first) * pow((double)5,(double)myPair.second);
}
int main()
{
MyMap myMap;
MyPair firstValue(0,0);
myMap[result(firstValue)] = firstValue;
while (true)
{
auto it=myMap.begin();
if (it->first < 0) break; // overflow
MyPair myPair = it->second;
std::cout << it->first << "= 2^" << myPair.first << "*5^" << myPair.second << std::endl;
myMap.erase(it);
MyPair pair1 = myPair;
++pair1.first;
myMap[result(pair1)] = pair1;
MyPair pair2 = myPair;
++pair2.second;
myMap[result(pair2)] = pair2;
}
}
This is well suited to a functional programming style. In F#:
let min (a,b)= if(a<b)then a else b;;
type stream (current, next)=
member this.current = current
member this.next():stream = next();;
let rec merge(a:stream,b:stream)=
if(a.current<b.current) then new stream(a.current, fun()->merge(a.next(),b))
else new stream(b.current, fun()->merge(a,b.next()));;
let rec Squares(start) = new stream(start,fun()->Squares(start*2));;
let rec AllPowers(start) = new stream(start,fun()->merge(Squares(start*2),AllPowers(start*5)));;
let Results = AllPowers(1);;
Works well with Results then being a stream type with current value and a next method.
Walking through it:
I define min for completenes.
I define a stream type to have a current value and a method to return a new string, essentially head and tail of a stream of numbers.
I define the function merge, which takes the smaller of the current values of two streams and then increments that stream. It then recurses to provide the rest of the stream. Essentially, given two streams which are in order, it will produce a new stream which is in order.
I define squares to be a stream increasing in powers of 2.
AllPowers takes the start value and merges the stream resulting from all squares at this number of powers of 5. it with the stream resulting from multiplying it by 5, since these are your only two options. You effectively are left with a tree of results
The result is merging more and more streams, so you merge the following streams
1, 2, 4, 8, 16, 32...
5, 10, 20, 40, 80, 160...
25, 50, 100, 200, 400...
.
.
.
Merging all of these turns out to be fairly efficient with tail recursio and compiler optimisations etc.
These could be printed to the console like this:
let rec PrintAll(s:stream)=
if (s.current > 0) then
do System.Console.WriteLine(s.current)
PrintAll(s.next());;
PrintAll(Results);
let v = System.Console.ReadLine();
Similar things could be done in any language which allows for recursion and passing functions as values (it's only a little more complex if you can't pass functions as variables).
For an O(N) solution, you can use a list of numbers found so far and two indexes: one representing the next number to be multiplied by 2, and the other the next number to be multiplied by 5. Then in each iteration you have two candidate values to choose the smaller one from.
In Python:
numbers = [1]
next_2 = 0
next_5 = 0
for i in xrange(100):
mult_2 = numbers[next_2]*2
mult_5 = numbers[next_5]*5
if mult_2 < mult_5:
next = mult_2
next_2 += 1
else:
next = mult_5
next_5 += 1
# The comparison here is to avoid appending duplicates
if next > numbers[-1]:
numbers.append(next)
print numbers
So we have two loops, one incrementing i and second one incrementing j starting both from zero, right? (multiply symbol is confusing in the title of the question)
You can do something very straightforward:
Add all items in an array
Sort the array
Or you need an other solution with more math analysys?
EDIT: More smart solution by leveraging similarity with Merge Sort problem
If we imagine infinite set of numbers of 2^i and 5^j as two independent streams/lists this problem looks very the same as well known Merge Sort problem.
So solution steps are:
Get two numbers one from the each of streams (of 2 and of 5)
Compare
Return smallest
get next number from the stream of the previously returned smallest
and that's it! ;)
PS: Complexity of Merge Sort always is O(n*log(n))
I visualize this problem as a matrix M where M(i,j) = 2^i * 5^j. This means that both the rows and columns are increasing.
Think about drawing a line through the entries in increasing order, clearly beginning at entry (1,1). As you visit entries, the row and column increasing conditions ensure that the shape formed by those cells will always be an integer partition (in English notation). Keep track of this partition (mu = (m1, m2, m3, ...) where mi is the number of smaller entries in row i -- hence m1 >= m2 >= ...). Then the only entries that you need to compare are those entries which can be added to the partition.
Here's a crude example. Suppose you've visited all the xs (mu = (5,3,3,1)), then you need only check the #s:
x x x x x #
x x x #
x x x
x #
#
Therefore the number of checks is the number of addable cells (equivalently the number of ways to go up in Bruhat order if you're of a mind to think in terms of posets).
Given a partition mu, it's easy to determine what the addable states are. Image an infinite string of 0s following the last positive entry. Then you can increase mi by 1 if and only if m(i-1) > mi.
Back to the example, for mu = (5,3,3,1) we can increase m1 (6,3,3,1) or m2 (5,4,3,1) or m4 (5,3,3,2) or m5 (5,3,3,1,1).
The solution to the problem then finds the correct sequence of partitions (saturated chain). In pseudocode:
mu = [1,0,0,...,0];
while (/* some terminate condition or go on forever */) {
minNext = 0;
nextCell = [];
// look through all addable cells
for (int i=0; i<mu.length; ++i) {
if (i==0 or mu[i-1]>mu[i]) {
// check for new minimum value
if (minNext == 0 or 2^i * 5^(mu[i]+1) < minNext) {
nextCell = i;
minNext = 2^i * 5^(mu[i]+1)
}
}
}
// print next largest entry and update mu
print(minNext);
mu[i]++;
}
I wrote this in Maple stopping after 12 iterations:
1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50
and the outputted sequence of cells added and got this:
1 2 3 5 7 10
4 6 8 11
9 12
corresponding to this matrix representation:
1, 2, 4, 8, 16, 32...
5, 10, 20, 40, 80, 160...
25, 50, 100, 200, 400...
First of all, (as others mentioned already) this question is very vague!!!
Nevertheless, I am going to give a shot based on your vague equation and the pattern as your expected result. So I am not sure the following will be true for what you are trying to do, however it may give you some idea about java collections!
import java.util.List;
import java.util.ArrayList;
import java.util.SortedSet;
import java.util.TreeSet;
public class IncreasingNumbers {
private static List<Integer> findIncreasingNumbers(int maxIteration) {
SortedSet<Integer> numbers = new TreeSet<Integer>();
SortedSet<Integer> numbers2 = new TreeSet<Integer>();
for (int i=0;i < maxIteration;i++) {
int n1 = (int)Math.pow(2, i);
numbers.add(n1);
for (int j=0;j < maxIteration;j++) {
int n2 = (int)Math.pow(5, i);
numbers.add(n2);
for (Integer n: numbers) {
int n3 = n*n1;
numbers2.add(n3);
}
}
}
numbers.addAll(numbers2);
return new ArrayList<Integer>(numbers);
}
/**
* Based on the following fuzzy question # StackOverflow
* http://stackoverflow.com/questions/7571934/printing-numbers-of-the-form-2i-5j-in-increasing-order
*
*
* Result:
* 1 2 4 5 8 10 16 20 25 32 40 64 80 100 125 128 200 256 400 625 1000 2000 10000
*/
public static void main(String[] args) {
List<Integer> numbers = findIncreasingNumbers(5);
for (Integer i: numbers) {
System.out.print(i + " ");
}
}
}
If you can do it in O(nlogn), here's a simple solution:
Get an empty min-heap
Put 1 in the heap
while (you want to continue)
Get num from heap
print num
put num*2 and num*5 in the heap
There you have it. By min-heap, I mean min-heap
As a mathematician the first thing I always think about when looking at something like this is "will logarithms help?".
In this case it might.
If our series A is increasing then the series log(A) is also increasing. Since all terms of A are of the form 2^i.5^j then all members of the series log(A) are of the form i.log(2) + j.log(5)
We can then look at the series log(A)/log(2) which is also increasing and its elements are of the form i+j.(log(5)/log(2))
If we work out the i and j that generates the full ordered list for this last series (call it B) then that i and j will also generate the series A correctly.
This is just changing the nature of the problem but hopefully to one where it becomes easier to solve. At each step you can either increase i and decrease j or vice versa.
Looking at a few of the early changes you can make (which I will possibly refer to as transforms of i,j or just transorms) gives us some clues of where we are going.
Clearly increasing i by 1 will increase B by 1. However, given that log(5)/log(2) is approx 2.3 then increasing j by 1 while decreasing i by 2 will given an increase of just 0.3 . The problem then is at each stage finding the minimum possible increase in B for changes of i and j.
To do this I just kept a record as I increased of the most efficient transforms of i and j (ie what to add and subtract from each) to get the smallest possible increase in the series. Then applied whichever one was valid (ie making sure i and j don't go negative).
Since at each stage you can either decrease i or decrease j there are effectively two classes of transforms that can be checked individually. A new transform doesn't have to have the best overall score to be included in our future checks, just better than any other in its class.
To test my thougths I wrote a sort of program in LinqPad. Key things to note are that the Dump() method just outputs the object to screen and that the syntax/structure isn't valid for a real c# file. Converting it if you want to run it should be easy though.
Hopefully anything not explicitly explained will be understandable from the code.
void Main()
{
double C = Math.Log(5)/Math.Log(2);
int i = 0;
int j = 0;
int maxi = i;
int maxj = j;
List<int> outputList = new List<int>();
List<Transform> transforms = new List<Transform>();
outputList.Add(1);
while (outputList.Count<500)
{
Transform tr;
if (i==maxi)
{
//We haven't considered i this big before. Lets see if we can find an efficient transform by getting this many i and taking away some j.
maxi++;
tr = new Transform(maxi, (int)(-(maxi-maxi%C)/C), maxi%C);
AddIfWorthwhile(transforms, tr);
}
if (j==maxj)
{
//We haven't considered j this big before. Lets see if we can find an efficient transform by getting this many j and taking away some i.
maxj++;
tr = new Transform((int)(-(maxj*C)), maxj, (maxj*C)%1);
AddIfWorthwhile(transforms, tr);
}
//We have a set of transforms. We first find ones that are valid then order them by score and take the first (smallest) one.
Transform bestTransform = transforms.Where(x=>x.I>=-i && x.J >=-j).OrderBy(x=>x.Score).First();
//Apply transform
i+=bestTransform.I;
j+=bestTransform.J;
//output the next number in out list.
int value = GetValue(i,j);
//This line just gets it to stop when it overflows. I would have expected an exception but maybe LinqPad does magic with them?
if (value<0) break;
outputList.Add(value);
}
outputList.Dump();
}
public int GetValue(int i, int j)
{
return (int)(Math.Pow(2,i)*Math.Pow(5,j));
}
public void AddIfWorthwhile(List<Transform> list, Transform tr)
{
if (list.Where(x=>(x.Score<tr.Score && x.IncreaseI == tr.IncreaseI)).Count()==0)
{
list.Add(tr);
}
}
// Define other methods and classes here
public class Transform
{
public int I;
public int J;
public double Score;
public bool IncreaseI
{
get {return I>0;}
}
public Transform(int i, int j, double score)
{
I=i;
J=j;
Score=score;
}
}
I've not bothered looking at the efficiency of this but I strongly suspect its better than some other solutions because at each stage all I need to do is check my set of transforms - working out how many of these there are compared to "n" is non-trivial. It is clearly related since the further you go the more transforms there are but the number of new transforms becomes vanishingly small at higher numbers so maybe its just O(1). This O stuff always confused me though. ;-)
One advantage over other solutions is that it allows you to calculate i,j without needing to calculate the product allowing me to work out what the sequence would be without needing to calculate the actual number itself.
For what its worth after the first 230 nunmbers (when int runs out of space) I had 9 transforms to check each time. And given its only my total that overflowed I ran if for the first million results and got to i=5191 and j=354. The number of transforms was 23. The size of this number in the list is approximately 10^1810. Runtime to get to this level was approx 5 seconds.
P.S. If you like this answer please feel free to tell your friends since I spent ages on this and a few +1s would be nice compensation. Or in fact just comment to tell me what you think. :)
I'm sure everyone one's might have got the answer by now, but just wanted to give a direction to this solution..
It's a Ctrl C + Ctrl V from
http://www.careercup.com/question?id=16378662
void print(int N)
{
int arr[N];
arr[0] = 1;
int i = 0, j = 0, k = 1;
int numJ, numI;
int num;
for(int count = 1; count < N; )
{
numI = arr[i] * 2;
numJ = arr[j] * 5;
if(numI < numJ)
{
num = numI;
i++;
}
else
{
num = numJ;
j++;
}
if(num > arr[k-1])
{
arr[k] = num;
k++;
count++;
}
}
for(int counter = 0; counter < N; counter++)
{
printf("%d ", arr[counter]);
}
}
The question as put to me was to return an infinite set of solutions. I pondered the use of trees, but felt there was a problem with figuring out when to harvest and prune the tree, given an infinite number of values for i & j. I realized that a sieve algorithm could be used. Starting from zero, determine whether each positive integer had values for i and j. This was facilitated by turning answer = (2^i)*(2^j) around and solving for i instead. That gave me i = log2 (answer/ (5^j)). Here is the code:
class Program
{
static void Main(string[] args)
{
var startTime = DateTime.Now;
int potential = 0;
do
{
if (ExistsIandJ(potential))
Console.WriteLine("{0}", potential);
potential++;
} while (potential < 100000);
Console.WriteLine("Took {0} seconds", DateTime.Now.Subtract(startTime).TotalSeconds);
}
private static bool ExistsIandJ(int potential)
{
// potential = (2^i)*(5^j)
// 1 = (2^i)*(5^j)/potential
// 1/(2^1) = (5^j)/potential or (2^i) = potential / (5^j)
// i = log2 (potential / (5^j))
for (var j = 0; Math.Pow(5,j) <= potential; j++)
{
var i = Math.Log(potential / Math.Pow(5, j), 2);
if (i == Math.Truncate(i))
return true;
}
return false;
}
}

Finding the number of digits of an integer

What is the best method to find the number of digits of a positive integer?
I have found this 3 basic methods:
conversion to string
String s = new Integer(t).toString();
int len = s.length();
for loop
for(long long int temp = number; temp >= 1;)
{
temp/=10;
decimalPlaces++;
}
logaritmic calculation
digits = floor( log10( number ) ) + 1;
where you can calculate log10(x) = ln(x) / ln(10) in most languages.
First I thought the string method is the dirtiest one but the more I think about it the more I think it's the fastest way. Or is it?
There's always this method:
n = 1;
if ( i >= 100000000 ) { n += 8; i /= 100000000; }
if ( i >= 10000 ) { n += 4; i /= 10000; }
if ( i >= 100 ) { n += 2; i /= 100; }
if ( i >= 10 ) { n += 1; }
Well the correct answer would be to measure it - but you should be able to make a guess about the number of CPU steps involved in converting strings and going through them looking for an end marker
Then think how many FPU operations/s your processor can do and how easy it is to calculate a single log.
edit: wasting some more time on a monday morning :-)
String s = new Integer(t).toString();
int len = s.length();
One of the problems with high level languages is guessing how much work the system is doing behind the scenes of an apparently simple statement. Mandatory Joel link
This statement involves allocating memory for a string, and possibly a couple of temporary copies of a string. It must parse the integer and copy the digits of it into a string, possibly having to reallocate and move the existing memory if the number is large. It might have to check a bunch of locale settings to decide if your country uses "," or ".", it might have to do a bunch of unicode conversions.
Then finding the length has to scan the entire string, again considering unicode and any local specific settings such as - are you in a right->left language?.
Alternatively:
digits = floor( log10( number ) ) + 1;
Just because this would be harder for you to do on paper doesn't mean it's hard for a computer! In fact a good rule in high performance computing seems to have been - if something is hard for a human (fluid dynamics, 3d rendering) it's easy for a computer, and if it's easy for a human (face recognition, detecting a voice in a noisy room) it's hard for a computer!
You can generally assume that the builtin maths functions log/sin/cos etc - have been an important part of computer design for 50years. So even if they don't map directly into a hardware function in the FPU you can bet that the alternative implementation is pretty efficient.
I don't know, and the answer may well be different depending on how your individual language is implemented.
So, stress test it! Implement all three solutions. Run them on 1 through 1,000,000 (or some other huge set of numbers that's representative of the numbers the solution will be running against) and time how long each of them takes.
Pit your solutions against one another and let them fight it out. Like intellectual gladiators. Three algorithms enter! One algorithm leaves!
Test conditions
Decimal numeral system
Positive integers
Up to 10 digits
Language: ActionScript 3
Results
digits: [1,10],
no. of runs: 1,000,000
random sample: 8777509,40442298,477894,329950,513,91751410,313,3159,131309,2
result: 7,8,6,6,3,8,3,4,6,1
CONVERSION TO STRING: 724ms
LOGARITMIC CALCULATION: 349ms
DIV 10 ITERATION: 229ms
MANUAL CONDITIONING: 136ms
Note: Author refrains from making any conclusions for numbers with more than 10 digits.
Script
package {
import flash.display.MovieClip;
import flash.utils.getTimer;
/**
* #author Daniel
*/
public class Digits extends MovieClip {
private const NUMBERS : uint = 1000000;
private const DIGITS : uint = 10;
private var numbers : Array;
private var digits : Array;
public function Digits() {
// ************* NUMBERS *************
numbers = [];
for (var i : int = 0; i < NUMBERS; i++) {
var number : Number = Math.floor(Math.pow(10, Math.random()*DIGITS));
numbers.push(number);
}
trace('Max digits: ' + DIGITS + ', count of numbers: ' + NUMBERS);
trace('sample: ' + numbers.slice(0, 10));
// ************* CONVERSION TO STRING *************
digits = [];
var time : Number = getTimer();
for (var i : int = 0; i < numbers.length; i++) {
digits.push(String(numbers[i]).length);
}
trace('\nCONVERSION TO STRING - time: ' + (getTimer() - time));
trace('sample: ' + digits.slice(0, 10));
// ************* LOGARITMIC CALCULATION *************
digits = [];
time = getTimer();
for (var i : int = 0; i < numbers.length; i++) {
digits.push(Math.floor( Math.log( numbers[i] ) / Math.log(10) ) + 1);
}
trace('\nLOGARITMIC CALCULATION - time: ' + (getTimer() - time));
trace('sample: ' + digits.slice(0, 10));
// ************* DIV 10 ITERATION *************
digits = [];
time = getTimer();
var digit : uint = 0;
for (var i : int = 0; i < numbers.length; i++) {
digit = 0;
for(var temp : Number = numbers[i]; temp >= 1;)
{
temp/=10;
digit++;
}
digits.push(digit);
}
trace('\nDIV 10 ITERATION - time: ' + (getTimer() - time));
trace('sample: ' + digits.slice(0, 10));
// ************* MANUAL CONDITIONING *************
digits = [];
time = getTimer();
var digit : uint;
for (var i : int = 0; i < numbers.length; i++) {
var number : Number = numbers[i];
if (number < 10) digit = 1;
else if (number < 100) digit = 2;
else if (number < 1000) digit = 3;
else if (number < 10000) digit = 4;
else if (number < 100000) digit = 5;
else if (number < 1000000) digit = 6;
else if (number < 10000000) digit = 7;
else if (number < 100000000) digit = 8;
else if (number < 1000000000) digit = 9;
else if (number < 10000000000) digit = 10;
digits.push(digit);
}
trace('\nMANUAL CONDITIONING: ' + (getTimer() - time));
trace('sample: ' + digits.slice(0, 10));
}
}
}
This algorithm might be good also, assuming that:
Number is integer and binary encoded (<< operation is cheap)
We don't known number boundaries
var num = 123456789L;
var len = 0;
var tmp = 1L;
while(tmp < num)
{
len++;
tmp = (tmp << 3) + (tmp << 1);
}
This algorithm, should have speed comparable to for-loop (2) provided, but a bit faster due to (2 bit-shifts, add and subtract, instead of division).
As for Log10 algorithm, it will give you only approximate answer (that is close to real, but still), since analytic formula for computing Log function have infinite loop and can't be calculated precisely Wiki.
Use the simplest solution in whatever programming language you're using. I can't think of a case where counting digits in an integer would be the bottleneck in any (useful) program.
C, C++:
char buffer[32];
int length = sprintf(buffer, "%ld", (long)123456789);
Haskell:
len = (length . show) 123456789
JavaScript:
length = String(123456789).length;
PHP:
$length = strlen(123456789);
Visual Basic (untested):
length = Len(str(123456789)) - 1
conversion to string: This will have to iterate through each digit, find the character that maps to the current digit, add a character to a collection of characters. Then get the length of the resulting String object. Will run in O(n) for n=#digits.
for-loop: will perform 2 mathematical operation: dividing the number by 10 and incrementing a counter. Will run in O(n) for n=#digits.
logarithmic: Will call log10 and floor, and add 1. Looks like O(1) but I'm not really sure how fast the log10 or floor functions are. My knowledge of this sort of things has atrophied with lack of use so there could be hidden complexity in these functions.
So I guess it comes down to: is looking up digit mappings faster than multiple mathematical operations or whatever is happening in log10? The answer will probably vary. There could be platforms where the character mapping is faster, and others where doing the calculations is faster. Also to keep in mind is that the first method will creats a new String object that only exists for the purpose of getting the length. This will probably use more memory than the other two methods, but it may or may not matter.
You can obviously eliminate the method 1 from the competition, because the atoi/toString algorithm it uses would be similar to method 2.
Method 3's speed depends on whether the code is being compiled for a system whose instruction set includes log base 10.
For very large integers, the log method is much faster. For instance, with a 2491327 digit number (the 11920928th Fibonacci number, if you care), Python takes several minutes to execute the divide-by-10 algorithm, and milliseconds to execute 1+floor(log(n,10)).
import math
def numdigits(n):
return ( int(math.floor(math.log10(n))) + 1 )
Regarding the three methods you propose for "determining the number of digits necessary to represent a given number in a given base", I don't like any of them, actually; I prefer the method I give below instead.
Re your method #1 (strings): Anything involving converting back-and-forth between strings and numbers is usually very slow.
Re your method #2 (temp/=10): This is fatally flawed because it assumes that x/10 always means "x divided by 10". But in many programming languages (eg: C, C++), if "x" is an integer type, then "x/10" means "integer division", which isn't the same thing as floating-point division, and it introduces round-off errors at every iteration, and they accumulate in a recursive formula such as your solution #2 uses.
Re your method #3 (logs): it's buggy for large numbers (at least in C, and probably other languages as well), because floating-point data types tend not to be as precise as 64-bit integers.
Hence I dislike all 3 of those methods: #1 works but is slow, #2 is broken, and #3 is buggy for large numbers. Instead, I prefer this, which works for numbers from 0 up to about 18.44 quintillion:
unsigned NumberOfDigits (uint64_t Number, unsigned Base)
{
unsigned Digits = 1;
uint64_t Power = 1;
while ( Number / Power >= Base )
{
++Digits;
Power *= Base;
}
return Digits;
}
Keep it simple:
long long int a = 223452355415634664;
int x;
for (x = 1; a >= 10; x++)
{
a = a / 10;
}
printf("%d", x);
You can use a recursive solution instead of a loop, but somehow similar:
#tailrec
def digits (i: Long, carry: Int=1) : Int = if (i < 10) carry else digits (i/10, carry+1)
digits (8345012978643L)
With longs, the picture might change - measure small and long numbers independently against different algorithms, and pick the appropriate one, depending on your typical input. :)
Of course nothing beats a switch:
switch (x) {
case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: case 8: case 9: return 1;
case 10: case 11: // ...
case 99: return 2;
case 100: // you get the point :)
default: return 10; // switch only over int
}
except a plain-o-array:
int [] size = {1,1,1,1,1,1,1,1,1,2,2,2,2,2,... };
int x = 234561798;
return size [x];
Some people will tell you to optimize the code-size, but yaknow, premature optimization ...
log(x,n)-mod(log(x,n),1)+1
Where x is a the base and n is the number.
Here is the measurement in Swift 4.
Algorithms code:
extension Int {
var numberOfDigits0: Int {
var currentNumber = self
var n = 1
if (currentNumber >= 100000000) {
n += 8
currentNumber /= 100000000
}
if (currentNumber >= 10000) {
n += 4
currentNumber /= 10000
}
if (currentNumber >= 100) {
n += 2
currentNumber /= 100
}
if (currentNumber >= 10) {
n += 1
}
return n
}
var numberOfDigits1: Int {
return String(self).count
}
var numberOfDigits2: Int {
var n = 1
var currentNumber = self
while currentNumber > 9 {
n += 1
currentNumber /= 10
}
return n
}
}
Measurement code:
var timeInterval0 = Date()
for i in 0...10000 {
i.numberOfDigits0
}
print("timeInterval0: \(Date().timeIntervalSince(timeInterval0))")
var timeInterval1 = Date()
for i in 0...10000 {
i.numberOfDigits1
}
print("timeInterval1: \(Date().timeIntervalSince(timeInterval1))")
var timeInterval2 = Date()
for i in 0...10000 {
i.numberOfDigits2
}
print("timeInterval2: \(Date().timeIntervalSince(timeInterval2))")
Output
timeInterval0: 1.92149806022644
timeInterval1: 0.557608008384705
timeInterval2: 2.83262193202972
On this measurement basis String conversion is the best option for the Swift language.
I was curious after seeing #daniel.sedlacek results so I did some testing using Swift for numbers having more than 10 digits. I ran the following script in the playground.
let base = [Double(100090000000), Double(100050000), Double(100050000), Double(100000200)]
var rar = [Double]()
for i in 1...10 {
for d in base {
let v = d*Double(arc4random_uniform(UInt32(1000000000)))
rar.append(v*Double(arc4random_uniform(UInt32(1000000000))))
rar.append(Double(1)*pow(1,Double(i)))
}
}
print(rar)
var timeInterval = NSDate().timeIntervalSince1970
for d in rar {
floor(log10(d))
}
var newTimeInterval = NSDate().timeIntervalSince1970
print(newTimeInterval-timeInterval)
timeInterval = NSDate().timeIntervalSince1970
for d in rar {
var c = d
while c > 10 {
c = c/10
}
}
newTimeInterval = NSDate().timeIntervalSince1970
print(newTimeInterval-timeInterval)
Results of 80 elements
0.105069875717163 for floor(log10(x))
0.867973804473877 for div 10 iterations
Adding one more approach to many of the already mentioned approaches.
The idea is to use binarySearch on an array containing the range of integers based on the digits of the int data type.
The signature of Java Arrays class binarySearch is :
binarySearch(dataType[] array, dataType key) which returns the index of the search key, if it is contained in the array; otherwise, (-(insertion point) – 1).
The insertion point is defined as the point at which the key would be inserted into the array.
Below is the implementation:
static int [] digits = {9,99,999,9999,99999,999999,9999999,99999999,999999999,Integer.MAX_VALUE};
static int digitsCounter(int N)
{
int digitCount = Arrays.binarySearch(digits , N<0 ? -N:N);
return 1 + (digitCount < 0 ? ~digitCount : digitCount);
}
Please note that the above approach only works for : Integer.MIN_VALUE <= N <= Integer.MAX_VALUE, but can be easily extended for Long data type by adding more values to the digits array.
For example,
I) for N = 555, digitCount = Arrays.binarySearch(digits , 555) returns -3 (-(2)-1) as it's not present in the array but is supposed to be inserted at point 2 between 9 & 99 like [9, 55, 99].
As the index we got is negative we need to take the bitwise compliment of the result.
At last, we need to add 1 to the result to get the actual number of digits in the number N.
In Swift 5.x, you get the number of digit in integer as below :
Convert to string and then count number of character in string
let nums = [1, 7892, 78, 92, 90]
for i in nums {
let ch = String(describing: i)
print(ch.count)
}
Calculating the number of digits in integer using loop
var digitCount = 0
for i in nums {
var tmp = i
while tmp >= 1 {
tmp /= 10
digitCount += 1
}
print(digitCount)
}
let numDigits num =
let num = abs(num)
let rec numDigitsInner num =
match num with
| num when num < 10 -> 1
| _ -> 1 + numDigitsInner (num / 10)
numDigitsInner num
F# Version, without casting to a string.

A problem from a programming competition... Digit Sums

I need help solving problem N from this earlier competition:
Problem N: Digit Sums
Given 3 positive integers A, B and C,
find how many positive integers less
than or equal to A, when expressed in
base B, have digits which sum to C.
Input will consist of a series of
lines, each containing three integers,
A, B and C, 2 ≤ B ≤ 100, 1 ≤ A, C ≤
1,000,000,000. The numbers A, B and C
are given in base 10 and are separated
by one or more blanks. The input is
terminated by a line containing three
zeros.
Output will be the number of numbers,
for each input line (it must be given
in base 10).
Sample input
100 10 9
100 10 1
750000 2 2
1000000000 10 40
100000000 100 200
0 0 0
Sample output
10
3
189
45433800
666303
The relevant rules:
Read all input from the keyboard, i.e. use stdin, System.in, cin or equivalent. Input will be redirected from a file to form the input to your submission.
Write all output to the screen, i.e. use stdout, System.out, cout or equivalent. Do not write to stderr. Do NOT use, or even include, any module that allows direct manipulation of the screen, such as conio, Crt or anything similar. Output from your program is redirected to a file for later checking. Use of direct I/O means that such output is not redirected and hence cannot be checked. This could mean that a correct program is rejected!
Unless otherwise stated, all integers in the input will fit into a standard 32-bit computer word. Adjacent integers on a line will be separated by one or more spaces.
Of course, it's fair to say that I should learn more before trying to solve this, but i'd really appreciate it if someone here told me how it's done.
Thanks in advance, John.
Other people pointed out trivial solution: iterate over all numbers from 1 to A. But this problem, actually, can be solved in nearly constant time: O(length of A), which is O(log(A)).
Code provided is for base 10. Adapting it for arbitrary base is trivial.
To reach above estimate for time, you need to add memorization to recursion. Let me know if you have questions about that part.
Now, recursive function itself. Written in Java, but everything should work in C#/C++ without any changes. It's big, but mostly because of comments where I try to clarify algorithm.
// returns amount of numbers strictly less than 'num' with sum of digits 'sum'
// pay attention to word 'strictly'
int count(int num, int sum) {
// no numbers with negative sum of digits
if (sum < 0) {
return 0;
}
int result = 0;
// imagine, 'num' == 1234
// let's check numbers 1233, 1232, 1231, 1230 manually
while (num % 10 > 0) {
--num;
// check if current number is good
if (sumOfDigits(num) == sum) {
// one more result
++result;
}
}
if (num == 0) {
// zero reached, no more numbers to check
return result;
}
num /= 10;
// Using example above (1234), now we're left with numbers
// strictly less than 1230 to check (1..1229)
// It means, any number less than 123 with arbitrary digit appended to the right
// E.g., if this digit in the right (last digit) is 3,
// then sum of the other digits must be "sum - 3"
// and we need to add to result 'count(123, sum - 3)'
// let's iterate over all possible values of last digit
for (int digit = 0; digit < 10; ++digit) {
result += count(num, sum - digit);
}
return result;
}
Helper function
// returns sum of digits, plain and simple
int sumOfDigits(int x) {
int result = 0;
while (x > 0) {
result += x % 10;
x /= 10;
}
return result;
}
Now, let's write a little tester
int A = 12345;
int C = 13;
// recursive solution
System.out.println(count(A + 1, C));
// brute-force solution
int total = 0;
for (int i = 1; i <= A; ++i) {
if (sumOfDigits(i) == C) {
++total;
}
}
System.out.println(total);
You can write more comprehensive tester checking all values of A, but overall solution seems to be correct. (I tried several random A's and C's.)
Don't forget, you can't test solution for A == 1000000000 without memorization: it'll run too long. But with memorization, you can test it even for A == 10^1000.
edit
Just to prove a concept, poor man's memorization. (in Java, in other languages hashtables are declared differently) But if you want to learn something, it might be better to try to do it yourself.
// hold values here
private Map<String, Integer> mem;
int count(int num, int sum) {
// no numbers with negative sum of digits
if (sum < 0) {
return 0;
}
String key = num + " " + sum;
if (mem.containsKey(key)) {
return mem.get(key);
}
// ...
// continue as above...
// ...
mem.put(key, result);
return result;
}
Here's the same memoized recursive solution that Rybak posted, but with a simpler implementation, in my humble opinion:
HashMap<String, Integer> cache = new HashMap<String, Integer>();
int count(int bound, int base, int sum) {
// No negative digit sums.
if (sum < 0)
return 0;
// Handle one digit case.
if (bound < base)
return (sum <= bound) ? 1 : 0;
String key = bound + " " + sum;
if (cache.containsKey(key))
return cache.get(key);
int count = 0;
for (int digit = 0; digit < base; digit++)
count += count((bound - digit) / base, base, sum - digit);
cache.put(key, count);
return count;
}
This is not the complete solution (no input parsing). To get the number in base B, repeatedly take the modulo B, and then divide by B until the result is 0. This effectively computes the base-B digit from the right, and then shifts the number right.
int A,B,C; // from input
for (int x=1; x<A; x++)
{
int sumDigits = 0;
int v = x;
while (v!=0) {
sumDigits += (v % B);
v /= B;
}
if (sumDigits==C)
cout << x;
}
This is a brute force approach. It may be possible to compute this quicker by determining which sets of base B digits add up to C, arranging these in all permutations that are less than A, and then working backwards from that to create the original number.
Yum.
Try this:
int number, digitSum, resultCounter = 0;
for(int i=1; i<=A, i++)
{
number = i; //to avoid screwing up our counter
digitSum = 0;
while(number > 1)
{
//this is the next "digit" of the number as it would be in base B;
//works with any base including 10.
digitSum += (number % B);
//remove this digit from the number, square the base, rinse, repeat
number /= B;
}
digitSum += number;
//Does the sum match?
if(digitSum == C)
resultCounter++;
}
That's your basic algorithm for one line. Now you wrap this in another For loop for each input line you received, preceded by the input collection phase itself. This process can be simplified, but I don't feel like coding your entire answer to see if my algorithm works, and this looks right whereas the simpler tricks are harder to pass by inspection.
The way this works is by modulo dividing by powers of the base. Simple example, 1234 in base 10:
1234 % 10 = 4
1234 / 10 = 123 //integer division truncates any fraction
123 % 10 = 3 //sum is 7
123 / 10 = 12
12 % 10 = 2 //sum is 9
12 / 10 = 1 //end condition, add this and the sum is 10
A harder example to figure out by inspection would be the same number in base 12:
1234 % 12 = 10 //you can call it "A" like in hex, but we need a sum anyway
1234 / 12 = 102
102 % 12 = 6 // sum 16
102/12 = 8
8 % 12 = 8 //sum 24
8 / 12 = 0 //end condition, sum still 24.
So 1234 in base 12 would be written 86A. Check the math:
8*12^2 + 6*12 + 10 = 1152 + 72 + 10 = 1234
Have fun wrapping the rest of the code around this.

Resources