Collision Points in GJK - algorithm

Is there a way to modify a Gilbert-Johnson-Keerthi Algorithm so it finds points of the collision between two bodies instead of a true/false result ? From what I've understood the received distance value could be used to find these points. I searched the web but didn't find any hints.

What you are asking for is not well-posed. If they are colliding, then a point of intersection is undefined -- since the intersection is actually a region of overlap and thus could be any number of possible points. Instead, you should think about a "point of intersection" as a coordinate in space-time, (dx,dy,dz,t), representing the time of impact, together with a translation vector between the two bodies giving you their relative configurations.
One way to modify GJK to compute a space-time intersection is to do a binary search over the swept volume to find the moment of time right before impact. Using this data, you can compute a separating axis and corresponding extremal points for both bodies, which gives you a close approximation of the point of impact. This approach can also be fast if you reuse the simplices from previous iterations of the search to speed up subsequent tests. Christer Ercisson has some notes on this technique here: http://realtimecollisiondetection.net/pubs/SIGGRAPH04_Ericson_GJK_notes.pdf

This paper covers your question i believe, and is up to date. i'm don't have anycode. and not going to re-explain it, but, the author also has a pres up on YouTube explaining it. working on the code now, and their is very little examples. but this is what you want. you can use the "less effective" way mentioned. in the paper as a. as it will work just fine for your work. unless you goal is extremely high performance.
"Improving the GJK algorithm for faster and more reliable distance queries between convex objects"
MATTIA MONTANARI and NIK PETRINIC University of Oxford
ETTORE BARBIERI Queen Mary University of London
https://ora.ox.ac.uk/objects/uuid:69c743d9-73de-4aff-8e6f-b4dd7c010907/download_file?safe_filename=GJK.PDF&file_format=application%2Fpdf&type_of_work=Journal+article

Related

How to easily compare 2 lines made out of points in space?

I'd like to compare ordered points in space to recognize a gesture. Iam recording users hand position as he is moving it in space. Iam only looking to create a simple proof of concept. Seems like AI is the best way to go for the end product, but before I dwell into that, is there a good algorithm to compare two lines made of points in space? Ideally if it would give me a similarity percentage.
The issues Iam having with a naive implementation of calculating distances between each pair of points is that the points don't neceserily align. The user can start a few points early or too late and the ideal alignment is broken. Any tips?
My solution to it is just brute force. I made a regular linear comparison. Then I run it through variable array lengths (excluding the first few points if the player starts the gesture too early), only comparing up to the shortest array. After that there is a second loop of cheking the distance between rotated variations of the recorded gesture. The performance is ofcourse horrible, but through some optimization it's quite usable. Not checking the rest of the array if it's already too far, for example. It's also very easily threadable.

What string distance algorithm is best for measuring typing accuracy?

I'm trying to write a function that detects how accurate the user typed a particular phrase/sentence/word/words. My objective is to build an app to train the user's typing accuracy of certain phrases.
My initial instinct is to use the basic levenshtein distance algorithm (mostly because that's the only algo I knew off the top of my head).
But after a bit more research, I saw that Jaro-Winkler is a slightly more interesting algorithm because of its consideration for transpositions.
I even found a link that talks about the differences between these algorithms:
Difference between Jaro-Winkler and Levenshtein distance?
Having read all that, in addition to the respective Wikipedia posts, I am still a little clueless as to which algorithm fits my objective the best.
Since you are grading the quality of typing, and you want to train the student to make zero mistakes, you should use Levenshtein distance, because it is less forgiving.
Additionally, Levenshtein score is more intuitive to understand, and easier to represent graphically, than the Jaro-Winkler results. You can modify Levenshtein algorithm to report insertions, deletions, and mistypes separately, and show end-users a list of corrections. Jaro-Winkler, on the other hand, gives you a score that is hard to show to end-user, because penalties for misspelling in the middle are lower than penalties at the end.
Slightly tongue-in-cheek, but only slightly: build a generative model for typing that gives high (prior) probability to hitting the right letter, and apportion out some probabilities for hitting two neighboring keys at once, two keys from different hands in the wrong order, two keys from the same hand in the wrong order, a key near the correct one, a key far from the correct one, etc. Or perhaps less ad-hoc: give your model a probability for a given sequence of keypresses given the current pair of keys needed to continue the passage. You could do a lot of things with such a model; for example, you could get a "distance"-like metric by giving a likelihood score for the learner's actual performance. But even better would be to give them a report summarizing which kinds of errors they make the most -- after all, why boil their performance down to a single number when many numbers would do? Bonus points if you learn the probabilities for the different kinds of errors from a large corpus of real typists' work.
I mostly agree with the answer given by dasblinkenlight, however, would suggest to use the Damerau-Levenshtein distance instead of only Levenshtein, that is, including transpositions. Transpositions are fairly frequent and easy to make while typing, and there is no good reason why they should incur a double distance penalty with respect to the other possible errors (insertions, deletions, and substitutions).

How to simplify a spline?

I have an interesting algorithmic challenge in a project I am working on. I have a sorted list of coordinate points pointing at buildings on either side of a street that, sufficiently zoomed in, looks like this:
I would like to take this zigzag and smooth it out to linearize the underlying street.
I can think of a couple of solutions:
Calculate centroids using rolling averages of six or so points, and use those.
Spline regression.
Is there a better or best way to approach this problem? (I am using Python 3.5)
Based on your description and your comments, you are looking for a line simplification algorithms.
Ramer-Doublas algorithm (suggested in the comment) is most probably the most well-known algorithm in this family, but there are many more.
For example Visvalingam’s algorithm works by removing the point with the smallest change, which is calculated by the smallest square of the triangle. This makes it super easy to code and intuitively understandable. If it is hard to read research paper, you can read this easy article.
Other algorithms in this family are:
Opheim
Lang
Zhao
Read about them, understand what are they trying to minify and select the most suitable for you.
Dali's post correctly surmises that a line simplification algorithm is useful for this task. Before posting this question I actually examined a few such algorithms but wasn't quite comfortable with them because even though they resulted in the simplified geometry that I liked, they didn't directly address the issue I had of points being on either side of the feature and never in the middle.
Thus I used a two-step process:
I computed the centroids of the polyline by using a rolling average of the coordinates of the five surrounding points. This didn't help much with smoothing the function but it did mostly succeed in remapping them to the middle of the street.
I applied Visvalingam’s algorithm to the new polyline, with n=20 points specified (using this wonderful implementation).
The result wasn't quite perfect but it was good enough:
Thanks for the help everyone!

Fastest k nearest neighbor with arbitrary metric?

The gotcha with this question is "arbitrary metric". If you don't know what that is, it's just the way to measure distance between points. (In the "real" world, the 1-dimensinal distance is just the absolute magnitude of the difference between the two points).
Enough of the pre-lims. I'm trying to find a fast k nearest neighbor algorithm with these properties:
works on an arbitrary metric
somewhat easy to implement
optimized for finding the distance of a set of points to another set of points
Wikipedia gives a list of algorithms and approaches but nothing on implementation.
UPDATE: the metric is the cosine similarity, which does not satisfy the triangle inquality. However, it seems that I can use the "angular similarity" (as per Wikipedia).
UPDATE: the use case is natural language processing. "Vectors" are the "context" of a given word, represented by binary properties (ex: the title of the document). So while there may be only a few properties (right now I'm just using 3), each vector has arbitrarily large dimension (in the title example, each title in the database would correspond to a dimension in the vector).
UPDATE: For the curious, I'm implementing this algorithm:
http://josquin.cs.depaul.edu/~mramezani/papers/IEEEIS.pdf
UPDATE: The algorithm will need to find nearest neighbors for about a dozen points from about 100s of points. The average dimension will probably be very large, say 50, (I really don't know yet). And yes, I'm interested in an algorithm, not a library. And yes, estimates are probably good enough.
I would advice you to go for Locality-sensitive hashing (LSH), which is in trend right now. It reduces the dimensionality of high-dimensional data, but I am not sure if your dimension will go well with that algorithm. See the Wikipedia page for more.
You can use your own metric, but in general you can do that in many algorithms. Hope this helps.
You could go for RKD trees, a forest of them, but maybe this is too much now.

Nearest neighbors in high-dimensional data?

I have asked a question a few days back on how to find the nearest neighbors for a given vector. My vector is now 21 dimensions and before I proceed further, because I am not from the domain of Machine Learning nor Math, I am beginning to ask myself some fundamental questions:
Is Euclidean distance a good metric for finding the nearest neighbors in the first place? If not, what are my options?
In addition, how does one go about deciding the right threshold for determining the k-neighbors? Is there some analysis that can be done to figure this value out?
Previously, I was suggested to use kd-Trees but the Wikipedia page clearly says that for high-dimensions, kd-Tree is almost equivalent to a brute-force search. In that case, what is the best way to find nearest-neighbors in a million point dataset efficiently?
Can someone please clarify the some (or all) of the above questions?
I currently study such problems -- classification, nearest neighbor searching -- for music information retrieval.
You may be interested in Approximate Nearest Neighbor (ANN) algorithms. The idea is that you allow the algorithm to return sufficiently near neighbors (perhaps not the nearest neighbor); in doing so, you reduce complexity. You mentioned the kd-tree; that is one example. But as you said, kd-tree works poorly in high dimensions. In fact, all current indexing techniques (based on space partitioning) degrade to linear search for sufficiently high dimensions [1][2][3].
Among ANN algorithms proposed recently, perhaps the most popular is Locality-Sensitive Hashing (LSH), which maps a set of points in a high-dimensional space into a set of bins, i.e., a hash table [1][3]. But unlike traditional hashes, a locality-sensitive hash places nearby points into the same bin.
LSH has some huge advantages. First, it is simple. You just compute the hash for all points in your database, then make a hash table from them. To query, just compute the hash of the query point, then retrieve all points in the same bin from the hash table.
Second, there is a rigorous theory that supports its performance. It can be shown that the query time is sublinear in the size of the database, i.e., faster than linear search. How much faster depends upon how much approximation we can tolerate.
Finally, LSH is compatible with any Lp norm for 0 < p <= 2. Therefore, to answer your first question, you can use LSH with the Euclidean distance metric, or you can use it with the Manhattan (L1) distance metric. There are also variants for Hamming distance and cosine similarity.
A decent overview was written by Malcolm Slaney and Michael Casey for IEEE Signal Processing Magazine in 2008 [4].
LSH has been applied seemingly everywhere. You may want to give it a try.
[1] Datar, Indyk, Immorlica, Mirrokni, "Locality-Sensitive Hashing Scheme Based on p-Stable Distributions," 2004.
[2] Weber, Schek, Blott, "A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces," 1998.
[3] Gionis, Indyk, Motwani, "Similarity search in high dimensions via hashing," 1999.
[4] Slaney, Casey, "Locality-sensitive hashing for finding nearest neighbors", 2008.
I. The Distance Metric
First, the number of features (columns) in a data set is not a factor in selecting a distance metric for use in kNN. There are quite a few published studies directed to precisely this question, and the usual bases for comparison are:
the underlying statistical
distribution of your data;
the relationship among the features
that comprise your data (are they
independent--i.e., what does the
covariance matrix look like); and
the coordinate space from which your
data was obtained.
If you have no prior knowledge of the distribution(s) from which your data was sampled, at least one (well documented and thorough) study concludes that Euclidean distance is the best choice.
YEuclidean metric used in mega-scale Web Recommendation Engines as well as in current academic research. Distances calculated by Euclidean have intuitive meaning and the computation scales--i.e., Euclidean distance is calculated the same way, whether the two points are in two dimension or in twenty-two dimension space.
It has only failed for me a few times, each of those cases Euclidean distance failed because the underlying (cartesian) coordinate system was a poor choice. And you'll usually recognize this because for instance path lengths (distances) are no longer additive--e.g., when the metric space is a chessboard, Manhattan distance is better than Euclidean, likewise when the metric space is Earth and your distances are trans-continental flights, a distance metric suitable for a polar coordinate system is a good idea (e.g., London to Vienna is is 2.5 hours, Vienna to St. Petersburg is another 3 hrs, more or less in the same direction, yet London to St. Petersburg isn't 5.5 hours, instead, is a little over 3 hrs.)
But apart from those cases in which your data belongs in a non-cartesian coordinate system, the choice of distance metric is usually not material. (See this blog post from a CS student, comparing several distance metrics by examining their effect on kNN classifier--chi square give the best results, but the differences are not large; A more comprehensive study is in the academic paper, Comparative Study of Distance Functions for Nearest Neighbors--Mahalanobis (essentially Euclidean normalized by to account for dimension covariance) was the best in this study.
One important proviso: for distance metric calculations to be meaningful, you must re-scale your data--rarely is it possible to build a kNN model to generate accurate predictions without doing this. For instance, if you are building a kNN model to predict athletic performance, and your expectation variables are height (cm), weight (kg), bodyfat (%), and resting pulse (beats per minute), then a typical data point might look something like this: [ 180.4, 66.1, 11.3, 71 ]. Clearly the distance calculation will be dominated by height, while the contribution by bodyfat % will be almost negligible. Put another way, if instead, the data were reported differently, so that bodyweight was in grams rather than kilograms, then the original value of 86.1, would be 86,100, which would have a large effect on your results, which is exactly what you don't want. Probably the most common scaling technique is subtracting the mean and dividing by the standard deviation (mean and sd refer calculated separately for each column, or feature in that data set; X refers to an individual entry/cell within a data row):
X_new = (X_old - mu) / sigma
II. The Data Structure
If you are concerned about performance of the kd-tree structure, A Voronoi Tessellation is a conceptually simple container but that will drastically improve performance and scales better than kd-Trees.
This is not the most common way to persist kNN training data, though the application of VT for this purpose, as well as the consequent performance advantages, are well-documented (see e.g. this Microsoft Research report). The practical significance of this is that, provided you are using a 'mainstream' language (e.g., in the TIOBE Index) then you ought to find a library to perform VT. I know in Python and R, there are multiple options for each language (e.g., the voronoi package for R available on CRAN)
Using a VT for kNN works like this::
From your data, randomly select w points--these are your Voronoi centers. A Voronoi cell encapsulates all neighboring points that are nearest to each center. Imagine if you assign a different color to each of Voronoi centers, so that each point assigned to a given center is painted that color. As long as you have a sufficient density, doing this will nicely show the boundaries of each Voronoi center (as the boundary that separates two colors.
How to select the Voronoi Centers? I use two orthogonal guidelines. After random selecting the w points, calculate the VT for your training data. Next check the number of data points assigned to each Voronoi center--these values should be about the same (given uniform point density across your data space). In two dimensions, this would cause a VT with tiles of the same size.That's the first rule, here's the second. Select w by iteration--run your kNN algorithm with w as a variable parameter, and measure performance (time required to return a prediction by querying the VT).
So imagine you have one million data points..... If the points were persisted in an ordinary 2D data structure, or in a kd-tree, you would perform on average a couple million distance calculations for each new data points whose response variable you wish to predict. Of course, those calculations are performed on a single data set. With a V/T, the nearest-neighbor search is performed in two steps one after the other, against two different populations of data--first against the Voronoi centers, then once the nearest center is found, the points inside the cell corresponding to that center are searched to find the actual nearest neighbor (by successive distance calculations) Combined, these two look-ups are much faster than a single brute-force look-up. That's easy to see: for 1M data points, suppose you select 250 Voronoi centers to tesselate your data space. On average, each Voronoi cell will have 4,000 data points. So instead of performing on average 500,000 distance calculations (brute force), you perform far lesss, on average just 125 + 2,000.
III. Calculating the Result (the predicted response variable)
There are two steps to calculating the predicted value from a set of kNN training data. The first is identifying n, or the number of nearest neighbors to use for this calculation. The second is how to weight their contribution to the predicted value.
W/r/t the first component, you can determine the best value of n by solving an optimization problem (very similar to least squares optimization). That's the theory; in practice, most people just use n=3. In any event, it's simple to run your kNN algorithm over a set of test instances (to calculate predicted values) for n=1, n=2, n=3, etc. and plot the error as a function of n. If you just want a plausible value for n to get started, again, just use n = 3.
The second component is how to weight the contribution of each of the neighbors (assuming n > 1).
The simplest weighting technique is just multiplying each neighbor by a weighting coefficient, which is just the 1/(dist * K), or the inverse of the distance from that neighbor to the test instance often multiplied by some empirically derived constant, K. I am not a fan of this technique because it often over-weights the closest neighbors (and concomitantly under-weights the more distant ones); the significance of this is that a given prediction can be almost entirely dependent on a single neighbor, which in turn increases the algorithm's sensitivity to noise.
A must better weighting function, which substantially avoids this limitation is the gaussian function, which in python, looks like this:
def weight_gauss(dist, sig=2.0) :
return math.e**(-dist**2/(2*sig**2))
To calculate a predicted value using your kNN code, you would identify the n nearest neighbors to the data point whose response variable you wish to predict ('test instance'), then call the weight_gauss function, once for each of the n neighbors, passing in the distance between each neighbor the the test point.This function will return the weight for each neighbor, which is then used as that neighbor's coefficient in the weighted average calculation.
What you are facing is known as the curse of dimensionality. It is sometimes useful to run an algorithm like PCA or ICA to make sure that you really need all 21 dimensions and possibly find a linear transformation which would allow you to use less than 21 with approximately the same result quality.
Update:
I encountered them in a book called Biomedical Signal Processing by Rangayyan (I hope I remember it correctly). ICA is not a trivial technique, but it was developed by researchers in Finland and I think Matlab code for it is publicly available for download. PCA is a more widely used technique and I believe you should be able to find its R or other software implementation. PCA is performed by solving linear equations iteratively. I've done it too long ago to remember how. = )
The idea is that you break up your signals into independent eigenvectors (discrete eigenfunctions, really) and their eigenvalues, 21 in your case. Each eigenvalue shows the amount of contribution each eigenfunction provides to each of your measurements. If an eigenvalue is tiny, you can very closely represent the signals without using its corresponding eigenfunction at all, and that's how you get rid of a dimension.
Top answers are good but old, so I'd like to add up a 2016 answer.
As said, in a high dimensional space, the curse of dimensionality lurks around the corner, making the traditional approaches, such as the popular k-d tree, to be as slow as a brute force approach. As a result, we turn our interest in Approximate Nearest Neighbor Search (ANNS), which in favor of some accuracy, speedups the process. You get a good approximation of the exact NN, with a good propability.
Hot topics that might be worthy:
Modern approaches of LSH, such as Razenshteyn's.
RKD forest: Forest(s) of Randomized k-d trees (RKD), as described in FLANN,
or in a more recent approach I was part of, kd-GeRaF.
LOPQ which stands for Locally Optimized Product Quantization, as described here. It is very similar to the new Babenko+Lemptitsky's approach.
You can also check my relevant answers:
Two sets of high dimensional points: Find the nearest neighbour in the other set
Comparison of the runtime of Nearest Neighbor queries on different data structures
PCL kd-tree implementation extremely slow
To answer your questions one by one:
No, euclidean distance is a bad metric in high dimensional space. Basically in high dimensions, data points have large differences between each other. That decreases the relative difference in the distance between a given data point and its nearest and farthest neighbour.
Lot of papers/research are there in high dimension data, but most of the stuff requires a lot of mathematical sophistication.
KD tree is bad for high dimensional data ... avoid it by all means
Here is a nice paper to get you started in the right direction. "When in Nearest Neighbour meaningful?" by Beyer et all.
I work with text data of dimensions 20K and above. If you want some text related advice, I might be able to help you out.
Cosine similarity is a common way to compare high-dimension vectors. Note that since it's a similarity not a distance, you'd want to maximize it not minimize it. You can also use a domain-specific way to compare the data, for example if your data was DNA sequences, you could use a sequence similarity that takes into account probabilities of mutations, etc.
The number of nearest neighbors to use varies depending on the type of data, how much noise there is, etc. There are no general rules, you just have to find what works best for your specific data and problem by trying all values within a range. People have an intuitive understanding that the more data there is, the fewer neighbors you need. In a hypothetical situation where you have all possible data, you only need to look for the single nearest neighbor to classify.
The k Nearest Neighbor method is known to be computationally expensive. It's one of the main reasons people turn to other algorithms like support vector machines.
kd-trees indeed won't work very well on high-dimensional data. Because the pruning step no longer helps a lot, as the closest edge - a 1 dimensional deviation - will almost always be smaller than the full-dimensional deviation to the known nearest neighbors.
But furthermore, kd-trees only work well with Lp norms for all I know, and there is the distance concentration effect that makes distance based algorithms degrade with increasing dimensionality.
For further information, you may want to read up on the curse of dimensionality, and the various variants of it (there is more than one side to it!)
I'm not convinced there is a lot use to just blindly approximating Euclidean nearest neighbors e.g. using LSH or random projections. It may be necessary to use a much more fine tuned distance function in the first place!
A lot depends on why you want to know the nearest neighbors. You might look into the mean shift algorithm http://en.wikipedia.org/wiki/Mean-shift if what you really want is to find the modes of your data set.
I think cosine on tf-idf of boolean features would work well for most problems. That's because its time-proven heuristic used in many search engines like Lucene. Euclidean distance in my experience shows bad results for any text-like data. Selecting different weights and k-examples can be done with training data and brute-force parameter selection.
iDistance is probably the best for exact knn retrieval in high-dimensional data. You can view it as an approximate Voronoi tessalation.
I've experienced the same problem and can say the following.
Euclidean distance is a good distance metric, however it's computationally more expensive than the Manhattan distance, and sometimes yields slightly poorer results, thus, I'd choose the later.
The value of k can be found empirically. You can try different values and check the resulting ROC curves or some other precision/recall measure in order to find an acceptable value.
Both Euclidean and Manhattan distances respect the Triangle inequality, thus you can use them in metric trees. Indeed, KD-trees have their performance severely degraded when the data have more than 10 dimensions (I've experienced that problem myself). I found VP-trees to be a better option.
KD Trees work fine for 21 dimensions, if you quit early,
after looking at say 5 % of all the points.
FLANN does this (and other speedups)
to match 128-dim SIFT vectors. (Unfortunately FLANN does only the Euclidean metric,
and the fast and solid
scipy.spatial.cKDTree
does only Lp metrics;
these may or may not be adequate for your data.)
There is of course a speed-accuracy tradeoff here.
(If you could describe your Ndata, Nquery, data distribution,
that might help people to try similar data.)
Added 26 April, run times for cKDTree with cutoff on my old mac ppc, to give a very rough idea of feasibility:
kdstats.py p=2 dim=21 N=1000000 nask=1000 nnear=2 cutoff=1000 eps=0 leafsize=10 clustype=uniformp
14 sec to build KDtree of 1000000 points
kdtree: 1000 queries looked at av 0.1 % of the 1000000 points, 0.31 % of 188315 boxes; better 0.0042 0.014 0.1 %
3.5 sec to query 1000 points
distances to 2 nearest: av 0.131 max 0.253
kdstats.py p=2 dim=21 N=1000000 nask=1000 nnear=2 cutoff=5000 eps=0 leafsize=10 clustype=uniformp
14 sec to build KDtree of 1000000 points
kdtree: 1000 queries looked at av 0.48 % of the 1000000 points, 1.1 % of 188315 boxes; better 0.0071 0.026 0.5 %
15 sec to query 1000 points
distances to 2 nearest: av 0.131 max 0.245
You could try a z order curve. It's easy for 3 dimension.
I had a similar question a while back. For fast Approximate Nearest Neighbor Search you can use the annoy library from spotify: https://github.com/spotify/annoy
This is some example code for the Python API, which is optimized in C++.
from annoy import AnnoyIndex
import random
f = 40
t = AnnoyIndex(f, 'angular') # Length of item vector that will be indexed
for i in range(1000):
v = [random.gauss(0, 1) for z in range(f)]
t.add_item(i, v)
t.build(10) # 10 trees
t.save('test.ann')
# ...
u = AnnoyIndex(f, 'angular')
u.load('test.ann') # super fast, will just mmap the file
print(u.get_nns_by_item(0, 1000)) # will find the 1000 nearest neighbors
They provide different distance measurements. Which distance measurement you want to apply depends highly on your individual problem. Also consider prescaling (meaning weighting) certain dimensions for importance first. Those dimension or feature importance weights might be calculated by something like entropy loss or if you have a supervised learning problem gini impurity gain or mean average loss, where you check how much worse your machine learning model performs, if you scramble this dimensions values.
Often the direction of the vector is more important than it's absolute value. For example in the semantic analysis of text documents, where we want document vectors to be close when their semantics are similar, not their lengths. Thus we can either normalize those vectors to unit length or use angular distance (i.e. cosine similarity) as a distance measurement.
Hope this is helpful.
Is Euclidean distance a good metric for finding the nearest neighbors in the first place? If not, what are my options?
I would suggest soft subspace clustering, a pretty common approach nowadays, where feature weights are calculated to find the most relevant dimensions. You can use these weights when using euclidean distance, for example. See curse of dimensionality for common problems and also this article can enlighten you somehow:
A k-means type clustering algorithm for subspace clustering of mixed numeric and
categorical datasets

Resources