Is optimizer_use_sql_plan_baselines and resource_manager_cpu_allocation oracle system parameter have impact on sql query performance.
We have two envt suppose A and B. On A Envt query is running fine but in Envt. B its tacking time. I have compared system parameter and found difference in values in optimizer_use_sql_plan_baselines and resource_manager_cpu_allocation .
SQL plan baselines and the resource manager certainly could have a huge impact on performance, and you should use the below two queries or confirm or deny that those parameters are related to your problem.
GV$SQL stores which SQL plan baseline is associated with each SQL statement. Compare the SQL_PLAN_BASELINE column in the below query, and if they are equal then your problem is not related to baselines:
select sql_plan_baseline, round(elapsed_time/1000000) elapsed_seconds, gv$sql.*
from gv$sql
order by elapsed_time desc;
The Active Session History (ASH) views can tell you if the resource manager is an issue. If your queries are being throttled then you will see an event
named "resmgr:cpu quantum" in the below query. (But pay attention to the counts - don't troubleshoot a wait event if it only happens a small number of times.)
select nvl(event, 'CPU') event, count(*)
from gv$active_session_history
group by event
order by count(*) desc;
Resource manager can have other potentially negative affects. If you're in a data warehouse, and using parallel queries, it's possible that resource manager has downgraded the queries on one system. If you're using parallel queries, try comparing the SQL monitoring reports from both systems:
select dbms_sqltune.report_sql_monitor(sql_id => '&YOUR_SQL_ID') from dual;
However, I have a feeling that you're using the wrong approach for your problem. There are generally two approaches to Oracle database performance - database tuning and query tuning. If you're only interested in a single query, then you should probably focus on things like the execution plan and the wait events for the operations of that specific query.
I’m a longtime MSSQL developer who finds himself back in PL/SQL for the first time since Oracle 7. I’m looking for some tuning advice re a large export stored procedure, which is sporadically and not very reproducably running slow at certain points. This happens around some static working tables which it truncates, fills and uses as part of the export. The code in outline typically looks like this:
create or replace Procedure BigMultiPurposeExport as (
-- about 2000 lines of other code
INSERT WORK_TABLE_5 SELECT WHATEVER1 FROM WHEREVER1;
INSERT WORK_TABLE_5 SELECT WHATEVER2 FROM WHEREVER2;
INSERT WORK_TABLE_5 SELECT WHATEVER3 FROM WHEREVER3;
INSERT WORK_TABLE_5 SELECT WHATEVER4 FROM WHEREVER4;
-- WORK_TABLE_5 now has 0 to ~500k rows whose content can vary drastically from run to run
-- e.g. one hourly run exports 3 whale sightings, next exports all tourist visits to Kenya this decade
-- about 1000 lines of other code
INSERT OUTPUT_TABLE_3
SELECT THIS, THAT, THE_OTHER
FROM BUSINESS_TABLE_1 BT1
INNER JOIN BUSINESS_TABLE_2 ON etc -- typical join on indexed columns
INNER JOIN BUSINESS_TABLE_3 ON etc -- typical join on indexed columns
INNER JOIN BUSINESS_TABLE_4 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_1 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_2 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_3 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_4 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_5 WT5 ON BT1.ID = WT5.BT1_ID AND WT5.RECORD_TYPE = 21
-- join above is now supported by indexes on BUSINESS_TABLE_1 (ID) and WORK_TABLE_5 (BT1_ID, RECORD_TYPE), originally wasn't
LEFT OUTER JOIN WORK_TABLE_6 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_7 ON etc -- typical join on indexed columns
-- about 4000 lines of other code
)
That final insert into OUTPUT_TABLE_3 usually runs in under 10 seconds, but once in a while on certain customer servers it times out at our default 99 minutes. Then we have them take the tiemout off and run it on Friday night, and it finishes but takes 16 hours.
I narrowed the problem down to the join to WORK_TABLE_5, which had no index support, and put an index on the join terms. The next run took 4 seconds. But success has been intermittent, the customer occasionally gets some slow runs when they drastically change their export selection (i.e. drastically change the data in WORK_TABLE_5). And if we update statistics and rebuild indexes after a timed out export, it runs fine at the next attempt.
So, I am wondering about how best to handle truncating/filling static work tables with static indexes, statistics updated overnight, and a stored procedure compiled when the statistics are nothing like runtime.
I have a few general questions about things I'd like to understand better:
Is the nature of the data in the work table going to substantially effect the query plan? Does Oracle form its query plan when you compile the stored procedure? Could we get a highly inappropriate query plan if we compile the stored procedure with the table empty then use a table with 500k rows at runtime?
I expect that if this were an ad-hoc script then updating statistics on the problem table just before selecting from it would eliminate the sporadic slowdowns. But what if I were to update statistics inside the stored procedure, which is compiled with different statistics from runtime?
Anything else you'd like to add...
Thanks for any advice. I hope my MSSQL preconceptions haven't made me too far off base.
This is happening in Oracle 11g, but the code is deployed to assorted customers using Oracle 10 through 12 and I'd like to cater to all of those if possible.
-- Joel
Huge differences in table or index sizes can most definitely cause performance problems. The solution is to add statistics gathering to the procedure instead of relying on the default statistics jobs.
If you've been away from Oracle since version 7, the most important new feature is the Cost Based Optimizer. Oracle now builds query execution plans based on the optimizer statistics of tables, indexes, columns, expressions, system statistics, outlines, directives, dynamic sampling, etc. If you're a full time Oracle developer you should probably spend a day reading about optimizer statistics. Start with Managing Optimizer Statistics and DBMS_STATS in the official documentation.
Eventually the stored procedure should look like this:
--1: Insert into working tables.
insert into work_table...
--2: Gather statistics on working tables.
dbms_stats.gather_table_stats('SCHEMA_NAME', 'WORK_TABLE', ...);
--3: Use working tables.
insert into other_table select * from work_table...
There are so many statistics features it's hard to know exactly what parameters to use in that second step above. Here are some guesses about some features you might find useful:
DEGREE - One reason people avoid gathering statistics inside a process is the time is takes. You can significantly improve the run time by setting the degree. Although this also uses significantly more resources.
NO_INVALIDATE - It can be tricky to know when exactly are the statistics "set" for a query. Gathering statistics usually quickly invalidates execution plans that were based on old statistics. But not always. If you want to be 100% sure that the next query is using the latest statistics you want to set NO_INVALIDATE=>FALSE.
ESTIMATE_PERCENT In 11g and above you definitely want to use the default, which uses a faster algorithm. In 10g and below you may need to set the value to something low to make the gathering fast enough.
Although Oracle 10g and above comes with default statistics gathering jobs you cannot rely on them for a few reasons:
They are scheduled and may not run at the right time. If a process significantly changes the data then new stats are needed right away, not at 10 PM. If there are a lot of tables that need to be analyzed the job may not get to them all in one day.
Many DBAs disable the jobs. This is ridiculous and almost always a mistake. But you'll find many DBAs that disabled the job because they think they can do it better. Instead of working with the auto tasks, and settings preferences, many DBAs like to throw the whole thing out and replace it with a custom procedure that rots over time.
Functional requirement
We kinda work for devices. Each device, roughly speaking, has its unique identifier, an IP address, and a type.
I have a routine that pings all devices that has an IP address.
This routine is nothing more than a C# console application, which runs every 3 minutes trying to ping the IP address of each device.
The result of the ping I need to store in the database, as well as the date of verification (regardless of the result of the ping).
Then we got into the technical side.
Technical part:
Assuming my ping and bank structuring process is ready from the day 01/06/2016, I need to do two things:
Daily extraction
Extraction in real time (last 24 hours)
Both should return the same thing:
Devices that are unavailable for more than 24 hours.
Devices that are unavailable for more than 7 days.
Understood to be unavailable the device to be pinged AND did not responded.
It is understood by available device to be pinged AND answered successfully.
What I have today and works very badly:
A table with the following structure:
create table history (id_device number, response number, date date);
This table has a large amount of data (now has 60 million, but the trend is always grow exponentially)
** Here are the questions: **
How to achieve these objectives without encountering problems of slowness in queries?
How to create a table structure that is prepared to receive millions / billions of records within my corporate world?
Partition the table based on date.
For partitioning strategy consider performance vs maintanence.
For easy mainanence use automatic INTERVAL partitions by month or week.
You can even do it by day or manually pre-define 2 day intervals.
You query only needs 2 calendar days.
select id_device,
min(case when response is null then 'N' else 'Y' end),
max(case when response is not null then date end)
from history
where date > sysdate - 1
group by id_device
having min(case when response is null then 'N' else 'Y' end) = 'N'
and sysdate - max(case when response is not null then date end) > ?;
If for missing responses you write a default value instead of NULL, you may try building it as an index-organized table.
You need to read about Oracle partitioning.
This statement will create your HISTORY table partitioned by calendar day.
create table history (id_device number, response number, date date)
PARTITION BY RANGE (date)
INTERVAL(NUMTOYMINTERVAL(1, 'DAY'))
( PARTITION p0 VALUES LESS THAN (TO_DATE('5-24-2016', 'DD-MM-YYYY')),
PARTITION p1 VALUES LESS THAN (TO_DATE('5-25-2016', 'DD-MM-YYYY'));
All your old data will be in P0 partition.
Starting 5/24/2016 a new partition will be automatically created each day.
HISTORY now is a single logical object but physically it is a collection of identical tables stacked on top of each other.
Because each partitions data is stored separately, when a query asks for one day worth of data, only a single partition needs to be scanned.
We have a transactional database with just 2 weeks of data and another archive database which holds data older than 2 weeks. Both DBs share the same schema structure and are in separate servers. We have a reporting application which queries data from both these databases where the user selects which database he wants to query by using a dropdown selection. In order to improve user experience we are thinking to do away with the dropdown selection by making the DB selection transparent in the background. Below are the few options we had in mind
Use UNION for the 2 select queries via DB links
Query DB1 first and if no records query DB2
Since the data volume is more we are apprehensive about our choices.
Appreciate if anyone has any other suggestions on how to approach this.
In my particular opinion, the best two choices are:
always give the user the data newer than a relative date (e.g. the last three months of data).
always give the user the last n data (e.g. the newest 250 rows).
Give all data will be inefficient when you have a big dataset.
But if you want to strengthen the autonomy and protect the user's work (two important design principles in user interfaces) then you must let the user configure the relative time or the number of data items desired. Or you can also let the user explore all/older data in particular situation (e.g. using a special window, a pagination system, a particular interface or a completly new use case).
Let's see two examples. (I assume that user is querying the server with newest data and OLD is the name of the dblink you use to reference the server with the data older than two weeks. I also assume that the target table is named DATATABLE and the column with the date is called DATADATE).
To retrieve the last three months (first choice):
SELECT * FROM DATATABLE
UNION ALL
SELECT * FROM DATATABLE#OLD WHERE MONTHS_BETWEEN(SYSDATE, DATADATE) >= 3;
And, to retrieve the last 250 rows (second choice):
SELECT *
FROM (SELECT * FROM DATATABLE ORDER BY DATADATE DESC)
WHERE ROWNUM <= 250;
UNION ALL
SELECT *
FROM (SELECT * FROM DATATABLE#OLD ORDER BY DATADATE DESC)
WHERE ROWNUM <= (250 - (SELECT COUNT(*) FROM DATATABLE));
Just wondering if any of you people use Count(1) over Count(*) and if there is a noticeable difference in performance or if this is just a legacy habit that has been brought forward from days gone past?
The specific database is SQL Server 2005.
There is no difference.
Reason:
Books on-line says "COUNT ( { [ [ ALL | DISTINCT ] expression ] | * } )"
"1" is a non-null expression: so it's the same as COUNT(*).
The optimizer recognizes it for what it is: trivial.
The same as EXISTS (SELECT * ... or EXISTS (SELECT 1 ...
Example:
SELECT COUNT(1) FROM dbo.tab800krows
SELECT COUNT(1),FKID FROM dbo.tab800krows GROUP BY FKID
SELECT COUNT(*) FROM dbo.tab800krows
SELECT COUNT(*),FKID FROM dbo.tab800krows GROUP BY FKID
Same IO, same plan, the works
Edit, Aug 2011
Similar question on DBA.SE.
Edit, Dec 2011
COUNT(*) is mentioned specifically in ANSI-92 (look for "Scalar expressions 125")
Case:
a) If COUNT(*) is specified, then the result is the cardinality of T.
That is, the ANSI standard recognizes it as bleeding obvious what you mean. COUNT(1) has been optimized out by RDBMS vendors because of this superstition. Otherwise it would be evaluated as per ANSI
b) Otherwise, let TX be the single-column table that is the
result of applying the <value expression> to each row of T
and eliminating null values. If one or more null values are
eliminated, then a completion condition is raised: warning-
In SQL Server, these statements yield the same plans.
Contrary to the popular opinion, in Oracle they do too.
SYS_GUID() in Oracle is quite computation intensive function.
In my test database, t_even is a table with 1,000,000 rows
This query:
SELECT COUNT(SYS_GUID())
FROM t_even
runs for 48 seconds, since the function needs to evaluate each SYS_GUID() returned to make sure it's not a NULL.
However, this query:
SELECT COUNT(*)
FROM (
SELECT SYS_GUID()
FROM t_even
)
runs for but 2 seconds, since it doen't even try to evaluate SYS_GUID() (despite * being argument to COUNT(*))
I work on the SQL Server team and I can hopefully clarify a few points in this thread (I had not seen it previously, so I am sorry the engineering team has not done so previously).
First, there is no semantic difference between select count(1) from table vs. select count(*) from table. They return the same results in all cases (and it is a bug if not). As noted in the other answers, select count(column) from table is semantically different and does not always return the same results as count(*).
Second, with respect to performance, there are two aspects that would matter in SQL Server (and SQL Azure): compilation-time work and execution-time work. The Compilation time work is a trivially small amount of extra work in the current implementation. There is an expansion of the * to all columns in some cases followed by a reduction back to 1 column being output due to how some of the internal operations work in binding and optimization. I doubt it would show up in any measurable test, and it would likely get lost in the noise of all the other things that happen under the covers (such as auto-stats, xevent sessions, query store overhead, triggers, etc.). It is maybe a few thousand extra CPU instructions. So, count(1) does a tiny bit less work during compilation (which will usually happen once and the plan is cached across multiple subsequent executions). For execution time, assuming the plans are the same there should be no measurable difference. (One of the earlier examples shows a difference - it is most likely due to other factors on the machine if the plan is the same).
As to how the plan can potentially be different. These are extremely unlikely to happen, but it is potentially possible in the architecture of the current optimizer. SQL Server's optimizer works as a search program (think: computer program playing chess searching through various alternatives for different parts of the query and costing out the alternatives to find the cheapest plan in reasonable time). This search has a few limits on how it operates to keep query compilation finishing in reasonable time. For queries beyond the most trivial, there are phases of the search and they deal with tranches of queries based on how costly the optimizer thinks the query is to potentially execute. There are 3 main search phases, and each phase can run more aggressive(expensive) heuristics trying to find a cheaper plan than any prior solution. Ultimately, there is a decision process at the end of each phase that tries to determine whether it should return the plan it found so far or should it keep searching. This process uses the total time taken so far vs. the estimated cost of the best plan found so far. So, on different machines with different speeds of CPUs it is possible (albeit rare) to get different plans due to timing out in an earlier phase with a plan vs. continuing into the next search phase. There are also a few similar scenarios related to timing out of the last phase and potentially running out of memory on very, very expensive queries that consume all the memory on the machine (not usually a problem on 64-bit but it was a larger concern back on 32-bit servers). Ultimately, if you get a different plan the performance at runtime would differ. I don't think it is remotely likely that the difference in compilation time would EVER lead to any of these conditions happening.
Net-net: Please use whichever of the two you want as none of this matters in any practical form. (There are far, far larger factors that impact performance in SQL beyond this topic, honestly).
I hope this helps. I did write a book chapter about how the optimizer works but I don't know if its appropriate to post it here (as I get tiny royalties from it still I believe). So, instead of posting that I'll post a link to a talk I gave at SQLBits in the UK about how the optimizer works at a high level so you can see the different main phases of the search in a bit more detail if you want to learn about that. Here's the video link: https://sqlbits.com/Sessions/Event6/inside_the_sql_server_query_optimizer
Clearly, COUNT(*) and COUNT(1) will always return the same result. Therefore, if one were slower than the other it would effectively be due to an optimiser bug. Since both forms are used very frequently in queries, it would make no sense for a DBMS to allow such a bug to remain unfixed. Hence you will find that the performance of both forms is (probably) identical in all major SQL DBMSs.
In the SQL-92 Standard, COUNT(*) specifically means "the cardinality of the table expression" (could be a base table, `VIEW, derived table, CTE, etc).
I guess the idea was that COUNT(*) is easy to parse. Using any other expression requires the parser to ensure it doesn't reference any columns (COUNT('a') where a is a literal and COUNT(a) where a is a column can yield different results).
In the same vein, COUNT(*) can be easily picked out by a human coder familiar with the SQL Standards, a useful skill when working with more than one vendor's SQL offering.
Also, in the special case SELECT COUNT(*) FROM MyPersistedTable;, the thinking is the DBMS is likely to hold statistics for the cardinality of the table.
Therefore, because COUNT(1) and COUNT(*) are semantically equivalent, I use COUNT(*).
COUNT(*) and COUNT(1) are same in case of result and performance.
I would expect the optimiser to ensure there is no real difference outside weird edge cases.
As with anything, the only real way to tell is to measure your specific cases.
That said, I've always used COUNT(*).
As this question comes up again and again, here is one more answer. I hope to add something for beginners wondering about "best practice" here.
SELECT COUNT(*) FROM something counts records which is an easy task.
SELECT COUNT(1) FROM something retrieves a 1 per record and than counts the 1s that are not null, which is essentially counting records, only more complicated.
Having said this: Good dbms notice that the second statement will result in the same count as the first statement and re-interprete it accordingly, as not to do unnecessary work. So usually both statements will result in the same execution plan and take the same amount of time.
However from the point of readability you should use the first statement. You want to count records, so count records, not expressions. Use COUNT(expression) only when you want to count non-null occurences of something.
I ran a quick test on SQL Server 2012 on an 8 GB RAM hyper-v box. You can see the results for yourself. I was not running any other windowed application apart from SQL Server Management Studio while running these tests.
My table schema:
CREATE TABLE [dbo].[employee](
[Id] [bigint] IDENTITY(1,1) NOT NULL,
[Name] [nvarchar](50) NOT NULL,
CONSTRAINT [PK_employee] PRIMARY KEY CLUSTERED
(
[Id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
Total number of records in Employee table: 178090131 (~ 178 million rows)
First Query:
Set Statistics Time On
Go
Select Count(*) From Employee
Go
Set Statistics Time Off
Go
Result of First Query:
SQL Server parse and compile time:
CPU time = 0 ms, elapsed time = 35 ms.
(1 row(s) affected)
SQL Server Execution Times:
CPU time = 10766 ms, elapsed time = 70265 ms.
SQL Server parse and compile time:
CPU time = 0 ms, elapsed time = 0 ms.
Second Query:
Set Statistics Time On
Go
Select Count(1) From Employee
Go
Set Statistics Time Off
Go
Result of Second Query:
SQL Server parse and compile time:
CPU time = 14 ms, elapsed time = 14 ms.
(1 row(s) affected)
SQL Server Execution Times:
CPU time = 11031 ms, elapsed time = 70182 ms.
SQL Server parse and compile time:
CPU time = 0 ms, elapsed time = 0 ms.
You can notice there is a difference of 83 (= 70265 - 70182) milliseconds which can easily be attributed to exact system condition at the time queries are run. Also I did a single run, so this difference will become more accurate if I do several runs and do some averaging. If for such a huge data-set the difference is coming less than 100 milliseconds, then we can easily conclude that the two queries do not have any performance difference exhibited by the SQL Server Engine.
Note : RAM hits close to 100% usage in both the runs. I restarted SQL Server service before starting both the runs.
SET STATISTICS TIME ON
select count(1) from MyTable (nolock) -- table containing 1 million records.
SQL Server Execution Times:
CPU time = 31 ms, elapsed time = 36 ms.
select count(*) from MyTable (nolock) -- table containing 1 million records.
SQL Server Execution Times:
CPU time = 46 ms, elapsed time = 37 ms.
I've ran this hundreds of times, clearing cache every time.. The results vary from time to time as server load varies, but almost always count(*) has higher cpu time.
There is an article showing that the COUNT(1) on Oracle is just an alias to COUNT(*), with a proof about that.
I will quote some parts:
There is a part of the database software that is called “The
Optimizer”, which is defined in the official documentation as
“Built-in database software that determines the most efficient way to
execute a SQL statement“.
One of the components of the optimizer is called “the transformer”,
whose role is to determine whether it is advantageous to rewrite the
original SQL statement into a semantically equivalent SQL statement
that could be more efficient.
Would you like to see what the optimizer does when you write a query
using COUNT(1)?
With a user with ALTER SESSION privilege, you can put a tracefile_identifier, enable the optimizer tracing and run the COUNT(1) select, like: SELECT /* test-1 */ COUNT(1) FROM employees;.
After that, you need to localize the trace files, what can be done with SELECT VALUE FROM V$DIAG_INFO WHERE NAME = 'Diag Trace';. Later on the file, you will find:
SELECT COUNT(*) “COUNT(1)” FROM “COURSE”.”EMPLOYEES” “EMPLOYEES”
As you can see, it's just an alias for COUNT(*).
Another important comment: the COUNT(*) was really faster two decades ago on Oracle, before Oracle 7.3:
Count(1) has been rewritten in count(*) since 7.3 because Oracle like
to Auto-tune mythic statements. In earlier Oracle7, oracle had to
evaluate (1) for each row, as a function, before DETERMINISTIC and
NON-DETERMINISTIC exist.
So two decades ago, count(*) was faster
For another databases as Sql Server, it should be researched individually for each one.
I know that this question is specific for SQL Server, but the other questions on SO about the same subject (without mention a specific database) were closed and marked as duplicated from this answer.
In all RDBMS, the two ways of counting are equivalent in terms of what result they produce. Regarding performance, I have not observed any performance difference in SQL Server, but it may be worth pointing out that some RDBMS, e.g. PostgreSQL 11, have less optimal implementations for COUNT(1) as they check for the argument expression's nullability as can be seen in this post.
I've found a 10% performance difference for 1M rows when running:
-- Faster
SELECT COUNT(*) FROM t;
-- 10% slower
SELECT COUNT(1) FROM t;
COUNT(1) is not substantially different from COUNT(*), if at all. As to the question of COUNTing NULLable COLUMNs, this can be straightforward to demo the differences between COUNT(*) and COUNT(<some col>)--
USE tempdb;
GO
IF OBJECT_ID( N'dbo.Blitzen', N'U') IS NOT NULL DROP TABLE dbo.Blitzen;
GO
CREATE TABLE dbo.Blitzen (ID INT NULL, Somelala CHAR(1) NULL);
INSERT dbo.Blitzen SELECT 1, 'A';
INSERT dbo.Blitzen SELECT NULL, NULL;
INSERT dbo.Blitzen SELECT NULL, 'A';
INSERT dbo.Blitzen SELECT 1, NULL;
SELECT COUNT(*), COUNT(1), COUNT(ID), COUNT(Somelala) FROM dbo.Blitzen;
GO
DROP TABLE dbo.Blitzen;
GO