WinSock best accept() practices - windows

Imagine you have a server which can handle only one client at a time. The server uses WSAAsyncSelect to be notified of new connections. In this case, what is the best way of handling FD_ACCEPT messages:
A > Accept the connection attempt right away but queue the client until its turn?
B > Do not accept the next connection attempt until we are done serving the currently connected client?
What do you guys think is the most efficient?

Here I describe the cons that I'm aware for both options. Hopefully this might help you decide.
A)
Upon a new client connection, it could send tons of data making your receive buffer become full, which causes unnecessary packets to be transmitted (see this). If you don't plan to receive any data from the client, shutdown receiving on that socket, thus if the client sends any data after that, the connection is reset. Moreover, if your protocol has strict rules, disconnect the client.
If the connection stays idle for too long, the system might disconnect it. To solve this, use setsockopt to set SO_KEEPALIVE on each client socket.
B)
If you don't accept the connection after a certain period (I guess the default is 60 seconds), it will timeout. In a normal (or most common) situation this indicates the server is overloaded, thus unable to answer in time. However, if the client is also designed by you, make the socket non-blocking, try to connect, then manage the timeout as you wish.

Ask yourself: what do you want the user experience to be at the other end? Do you want them to be stuck? Do you want them to time out? Do you want them to get a polite message?

Related

Is it possible for a websocket frame to fail to arrive?

As I understand it, Websockets use a Ping to detect that they are still connected. Except of course Chrome which leaves it to apps to do the ping themselves.
I'd like to understand if its possible for a connection to become unstable between pings such that a frame of data is not received... but to stabilize again by the time the next ping is sent. In other words: is it possible to have an apparently good websocket connection, but for data to fail to arrive?
Question relates to Is it possible to miss websocket events which remains unanswered and side-tracked into long-polling and socket-io.
Thanks!
This is heavily dependent on the client software (browser) that you use.
The websockets depend on a TCP connection which will make sure the message arrives to destination. Except if the network connection is down, of course.
However, some clients (browsers) will suspend the inactive tabs and will not process the events. If your page is inactive, it "may" fail to send data to the server because it will not be executed at all. On the other hand, it "may" also fail to receive data because the handler will not be executed at all.
Meanwhile, even if inactive, the machine will still receive the ping packets. So it is really about whether or not your client software gives it back to your code or not.

Long-polling vs websocket when expecting one-time response from server-side

I have read many articles on real-time push notifications. And the resume is that websocket is generally the preferred technique as long as you are not concerned about 100% browser compatibility. And yet, one article states that
Long polling - potentially when you are exchanging single call with
server, and server is doing some work in background.
This is exactly my case. The user presses a button which initiates some complex calculations on server-side, and as soon as the answer is ready, the server sends a push-notification to the client. The question is, can we say that for the case of one-time responses, long-polling is better choice than websockets?
Or unless we are concerned about obsolete browsers support and if I am going to start the project from scratch, websockets should ALWAYS be preferred to long-polling when it comes to push-protocol ?
The question is, can we say that for the case of one-time responses,
long-polling is better choice than websockets?
Not really. Long polling is inefficient (multiple incoming requests, multiple times your server has to check on the state of the long running job), particularly if the usual time period is long enough that you're going to have to poll many times.
If a given client page is only likely to do this operation once, then you can really go either way. There are some advantages and disadvantages to each mechanism.
At a response time of 5-10 minutes you cannot assume that a single http request will stay alive that long awaiting a response, even if you make sure the server side will stay open that long. Clients or intermediate network equipment (proxies, etc...) just make not keep the initial http connection open that long. That would have been the most efficient mechanism if you could have done that. But, I don't think you can count on that for a random network configuration and client configuration that you do not control.
So, that leaves you with several options which I think you already know, but I will describe here for completeness for others.
Option 1:
Establish websocket connection to the server by which you can receive push response.
Make http request to initiate the long running operation. Return response that the operation has been successfully initiated.
Receive websocket push response some time later.
Close webSocket (assuming this page won't be doing this again).
Option 2:
Make http request to initiate the long running operation. Return response that the operation has been successfully initiated and probably some sort of taskID that can be used for future querying.
Using http "long polling" to "wait" for the answer. Since these requests will likely "time out" before the response is received, you will have to regularly long poll until the response is received.
Option 3:
Establish webSocket connection.
Send message over webSocket connection to initiate the operation.
Receive response some time later that the operation is complete.
Close webSocket connection (assuming this page won't be using it any more).
Option 4:
Same as option 3, but using socket.io instead of plain webSocket to give you heartbeat and auto-reconnect logic to make sure the webSocket connection stays alive.
If you're looking at things purely from the networking and server efficiency point of view, then options 3 or 4 are likely to be the most efficient. You only have the overhead of one TCP connection between client and server and that one connection is used for all traffic and the traffic on that one connection is pretty efficient and supports actual push so the client gets notified as soon as possible.
From an architecture point of view, I'm not a fan of option 1 because it just seems a bit convoluted when you initiate the request using one technology and then send the response via another and it requires you to create a correlation between the client that initiated an incoming http request and a connected webSocket. That can be done, but it's extra bookkeeping on the server. Option 2 is simple architecturally, but inefficient (regularly polling the server) so it's not my favorite either.
There is an alterternative that don't require polling or having an open socket connection all the time.
It's called web push.
The Push API gives web applications the ability to receive messages pushed to them from a server, whether or not the web app is in the foreground, or even currently loaded, on a user agent. This lets developers deliver asynchronous notifications and updates to users that opt in, resulting in better engagement with timely new content.
Some perks are
You need to ask for notification permission
Your site needs to have a service worker running in foreground
having a service worker also means you need to have SSL / HTTPS

Socket.io data loss when Internet speed drop

I am using socket.io 1.4 and I want to know that what happens in this scenario:
The client Emits like this:
Socket.emit('test',data);
The client does 3 emits to server but suddenly Internet speed drops and those emits may not get to server
But after a while the Internet speed rises again but what will happen to previous failed emits?
They will be emitted again automatically?
How should I handle that
Websockets use TCP, which is in general a reliable protocol. There is not exactly such a thing as "The internet speed dropped and I lost some messages." If some messages are lost they will be automatically retransmitted at the TCP level. If retransmission fails completely, the connection will be reset.
So what you really are asking is how socket.io handles this. And the answer is that it has some amount of reconnecting logic, and you may also want to monitor the connection in case it resets (hook up a listener for the disconnect event on the socket), if you want to take some extra action (like notify the user).

How to make http2 requests with persistent connection ? (Any language)

How connect to https://api.push.apple.com using http2 with persistent connection ?
Persistent connection is to avoid rapid connection and disconnection:
APNs treats rapid connection and disconnection as a denial-of-service attack
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/APNsProviderAPI.html
Is writing a client in c using https://nghttp2.org the only solution?
(If that question should be ask in another StackExchange website, please do tell me)
Non-persistent connections are a relic of the past. They were used in HTTP/1.0, but HTTP/1.1 already moved to a model where the connections were persistent by default, and HTTP/2 (also being multiplexed) continues on that model of connections being persistent by default.
Independently on the language you are using to develop your applications, any HTTP/2 compliant client will, by default, use persistent connections.
You only need to use the HTTP/2 client library in a way that you don't explicitly close the connection after every request you make.
Typically these libraries employ a connection pool that keeps the connections open, typically until an idle timeout fires.
When your application makes HTTP requests, the library will pick an open connection and send the request. When the response arrives the library will not close the connection but instead put it back into the pool for the next usage.
Just study how the library you want to use allows you to make multiple requests without closing the connection.
I also met this question!
If the connection be idle for a long time (about 1 hour), then function poll catches no socket status changed. It always returns 0 even as on_frame_send_callback was invoked.
Is there anyone can figure out the problem?

How to drop inactive/disconnected peers in ZMQ

I have a client/server setup in which clients send a single request message to the server and gets a bunch of data messages back.
The server is implemented using a ROUTER socket and the clients using a DEALER. The communication is asynchronous.
The clients are typically iPads/iPhones and they connect over wifi so the connection is not 100% reliable.
The issue I’m concern about is if the client connects to the server and sends a request for data but before the response messages are delivered back the communication goes down (e.g. out of wifi coverage).
In this case the messages will be queued up on the server side waiting for the client to reconnect. That is fine for a short time but eventually I would like to drop the messages and the connection to release resources.
By checking activity/timeouts it would be possible in the server and the client applications to identify that the connection is gone. The client can shutdown the socket and in this way free resources but how can it be done in the server?
Per the ZMQ FAQ:
How can I flush all messages that are in the ZeroMQ socket queue?
There is no explicit command for flushing a specific message or all messages from the message queue. You may set ZMQ_LINGER to 0 and close the socket to discard any unsent messages.
Per this mailing list discussion from 2013:
There is no option to drop old messages [from an outgoing message queue].
Your best bet is to implement heartbeating and, when one client stops responding without explicitly disconnecting, restart your ROUTER socket. Messy, I know, this is really something that should have a companion option to HWM. Pieter Hintjens is clearly on board (he created ZMQ) - but that was from 2011, so it looks like nothing ever came of it.
This is a bit late but setting tcp keepalive to a reasonable value will cause dead sockets to close after the timeouts have expired.
Heartbeating is necessary for either side to determine the other side is still responding.
The only thing I'm not sure about is how to go about heartbeating many thousands of clients without spending all available cpu just on dealing with the heartbeats.

Resources