How to adjust the distribution of values in a random data stream? - random

Given a infinite stream of random 0's and 1's that is from a biased (e.g. 1's are more common than 0's by a know factor) but otherwise ideal random number generator, I want to convert it into a (shorter) infinite stream that is just as ideal but also unbiased.
Looking up the definition of entropy finds this graph showing how many bits of output I should, in theory, be able to get from each bit of input.
The question: Is there any practical way to actually implement a converter that is nearly ideally efficient?

There is a well-known device due to Von Neumann for turning an unfair coin into a fair coin. We can use this device to solve our problem here.
Repeatedly draw two bits from your biased source until you obtain a pair for which the bits are different. Now return the first bit, discarding the second. This produces an unbiased source. The reason this works is because regardless of the source, the probability of a 01 is the same as a probability of a 10. Therefore the probability of a 0 conditional on 01 or 10 is 1/2 and the probability of a 1 conditional on 01 or 10 is 1/2.

Please see
http://en.wikipedia.org/wiki/Randomness_extractor
http://en.wikipedia.org/wiki/Whitening_transform
http://en.wikipedia.org/wiki/Decorrelation

Hoffman encode the input.
Given that the input is of a known bias, you can compute a probability distribution for check sums of each n bit segment. From that construct a Hoffman code and then just encode the sequence.
I'm not sure but one potential problem is that this might introduce some correlation between sequential bits.

Related

How to get a representative random number from a set of pseudo random numbers?

Let's say I got three pseudo random numbers from different pseudo random number generators.
Since the generators would reflect only a part of the real random number generating process, I believe that one way to get a number closer to real random might be to somehow get a "center" of the three pseudo random numbers.
An easy way to get that "center" would be to take average, median or mode (if any) of them.
I am wondering if there's a more sophisticated way due to the fact that they should represent random numbers.
Well, there is an approach, called entropy extractor, which allows to get (good) random numbers from not quite random source(s).
If you have three independent but somewhat low quality (biased) RNGs, you could combine them together into uniform source.
Suppose you have three generators giving you a single byte each, then uniform output would be
t = X*Y + Z
where addition and multiplication are done over GF(28) finite field.
Some code (Python)
def RNG1():
return ... # single random byte
def RNG2():
return ... # single random byte
def RNG3():
return ... # single random byte
from pyfinite import ffield
def muRNG():
X = RNG1()
Y = RNG2()
Z = RNG3()
GF = ffield.FField(8)
return GF.Add(GF.Multiply(X, Y), Z)
Paper where this idea was stated
Trying to use some form of "centering" turns out to be a bad idea if your goal is to have a better representation of the randomness.
First, a thought experiment. If you think three values gives more randomness, wouldn't more be even better? It turns out that if you take either the average or median of n Uniform(0,1) values, as nā†’āˆž these both converge to 0.5, a point. It also happens to be the case that replacing distributions with a "representative" constant is generally a bad idea if you want to understand stochastic systems. As an extreme example, consider queues. As the arrival rate of customers/entities approaches the rate at which they can be served, stochastic queues get progressively larger on average. However, if the arrival and service distributions are constant, queues remain at zero length until the arrival rate exceeds the service rate, at which point they go to infinity. When the rates are equal, the stochastic queue would have infinite queues, while the deterministic queue would remain at its initial length (usually assumed to be zero). Infinity and zero are about as wildly different as you can get, illustrating that replacing distributions in a queueing model with their means would give you no understanding of how queues actually work.
Next, empirical evidence. Below histograms of the medians and averages constructed from 10,000 samples of three uniforms. As you can see, they have different distribution shapes but are clearly no longer uniform. Values bunch in the middle and are progressively rarer towards the endpoints of the range (0,1).
The uniform distribution has maximum entropy for continuous distributions on a closed interval, so both of these alternatives, being non-uniform, are clearly lower entropy, i.e., more predictable.
To get good random numbers, it's advisable to get some bits of entropy. Depending on whether they are used for security purposes or not, you could just get the time from the system clock as a seed for a random number generator, or use more sophisticated means. The project PWGen download | SourceForge.net is open-sourced, and monitors Windows events as a source of random bits of entropy.
You can find more info on how to random numbers in C++ from this SO ? too: Random number generation in C++11: how to generate, how does it work? [closed]. It turns out C++'s random numbers aren't always all that random: Everything You Never Wanted to Know about C++'s random_device; so looking for a good way to seed, i.e. by passing the time in mS to srand() and calling rand() might be a quick and dirty way to go.

Random number from many other random numbers, is it more random?

We want to generate a uniform random number from the interval [0, 1].
Let's first generate k random booleans (for example by rand()<0.5) and decide according to these on what subinterval [m*2^{-k}, (m+1)*2^{-k}] the number will fall. Then we use one rand() to get the final output as m*2^{-k} + rand()*2^{-k}.
Let's assume we have arbitrary precision.
Will a random number generated this way be 'more random' than the usual rand()?
PS. I guess the subinterval picking amounts to just choosing the binary representation of the output 0. b_1 b_2 b_3... one digit b_i at a time and the final step is adding the representation of rand() to the end of the output.
It depends on the definition of "more random". If you use more random generators, it means more random state, and it means that cycle length will be greater. But cycle length is just one property of random generators. Cycle length of 2^64 usually OK for almost any purpose (the only exception I know is that if you need a lot of different, long sequences, like for some kind of simulation).
However, if you combine two bad random generators, they don't necessarily become better, you have to analyze it. But there are generators, which do work this way. For example, KISS is an example for this: it combines 3, not-too-good generators, and the result is a good generator.
For card shuffling, you'll need a cryptographic RNG. Even a very good, but not cryptographic RNG is inadequate for this purpose. For example, Mersenne Twister, which is a good RNG, is not suitable for secure card shuffling! It is because observing output numbers, it is possible to figure out its internal state, so shuffle result can be predicted.
This can help, but only if you use a different pseudorandom generator for the first and last bits. (It doesn't have to be a different pseudorandom algorithm, just a different seed.)
If you use the same generator, then you will still only be able to construct 2^n different shuffles, where n is the number of bits in the random generator's state.
If you have two generators, each with n bits of state, then you can produce up to a total of 2^(2n) different shuffles.
Tinkering with a random number generator, as you are doing by using only one bit of random space and then calling iteratively, usually weakens its random properties. All RNGs fail some statistical tests for randomness, but you are more likely to get find that a noticeable cycle crops up if you start making many calls and combining them.

Computing entropy/disorder

Given an ordered sequence of around a few thousand 32 bit integers, I would like to know how measures of their disorder or entropy are calculated.
What I would like is to be able to calculate a single value of the entropy for each of two such sequences and be able to compare their entropy values to determine which is more (dis)ordered.
I am asking here, as I think I may not be the first with this problem and would like to know of prior work.
Thanks in advance.
UPDATE #1
I have just found this answer that looks great, but would give the same entropy if the integers were sorted. It only gives a measure of the entropy of the individual ints in the list and disregards their (dis)order.
Entropy calculation generally:
http://en.wikipedia.org/wiki/Entropy_%28information_theory%29
Furthermore, you have to sort your integers, then iterate over the sorted integer list to find out the frequency of your integers. Afterwards, you can use the formula.
I think I'll have to code a shannon entropy in 2D. Arrange the list of 32 bit ints as a series of 8 bit bytes and do a Shannons on that, then to cover how ordered they may be, take the bytes eight at a time and form a new list of bytes composed of bits 0 of the eight followed by bits 1 of the eight ... bits 7 of the 8; then the next 8 original bytes ..., ...
I'll see how it goes/codes...
Entropy is a function on probabilities, not data (arrays of ints, or files). Entropy is a measure of disorder, but when the function is modified to take data as input it loses this meaning.
The only true way one can generate a measure of disorder for data is to use Kolmogorov Complexity. Though this has problems too, in particular it's uncomputable and is not yet strictly well defined as one must arbitrarily pick a base language. This well-definedness can be solved if the disorder one is measuring is relative to something that is going to process the data. So when considering compression on a particular computer, the base language would be Assembly for that computer.
So you could define the disorder of an array of integers as follows:
The length of the shortest program written in Assembly that outputs the array.

Given a number series, finding the Check Digit Algorithm...?

Suppose I have a series of index numbers that consists of a check digit. If I have a fair enough sample (Say 250 sample index numbers), do I have a way to extract the algorithm that has been used to generate the check digit?
I think there should be a programmatic approach atleast to find a set of possible algorithms.
UPDATE: The length of a index number is 8 Digits including the check digit.
No, not in the general case, since the number of possible algorithms is far more than what you may think. A sample space of 250 may not be enough to do proper numerical analysis.
For an extreme example, let's say your samples are all 15 digits long. You would not be able to reliably detect the algorithm if it changed the behaviour for those greater than 15 characters.
If you wanted to be sure, you should reverse engineer the code that checks the numbers for validity (if available).
If you know that the algorithm is drawn from a smaller subset than "every possible algorithm", then it might be possible. But algorithms may be only half the story - there's also the case where multipliers, exponentiation and wrap-around points change even using the same algorithm.
paxdiablo is correct, and you can't guess the algorithm without making any other assumption (or just having the whole sample space - then you can define the algorithm by a look up table).
However, if the check digit is calculated using some linear formula dependent on the "data digits" (which is a very common case, as you can see in the wikipedia article), given enough samples you can use Euler elimination.

Guessing an unbounded integer

If I say to you:
"I am thinking of a number between 0 and n, and I will tell you if your guess is high or low", then you will immediately reach for binary search.
What if I remove the upper bound? i.e. I am thinking of a positive integer, and you need to guess it.
One possible method would be for you to guess 2, 4, 8, ..., until you guess 2**k for some k and I say "lower". Then you can apply binary search.
Is there a quicker method?
EDIT:
Clearly, any solution is going to take time proportional to the size of the target number. If I chuck Graham's number through the Ackermann function, we'll be waiting a while whatever strategy you pursue.
I could offer this algorithm too: Guess each integer in turn, starting from 1.
It's guaranteed to finish in a finite amount of time, but yet it's clearly much worse than my "powers of 2" strategy. If I can find a worse algorithm (and know that it is worse), then maybe I could find a better one?
For example, instead of powers of 2, maybe I can use powers of 10. Then I find the upper bound in log_10(n) steps, instead of log_2(n) steps. But I have to then search a bigger space. Say k = ceil(log_10(n)). Then I need log_2(10**k - 10**(k-1)) steps for my binary search, which I guess is about 10+log_2(k). For powers of 2, I have roughly log_2(log_2(n)) steps for my search phase. Which wins?
What if I search upwards using n**n? Or some other sequence? Does the prize go to whoever can find the sequence that grows the fastest? Is this a problem with an answer?
Thank you for your thoughts. And my apologies to those of you suggesting I start at MAX_INT or 2**32-1, since I'm clearly drifting away from the bounds of practicality here.
FINAL EDIT:
Hi all,
Thank you for your responses. I accepted the answer by Norman Ramsey (and commenter onebyone) for what I understood to be the following argument: for a target number n, any strategy must be capable of distinguishing between (at least) the numbers from 0..n, which means you need (at least) O(log(n)) comparisons.
However seveal of you also pointed out that the problem is not well-defined in the first place, because it's not possible to pick a "random positive integer" under the uniform probability distribution (or, rather, a uniform probability distribution cannot exist over an infinite set). And once I give you a nonuniform distribution, you can split it in half and apply binary search as normal.
This is a problem that I've often pondered as I walk around, so I'm pleased to have two conclusive answers for it.
If there truly is no upper bound, and all numbers all the way to infinity are equally likely, then there is no optimum way to do this. For any finite guess G, the probability that the number is lower than G is zero and the probability that it is higher is 1 - so there is no finite guess that has an expectation of being higher than the number.
RESPONSE TO JOHN'S EDIT:
By the same reasoning that powers of 10 are expected to be better than powers of 2 (there's only a finite number of possible Ns for which powers of 2 are better, and an infinite number where powers of 10 are better), powers of 20 can be shown to be better than powers of 10.
So basically, yes, the prize goes to fastest-growing sequence (and for the same sequence, the highest starting point) - for any given sequence, it can be shown that a faster growing sequence will win in infinitely more cases. And since for any sequence you name, I can name one that grows faster, and for any integer you name, I can name one higher, there's no answer that can't be bettered. (And every algorithm that will eventually give the correct answer has an expected number of guesses that is infinite, anyway).
People (who have never studied probability) tend to think that "pick a number from 1 to N" means "with equal probability of each", and they act according to their intuitive understanding of probability.
Then when you say "pick any positive integer", they still think it means "with equal probability of each".
This is of course impossible - there exists no discrete probability distribution with domain the positive integers, where p(n) == p(m) for all n, m.
So, the person picking the number must have used some other probability distribution. If you know anything at all about that distribution, then you must base your guessing scheme on that knowledge in order to have the "fastest" solution.
The only way to calculate how "fast" a given guessing scheme is, is to calculate its expected number of guesses to find the answer. You can only do this by assuming a probability distribution for the target number. For example, if they have picked n with probability (1/2) ^ n, then I think your best guessing scheme is "1", "2", "3",... (average 2 guesses). I haven't proved it, though, maybe it's some other sequence of guesses. Certainly the guesses should start small and grow slowly. If they have picked 4 with probability 1 and all other numbers with probability 0, then your best guessing scheme is "4" (average 1 guess). If they have picked a number from 1 to a trillion with uniform distribution, then you should binary search (average about 40 guesses).
I say the only way to define "fast" - you could look at worst case. You have to assume a bound on the target, to prevent all schemes having the exact same speed, namely "no bound on the worst case". But you don't have to assume a distribution, and the answer for the "fastest" algorithm under this definition is obvious - binary search starting at the bound you selected. So I'm not sure this definition is terribly interesting...
In practice, you don't know the distribution, but can make a few educated guesses based on the fact that the picker is a human being, and what numbers humans are capable of conceiving. As someone says, if the number they picked is the Ackermann function for Graham's number, then you're probably in trouble. But if you know that they are capable of representing their chosen number in digits, then that actually puts an upper limit on the number they could have chosen. But it still depends what techniques they might have used to generate and record the number, and hence what your best knowledge is of the probability of the number being of each particular magnitude.
Worst case, you can find it in time logarithmic in the size of the answer using exactly the methods you describe. You might use Ackermann's function to find an upper bound faster than logarithmic time, but then the binary search between the number guessed and the previous guess will require time logarithmic in the size of the interval, which (if guesses grow very quickly) is close to logarithmic in the size of the answer.
It would be interesting to try to prove that there is no faster algorithm (e.g., O(log log n)), but I have no idea how to do it.
Mathematically speaking:
You cannot ever correctly find this integer. In fact, strictly speaking, the statement "pick any positive integer" is meaningless as it cannot be done: although you as a person may believe you can do it, you are actually picking from a bounded set - you are merely unconscious of the bounds.
Computationally speaking:
Computationally, we never deal with infinites, as we would have no way of storing or checking against any number larger than, say, the theoretical maximum number of electrons in the universe. As such, if you can estimate a maximum based on the number of bits used in a register on the device in question, you can carry out a binary search.
Binary search can be generalized: each time set of possible choices should be divided into to subsets of probability 0.5. In this case it's still applicable to infinite sets, but still requires knowledge about distribution (for finite sets this requirement is forgotten quite often)...
My main refinement is that I'd start with a higher first guess instead of 2, around the average of what I'd expect them to choose. Starting with 64 would save 5 guesses vs starting with 2 when the number's over 64, at the cost of 1-5 more when it's less. 2 makes sense if you expect the answer to be around 1 or 2 half the time. You could even keep a memory of past answers to decide the best first guess. Another improvement could be to try negatives when they say "lower" on 0.
If this is guessing the upper bound of a number being generated by a computer, I'd start with 2**[number of bits/2], then scale up or down by powers of two. This, at least, gets you the closest to the possible values in the least number of jumps.
However, if this is a purely mathematical number, you can start with any value, since you have an infinite range of values, so your approach would be fine.
Since you do not specify any probability distribution of the numbers (as others have correctly mentioned, there is no uniform distribution over all the positive integers), the No Free Lunch Theorem give the answer: any method (that does not repeat the same number twice) is as good as any other.
Once you start making assumptions about the distribution (f.x. it is a human being or binary computer etc. that chooses the number) this of course changes, but as the problem is stated any algorithm is as good as any other when averaged over all possible distributions.
Use binary search starting with MAX_INT/2, where MAX_INT is the biggest number your platform can handle.
No point in pretending we can actually have infinite possibilities.
UPDATE: Given that you insist on entering the realms of infinity, I'll just vote to close your question as not programming related :-)
The standard default assumption of a uniform distribution for all positive integers doesn't lead to a solution, so you should start by defining the probability distribution of the numbers to guess.
I'd probably start my guessing with Graham's Number.
The practical answer within a computing context would be to start with whatever is the highest number that can (realistically) be represented by the type you are using. In case of some BigInt type you'd probably want to make a judgement call about what is realistic... obviously ultimately the bound in that case is the available memory... but performance-wise something smaller may be more realistic.
Your starting point should be the largest number you can think of plus 1.
There is no 'efficient search' for a number in an infinite range.
EDIT: Just to clarify, for any number you can think of there are still infinitely more numbers that are 'greater' than your number, compared to a finite collection of numbers that are 'less' than your number. Therefore, assuming the chosen number is randomly selected from all positive numbers, you have zero | (approaching zero) chance of being 'above' the chosen number.
I gave an answer to a similar question "Optimal algorithm to guess any random integer without limits?"
Actually, provided there algorithm not just searches for the conceived number, but it estimates a median of the distribution of the number that you may re-conceive at each step! And also the number could be even from the real domain ;)

Resources