How to use websocket to strengthen ajax? - ajax

HTML5 will be next super star.
So~~~How to using new idea to implement AJAX on the WebSocket in HTML5 spec?
thx....

I think you misunderstand ajax and websockets.
All internet programs operate by using a special kind of connection known as a socket (sockets can also be used for other things, but thats not important right now). For example, when you access a webpage in Chrome, Chrome creates a socket and uses that to connect to the webserver (there are other steps, but thats the simple explanation).
Ajax is a method for updating content on a page without reloading that page (or going to a new page), this is useful for dynamic content. Ajax works through the XMLHttpRequest object in the DOM Api. When you make an Ajax request, you're asking the web browser to initiate a new connection on your behalf (the web browser may then create a new socket as it sees fit).
Websockets is an alternative api which allows you more control over the socket the web browser creates. In essence its an alternative technology which accomplishes a similar purpose. Ajax sends only a single HTTP request (usually post or get), and receives the appropriate response, thus the advantage of websockets are 2 fold:
Websockets allows for non HTTP transfers (for example, streaming VoIP).
Websockets allow for bi-direction transfers, (ie. servers making follow up requests to client).
This is not to say Ajax isn't still useful, but that Websockets allow you to do things you can't with Ajax.

Related

How to describe interaction between web server and web client?

At the moment I have the following understanding (which, I assume, is incomplete and probably even wrong).
A web server receives request from a client. The requests are coming to a particular "path" ("address", "URL") and have a particular type (GET, POST and probably something else?). The GET and POST requests can also come with variables and their values (which can be though as a "dictionary" or "associate array"). The parameters of GET requests are set in the address line (for example: http://example.com?x=1&y=2) while parameters of POST requests are set by the client (user) via web forms (in other words, a user fills in a form and press "Submit" button).
In addition to that we have what is called SESSION (also known as COOKIES). This works the following way. When a web-server gets a request (of GET or POST type) it (web server) checks the values of the sent parameters and based on that it generates and sends back to the client HTML code that is displayed in a browser (and is seen by the user). In addition to that the web servers sends some parameters (which again can be imagined as "dictionary" or "associative arrays"). These parameters are saved by the browser somewhere on the client side and when a client sends a new request, he/she also sends back the session parameters received earlier from the web server. In fact server says: you get this from me, memorize it and next time when you speak to me, give it back (so, I can recognize you).
So, what I do not know is if client can see what exactly is in the session (what parameters are there and what values they have) and if client is able to modify the values of these parameters (or add or remove parameters). But what user can do, he/she might decide not to accept any cookies (or session).
There is also something called "local storage" (it is available in HTML5). It works as follows. Like SESSION it is some information sent by web-server to the client and is also memorized (saved) by the client (if client wants to). In contrast to the session it is not sent back b the client to the server. Instead, JavaScripts running on the client side (and send by web-servers as part of the HTML code) can access information from the local storage.
What I am still missing, is how AJAX is working. It is like by clicking something in the browser users sends (via Browser) a request to the web-server and waits for a response. Then the browser receives some response and use it to modify (but not to replace) the page observed by the user. What I am missing is how the browser knows how to use the response from the web-server. Is it written in the HTML code (something like: if this is clicked, send this request to the web server, and use its answer (provided content) to modify this part of the page).
I am going to answer to your questions on AJAX and LocalStorage, also on a very high level, since your definition strike me as such on a high level.
AJAX stands for Asynchronous JavaScript and XML.
Your browser uses an object called XMLHTTPRequest in order to establish an HTTP request with a remote resource.
The client, being a client, is oblivious of what the remote server entails on. All it has to do is provide the request with a URL, a method and optionally the request's payload. The payload is most commonly a parameter or a group of parameters that are received by the remote server.
The request object has several methods and properties, and it also has its ways of handling the response.
What I am missing is how the browser knows how to use the response
from the web-server.
You simply tell it what to do with the reponse. As mentioned above, the request object can also be told what to do with a response. It will listen to a response, and when such arrives, you tell the client what to do with it.
Is it (the response) written in the HTML code?
No. The response is written in whatever the server served it. Most commonly, it's Unicode. A common way to serve a response is a JSON (JavaScript Object Notation) object.
Whatever happens afterwards is a pure matter of implementation.
LocalStorage
There is also something called "local storage" (it is available in
HTML5). It works as follows. Like SESSION it is some information sent
by web-server to the client and is also memorized (saved) by the
client (if client wants to)
Not entirely accurate. Local Storage is indeed a new feature, introduced with HTML5. It is a new way of storing data in the client, and is unique to an origin. By origin, we refer to a unique protocol and a domain.
The life time of a Local Storage object on a client (again, per unique origin), is entirely up to the user. That said, of course a client application can manipulate the data and decide what's inside a local storage object. You are right about the fact that it is stored and can be used in the client through JavaScript.
Example: some web tracking tools want to have some sort of a back up plan, in case the server that collects user data is unreachable for some reason. The web tracker, sometimes introduced as a JavaScript plugin, can write any event to the local storage first, and release it only when the remote server confirmed that it received the event successfully, even if the user closed the browser.
First of all, this is just a simple explanation to clarify your mind. To explain this stuff in more detail we would need to write a book. This been said, I'll go step by step.
Request
A request is a client asking for / sending data to a server.
This request has the following parts:
An URL (Protocol + hostname/IP + path)
A Method (GET, POST, PUT, DELETE, PATCH, and so on)
Some optional parameters (the way they are sent depends on the method)
Some headers (metadata sent to the server)
Some optional cookies
An optional SESSION ID
Some explanations about this:
Cookies can be set by the client or by the server, but they are always stored by the client's browser. Therefore, the browser can decide whether to accept them or not, or to delete or modify them
Session is stored in the server. The server sends the client a session ID to be able to recongnize him in any future request.
Session and cookies are two different things. One is server side, and the other is client side.
AJAX
I'll ommit the meaning of the acronym as you can easily google it.
The great thing about AJAX is the very first A, that stands for asynchronous, what means that the JS engine (in this case built in the browser) won't block until the response gets back.
To understand how AJAX works, you have to know that it's very much alike a common request, but with the difference that it can be triggered without reloading the web page.
The content of the response it whatever you want it to be. From some HTML code, to a JSON string. Even some plain text.
The way the response is treated depends on the implementation and programming. As an example, you could simply alert() the result of an AJAX call, or you and append it to a DOM element.
Local Storage
This doesn't have much to do with anything.
Local storage is just some disk space offered by the browser so you can save data in the browser that persists even if the page or the browser is closed.
An example
Chrome offers a javascript API to manage local storage. It's client side, and you can programmatically access to this storage and make CRUD opperations. It's just like a non-sql non-relational DB in the browser.
I wil summarize your main questions along with a brief answer right below them:
Q1:
Can the client see what exactly is in the session?
A: No. The client only knows the "SessionID", which is meta-data (all other session-data is stored on server only, and client can't see or alter it). The SessionID is used by the server only to identify the client and to map the application process to it's previous state.
HTTP is a stateless protocol, and this classic technique enables it as stateful.
There are very rare cases when the complete session data is stored on client-side (but in such cases, the server should also encrypt the session data so that the client can't see/alter it).
On the other hand, there are web clients that don't have the capability to store cookies at all, or they have features that prevent storing cookie data (e.g. the ability of the user to reject cookies from domains). In such cases, the workaround is to inject the SessionID into URL parameters, by using HTTP redirects.
Q2:
What's the difference between HTML5 LocalStorage and Session?
LocalStorage can be viewed as the client's own 'session' data, or better said a local data store where the client can save/persist data. Only the client (mainly from javascript) can access and alter the data. Think of it as javascript-controlled persistent storage (with the advantage over cookies that you can control what data, it's structure and the format you want to store it). It's also more advantageous than storing data to cookies - which have their own limitations such as data size and structure.
Q3:
How AJAX works?
In very simple words, AJAX means loading on-demand data on top of an already loaded (HTML) page. A typical http request would load the whole data of a page, while an ajax request would load and update just a portion of the (already-loaded) page.
This being said, an AJAX request is very similar to a standard HTTP Request.
Ajax requests are controlled by the javascript code and it can enrich the interaction with the page. You can request specific segments of data and update sections of the page.
Now, if we remember the old days when any interaction with a website (eg. signing in, navigating to other pages etc.) required a complete page reload? Back then, a lot of unnecessary traffic occurred just to perform any simple action. This in turn impacted site responsiveness, user experience, network traffic etc.
This happened due to browsers incapability (at that time) to [a.] perform a parallel HTTP request to the server and [b]render a partial HTML view.
Modern browsers come with these two features that enables AJAX technology - that is, invoking asynchronous(parallel) HTTP Requests (Ajax HTTP Requests) and they also provide on-the-fly DOM alteration mechanism via javascript (real-time HTML Document Object Model manipulation).
Please let me know if you need more info on these topics, or if there's anything else I can help with.
For a more profound understanding, I also recommend this nice web history article as it explains how everything started from when HTML was created and what was it's purpose (to define [at the time] rich documents), and then how HTTP was initially created and what problem it solved (at the time - to "transfer" static HTML). That explains why it is a stateless protocol.
Later on, as HTML and the WEB evolved, other needs emerged (such as the need to interact with the end-user) - and then the Cookie mechanism enhanced the protocol to enable stateful client-server communication by using session cookies. Then Ajax followed. Nowadays, the cookies come with their own limitations too and we have LocalStorage. Did I also mention WebSockets?
1. Establishing a Connection
The most common way web servers and clients communicate is through a connection which follows Transmission Control Protocol, or TCP. Basically, when using TCP, a connection is established between client and server machines through a series of back-and-forth checks. Once the connection is established and open, data can be sent between client and server. This connection can also be termed a Session.
There is also UDP, or User Datagram Protocol which has a slightly different way of communicating and comes with its own set of pros and cons. I believe recently some browsers may have begun to use a combination of the two in order to get the best results.
There is a ton more to be said here, but unless you are going to be writing a browser (or become a hacker) this should not concern you too much beyond the basics.
2. Sending Packets
Once the client-server connection is established, packets of data can be sent between the two. TCP packets contain various bits of information to assist in communication between the two ports. For web programmers, the most important part of the packet will be the section which includes the HTTP request.
HTTP, Hypertext Transfer Protocol is another protocol which describes what the makeup/format of these client-server communications should be.
A most basic example of the relevant portion of a packet sent from a client to a server is as follows:
GET /index.html HTTP/1.1
Host: www.example.com
The first line here is called the Response line. GET describes the method to be used, (others include POST, HEAD, PUT, DELETE, etc.) /index.html describes the resource requested. Finally, HTTP/1.11 describes the protocol being used.
The second line is in this case the only header field in the request, and in this case it is the HOST field which is sort of an alias for the IP address of the server, given by the DNS.
[Since you mentioned it, the difference between a GET request and a POST request is simply that in a GET request the parameters (ex: form data) is included as part of the Response Line, whereas in a POST request the parameters will be included as part of the Message Body (see below).]
3. Receiving Packets
Depending on the request sent to the server, the server will scratch its head, think about what you asked it, and respond accordingly (aka whatever you program it to do).
Here is an example of a response packet send from the server:
HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
...
<html>
<head>
<title>A response from a server</title>
</head>
<body>
<h1>Hello World!</h1>
</body>
</html>
The first line here is the Status Line which includes a numerical code along with a brief text description. 200 OK obviously means success. Most people are probably also familiar with 404 Not Found, for example.
The second line is the first of the Response Header Fields. Other fields often added include date, Content-Length, and other useful metadata.
Below the headers and the necessary empty line is finally the (optional) Message Body. Of course this is usually the most exciting part of the response, as it will contain things like HTML for our browsers to display for us, JSON data, or pretty much anything you can code in a return statement.
4. AJAX, Asynchronous JavaScript and XML
Based off all of that, AJAX is fairly simple to understand. In fact, the packets sent and received can look identical to non-ajax requests.
The only difference is how and when the browser decides to send a request packet. Normally, upon page refresh a browser will send a request to the server. However, when issuing an AJAX request, the programmer simply tells the browser to please send a packet to the server NOW as opposed to on page refresh.
However, given the nature of AJAX requests, usually the Message Body won't contain an entire HTML document, but will request smaller, more specific bits of data, such as a query from a database.
Then, your JavaScript which calls the Ajax can also act based off the response. Any JavaScript method is available as making an Ajax call is just another JavaScript function. Thus, you can do things like innerHTML to add/replace content on your page with some HTML returned by the Ajax call. Alternatively though, you could also do something like make an Ajax call which simply should return True or False, and then you could call some JavaScript function with an if else statement. As you can hopefully see, Ajax has nothing to do with HTML per say, it is just a JavaScript function which makes a request from the server and returns the response, whatever it may be.
5. Cookies
HTTP Protocol is an example of a Stateless Protocol. Basically, this means that each pair of Request and Response (like we described) is treated independently of other requests and responses. Thus, the server does not have to keep track of all the thousands of users who are currently demanding attention. Instead, it can just respond to each request individually.
However, sometimes we wish the server would remember us. How annoying would it be if every time I waned to check my Gmail I had to log in all over again because the server forgot about me?
To solve this problem a server can send Cookies to be stored on the client's machine. The server can send a response which tells the client to store a cookie and what exactly it should contain. The client's browser is in charge of storing these cookies on the client's system, thus the location of these cookies will vary depending on your browser and OS. It is important to realize though that these are just small files stored on the client machine which are in fact readable and writable by anyone who knows how to locate and understand them. As you can imagine, this poses a few different potential security threats. One solution is to encrypt the data stored inside these cookies so that a malicious user won't be able to take advantage of the information you made available. (Since your browser is setting these cookies, there is usually a setting within your browser which you can modify to either accept, reject, or perhaps set a new location for cookies.
This way, when the client makes a request from the server, it can include the Cookie within one of the Request Header Fields which will tell the server, "Hey I am an authenticated user, my name is Bob, and I was just in the middle of writing an extremely captivating blog post before my laptop died," or, "I have 3 designer suits picked out in my shopping cart but I am still planning on searching your site tomorrow for a 4th," for example.
6. Local Storage
HTML5 introduced Local Storage as a more secure alternative to Cookies. Unlike cookies, with local storage data is not actually sent to the server. Instead, the browser itself keeps track of State.
This alternative also allows much larger amounts of data to be stored, as there is no requirement for it to be passed across the internet between client and server.
7. Keep Researching
That should cover the basics and give a pretty clear picture as to what is going on between clients and servers. There is more to be said on each of these points, and you can find plenty of information with a simple Google search.

Efficient cross domain web API like Twitter Facebook Google etc

I have recently been experimenting with building a cross domain web api, and wow has it been a bumpy journey. I have not had any problems with modern browsers such as Chrome, FF and Safari. The problem is with IE, which requires you to use XDR as opposed $.ajax when making cross domain calls. First Question: If I was using Backbone.js, what is the recommended way of making cross browser and cross domain ajax calls?
Another problem I had with IE was that when you make cross domain ajax requests, IE has a bunch of restrictions and limitations such as "Only text/plain is supported for the request's Content-Type header" - a link. Therefore in my case, I was unable to bind to my model using the MVC C# framework, unless I bind it manually.
Anyway my second and last question is: How do companies like Instagram, Facebook, and Twitter go about building their API's? I am not looking for a complete guide, but just want to know how difficult it is.
JSONP
The current standard is using JSONP. It is basically a trick to send a JSON payload wrapped in a single JavaScript function, the browser treats it like a script file and executes it.
CORS
Moving forward the way to go is CORS. Sadly browser support (IE) isn't there yet and there are still some implementation differences between the modern browsers that do implement it.
HTTP Method Overloading
Some APIs overload GET and POST request using X-HTTP-Method-Override: PUT or ?_method=PUT.
easyXDM
A number of API providers implement easyXDM. This tends to be used more when they provide a JavaScript API or widget API where developers load their JS and integrate it directly in to the frontend code.

Cannot make ajax call between servers that differ only in port in HTML5/jQuery/Chrome stack

The parts
I am developing against two Pylons servers and testing locally. One server is on port 5000 and is the called server. The other is on port 7000. The latter creates a cookie that specifies the same domain as used by the former server. Essentially, the first server uses credentials provided by the second server to impersonate the user.
The first server expects to find an auth token (a cookie, really) in its response.environ at run time. When I authenticate on the server on port 7000 and browser to a service on port 5000, the latter server uses the cookie created by the former and the app works.
The fly in the ointment is that the first server creates an HTML5 app that uses an ajax call to the second server, and I cannot get the cookie to be included in the ajax call. I believe that Chrome (the browser we are using/requiring for HTML5 support reasons) refuses to send the cookie for cross domain reasons: going from foo.net:7000 to foo.net:5000 is considered cross domain.
Oh, and the ajax call is through jQuery.
The question
Is there any way to make an ajax call from an HTML5 app created on a port in the same domain to a server in the same domain but a different port?
What I've tried or discard out of hand
I do not believe I can use dynamic script tag insertion because I am making the call from javascript and the HTML is generated on the client at runtime from other javascript. At least, I don't think that is a desirable solution.
I don't believe Access-Control-Allow-* is applicable because I am going from client to server, not the other way.
I've seen this on jQuery and ports in ajax calls. I've seen this, too.
I know about the same-origin policy.
And this does not work.
Agree with Michael that the simplest solution is JSONP. But even in JSONP you need to configure your server such that it supports JSONP. Many Servers deny this to keep their data secure and sound. JSONP expect your server to send data in the format that can be evaluated as the valid JSON. But its not the case in every JSONP Request and response. So, just watch out for that.
The absolutely simplest solution to this is to use JSON/P. I wish there were an easier, softer way to accomplish this, but I certainly haven't found one.

Ajax vs webservices

what is different between ajax and webservices. Anybody provide with some examples?
It's nonsensical to compare these things.
"Ajax" is a process that occurs in the browser. It is the act of calling some local server-side page, without refreshing the "main" viewing area, and then doing various things with that result (grabbing the data, making changes, changing the existing DOM (adding elements), whatever).
Webservices are a Serverside-thing that allows you to call methods, in your code, but have that call actually go to a remote machine. The call to the Webservice is generally also made server-side.
The term "Ajax" is generally used :
When the request is sent by a browser (client-side) to a server
When the transfered data is XML or JSON or HTML.
The word "webservice" is generally used :
When the request is sent by a server to another server, without a browser being involved
When the transfered data is SOAP -- at least when it's a SOAP webservice ^^ (Opposed to REST, for instance, which generally doesn't imply SOAP)
But I'd say that Ajax is basically some specific kind of webservice.
i think ajax and web services are kind of similar, here is why i think so.
as i understood it, in your app sometimes you will have to implement an "API" which has several useful functions. and it is those functions which are called "web services". these 'functions' acts in response to the http requests and "does" something with the data provided.
in ajax siimilar kind of work happens as well,just through javascript thats it.
so, to sum it all up, an API has 'web services' within it, and ajax behaves like 'web services'. in this manner, yes i think it is correct to call ajax and web services similar.

Can you reliably set or delete a cookie during the server side processing of an Ajax (XHR) call?

I have done a bit of testing on this myself (During the server side processing of a DWR Framework Ajax request handler to be exact) and it seems you CAN successfully manipulate cookies, but this goes against much that I have read on Ajax best practices and how browsers interpret the response from an XmlHttpRequest. Note I have tested on:
IE 6 and 7
Firefox 2 and 3
Safari
and in all cases standard cookie operations on the HttpServletResponse object during Ajax request handling were correctly interpreted by the browser, but I would like to know if it best practice to push the cookie manipulation to the client side, or if this (much cleaner) server side cookie handling can be trusted.
I would welcome answers both specific to the DWR Framework and Ajax in general.
XMLHttpRequest always uses the Web Browser's connection framework. This is a requirement for AJAX programs to work correctly as the user would get logged out if the XHR object lacked access to the browser's cookie pool.
It's theoretically possible for a web browser to simply share session cookies without using the browser's connection framework, but this has never (to my knowledge) happened in practice. Even the Flash plugin uses the Web Browser's connections.
Thus the end result is that it IS safe to manipulate cookies via AJAX. Just keep in mind that the AJAX call might never happen. They are not guaranteed events, so don't count on them.
In the context of DWR it may not be "safe".
From reading the DWR site it says:
It is important that you treat the HTTP request and response as read-only. While HTTP headers might get through OK, there is a good chance that some browsers will ignore them.
I've taken this to mean that setting cookies or request attributes is a no-no.
Saying that, I have code which does set request attributes (code I wrote before I read that page) and it appears to work fine (apart from deleting cookies which I mentioned in my comment above).
Manipulating cookies on the client side is rather the opposite of "best practice". And it shouldn't be necessary, either. HttpOnly cookies weren't introduced for nothing.

Resources