Ruby: convert proc to lambda? - ruby

Is it possible to convert a proc-flavored Proc into a lambda-flavored Proc?
Bit surprised that this doesn't work, at least in 1.9.2:
my_proc = proc {|x| x}
my_lambda = lambda &p
my_lambda.lambda? # => false!

This one was a bit tricky to track down. Looking at the docs for Proc#lambda? for 1.9, there's a fairly lengthy discussion about the difference between procs and lamdbas.
What it comes down to is that a lambda enforces the correct number of arguments, and a proc doesn't. And from that documentation, about the only way to convert a proc into a lambda is shown in this example:
define_method always defines a method without the tricks, even if a non-lambda Proc object is given. This is the only exception which the tricks are not preserved.
class C
define_method(:e, &proc {})
end
C.new.e(1,2) => ArgumentError
C.new.method(:e).to_proc.lambda? => true
If you want to avoid polluting any class, you can just define a singleton method on an anonymous object in order to coerce a proc to a lambda:
def convert_to_lambda &block
obj = Object.new
obj.define_singleton_method(:_, &block)
return obj.method(:_).to_proc
end
p = Proc.new {}
puts p.lambda? # false
puts(convert_to_lambda(&p).lambda?) # true
puts(convert_to_lambda(&(lambda {})).lambda?) # true

It is not possible to convert a proc to a lambda without trouble. The answer by Mark Rushakoff doesn't preserve the value of self in the block, because self becomes Object.new. The answer by Pawel Tomulik can't work with Ruby 2.1, because define_singleton_method now returns a Symbol, so to_lambda2 returns :_.to_proc.
My answer is also wrong:
def convert_to_lambda &block
obj = block.binding.eval('self')
Module.new.module_exec do
define_method(:_, &block)
instance_method(:_).bind(obj).to_proc
end
end
It preserves the value of self in the block:
p = 42.instance_exec { proc { self }}
puts p.lambda? # false
puts p.call # 42
q = convert_to_lambda &p
puts q.lambda? # true
puts q.call # 42
But it fails with instance_exec:
puts 66.instance_exec &p # 66
puts 66.instance_exec &q # 42, should be 66
I must use block.binding.eval('self') to find the correct object. I put my method in an anonymous module, so it never pollutes any class. Then I bind my method to the correct object. This works though the object never included the module! The bound method makes a lambda.
66.instance_exec &q fails because q is secretly a method bound to 42, and instance_exec can't rebind the method. One might fix this by extending q to expose the unbound method, and redefining instance_exec to bind the unbound method to a different object. Even so, module_exec and class_exec would still fail.
class Array
$p = proc { def greet; puts "Hi!"; end }
end
$q = convert_to_lambda &$p
Hash.class_exec &$q
{}.greet # undefined method `greet' for {}:Hash (NoMethodError)
The problem is that Hash.class_exec &$q defines Array#greet and not Hash#greet. (Though $q is secretly a method of an anonymous module, it still defines methods in Array, not in the anonymous module.) With the original proc, Hash.class_exec &$p would define Hash#greet. I conclude that convert_to_lambda is wrong because it doesn't work with class_exec.

Here is possible solution:
class Proc
def to_lambda
return self if lambda?
# Save local reference to self so we can use it in module_exec/lambda scopes
source_proc = self
# Convert proc to unbound method
unbound_method = Module.new.module_exec do
instance_method( define_method( :_proc_call, &source_proc ))
end
# Return lambda which binds our unbound method to correct receiver and calls it with given args/block
lambda do |*args, &block|
# If binding doesn't changed (eg. lambda_obj.call) then bind method to original proc binding,
# otherwise bind to current binding (eg. instance_exec(&lambda_obj)).
unbound_method.bind( self == source_proc ? source_proc.receiver : self ).call( *args, &block )
end
end
def receiver
binding.eval( "self" )
end
end
p1 = Proc.new { puts "self = #{self.inspect}" }
l1 = p1.to_lambda
p1.call #=> self = main
l1.call #=> self = main
p1.call( 42 ) #=> self = main
l1.call( 42 ) #=> ArgumentError: wrong number of arguments (1 for 0)
42.instance_exec( &p1 ) #=> self = 42
42.instance_exec( &l1 ) #=> self = 42
p2 = Proc.new { return "foo" }
l2 = p2.to_lambda
p2.call #=> LocalJumpError: unexpected return
l2.call #=> "foo"
Should work on Ruby 2.1+

Cross ruby compatiable library for converting procs to lambdas:
https://github.com/schneems/proc_to_lambda
The Gem:
http://rubygems.org/gems/proc_to_lambda

The above code doesn't play nicely with instance_exec but I think there is simple fix for that. Here I have an example which illustrates the issue and solution:
# /tmp/test.rb
def to_lambda1(&block)
obj = Object.new
obj.define_singleton_method(:_,&block)
obj.method(:_).to_proc
end
def to_lambda2(&block)
Object.new.define_singleton_method(:_,&block).to_proc
end
l1 = to_lambda1 do
print "to_lambda1: #{self.class.name}\n"
end
print "l1.lambda?: #{l1.lambda?}\n"
l2 = to_lambda2 do
print "to_lambda2: #{self.class.name}\n"
end
print "l2.lambda?: #{l2.lambda?}\n"
class A; end
A.new.instance_exec &l1
A.new.instance_exec &l2
to_lambda1 is basically the implementation proposed by Mark, to_lambda2 is a "fixed" code.
The output from above script is:
l1.lambda?: true
l2.lambda?: true
to_lambda1: Object
to_lambda2: A
In fact I'd expect instance_exec to output A, not Object (instance_exec should change binding). I don't know why this work differently, but I suppose that define_singleton_method returns a method that is not yet bound to Object and Object#method returns an already bound method.

Related

Evaluate instance variable in block passed to class_eval through wrapper

I want to extend the functionality of a method asdf at runtime.
A method append_asdf should allow modifying the method more easily.
I understand how to call the previous method but the private variable #b evaluates to nil inside the block used to specify the additional behaviour - if passed through the wrapper.
It works as expected when passed to class_eval directly (which is not what I want).
Why?
class A
def initialize
#b = "144"
end
def asdf
puts "12"
end
def self.append_asdf(&n)
m = instance_method(:asdf)
define_method(:asdf) {
m.bind(self).call
n.call
}
end
end
a = A.new
p = proc {
puts #b
}
The proc p is used here to drive home the point that it doesn't depend on the block. It behaves the same as a literal.
This doesn't work:
A.append_asdf(&p)
a.asdf
=>
12
Note the empty line. The same proc used here evaluates as expected:
A.class_eval {
define_method(:asdf, p)
}
a.asdf
=>
144
You need to evaluate that block in the proper context. In other words:
instance_eval(&n)
Instead of a regular call.

Default method for Ruby class

Is there a way to specify a class method such that when the object is used as if it were a function, that method is called? Something like this:
class MyClass
def some_magic_method(*args)
# stuff happens
end
end
# create object
myob = MyClass.new
# implicitly call some_magic_method
myob 'x'
You could write a command class and make use of a ruby shortcut
class MyClass
def self.call(text)
puts text
end
end
MyClass.('x')
Here MyClass.() defaults to the call class method.
As mentioned by #CarySwoveland in the comments you can use method_missing. A basic example is as follows:
class MyClass
def method_missing(method_name, *args)
if method_name.match?(/[xyz]/)
send(:magic_method, args.first)
else
super
end
end
def magic_method(a)
a = 'none' if a.nil?
"xyz-magic method; argument(s): #{a}"
end
end
myob = MyClass.new
myob.x #=> "xyz-magic method; argument(s): none"
myob.x(1) #=> "xyz-magic method; argument(s): 1"
myob.y #=> "xyz-magic method; argument(s): none"
myob.z #=> "xyz-magic method; argument(s): none"
This captures all methods named x, y or z. Our else branch sends all other undefined methods to the original method_missing:
myob.v #=> test.rb:7:in `method_missing': undefined method `v' for
#<MyClass:0x000000021914f8> (NoMethodError)
#from test.rb:25:in `<main>'
What methods you capture is up to you and is determined by the regex /[xyz]/ in this case.
Key methods: BasicObject#method_missing, Object#send. For further info check out this question, read Eloquent Ruby by Russ Olsen (from which this answer references)
You meant to invoke some class' instance method when the object is invoked as a function. This is already supported: instance method call gets called when you "invoke" an object via the functional invocation method () (for more details, see here How do I reference a function in Ruby?).
class C
def call(x)
puts "Called with #{x}"
end
end
obj = C.new
obj.(88) # Called with 88 => nil
obj (88) # NoMethodError: undefined method `obj' for main:Object
If you do want the latter syntax, a horrible trick is the following one (but works only at the top-level, unless you carry along the bindings):
module Kernel
def method_missing(name,*args)
obj = begin
TOPLEVEL_BINDING.local_variable_get(name)
rescue
nil
end
return super if obj.nil?
obj.send :call, *args
end
end
obj = C.new
obj 88 # Called with OK => nil
This example also wants to communicate that you should always keep in mind
who is the receiver of your method calls, and what syntaxes are available for calling methods (especially when you leave out dots and parentheses).
class D
def obj; C.new end
def f
#(obj) 88 # BAD
(obj).(88)
#obj() 88 # BAD
obj().(88)
end
end
The point is that you do not actually have functions, but methods that get called on objects. If you omit the receiver of a method call, the receiver defaults to self, the current object. But in your example, myob does not appear as an explicit receiver (since there is not following dot as in myob.), hence the current object is looked for a method myob.

Create blank binding in the scope of an object

class Foo
def self.run(n,code)
foo = self.new(n)
#env = foo.instance_eval{ binding }
#env.eval(code)
end
def initialize(n)
#n = n
end
end
Foo.run( 42, "p #n, defined? foo" )
#=> 42
#=> "local-variable"
The sample program above is intended to evaluate arbitrary code within the scope of a Foo instance. It does that, but the binding is "polluted" with the local variables from the code method. I don't want foo, n, or code to be visible to the eval'd code. The desired output is:
#=> 42
#=> nil
How can I create a binding that is (a) in the scope of the object instance, but (b) devoid of any local variables?
The reason that I am creating a binding instead of just using instance_eval(code) is that in the real usage I need to keep the binding around for later usage, to preserve the local variables created in it.
so like this? or did i miss something important here?
class Foo
attr_reader :b
def initialize(n)
#n = n
#b = binding
end
def self.run(n, code)
foo = self.new(n)
foo.b.eval(code)
end
end
Foo.run(42, "p #n, defined?(foo)")
# 42
# nil
or move it further down to have even less context
class Foo
def initialize(n)
#n = n
end
def b
#b ||= binding
end
def self.run(n, code)
foo = self.new(n)
foo.b.eval(code)
end
end
Foo.run(42, "p #n, defined?(foo), defined?(n)")
# 42
# nil
# nil
Answer:
module BlankBinding
def self.for(object)
#object = object
create
end
def self.create
#object.instance_eval{ binding }
end
end
Description:
In order to get a binding with no local variables, you must call binding in a scope without any of them. Calling a method resets the local variables, so we need to do that. However, if we do something like this:
def blank_binding_for(obj)
obj.instance_eval{ binding }
end
…the resulting binding will have an obj local variable. You can hide this fact like so:
def blank_binding_for(_)
_.instance_eval{ binding }.tap{ |b| b.eval("_=nil") }
end
…but this only removes the value of the local variable. (There is no remove_local_variable method in Ruby currently.) This is sufficient if you are going to use the binding in a place like IRB or ripl where the _ variable is set after every evaluation, and thus will run over your shadow.
However, as shown in the answer at top, there's another way to pass a value to a method, and that's through an instance variable (or class variable, or global variable). Since we are using instance_eval to shift the self to our object, any instance variables we create in order to invoke the method will not be available in the binding.

How are respond_to and respond_to_missing different?

I'm confused when to use each of this methods.
From respond_to? documentation:
Returns true if obj responds to the given method. Private methods
are included in the search only if the optional second parameter
evaluates to true.
If the method is not implemented, as Process.fork on Windows,
File.lchmod on GNU/Linux, etc., false is returned.
If the method is not defined, respond_to_missing? method is called and
the result is returned.
And respond_to_missing?:
Hook method to return whether the obj can respond to id method or
not.
See #respond_to?.
Both methods takes 2 arguments.
Both methods seems to the same thing(check if some object respond to given method) so why we should use(have) both?
Defining 'resond_to_missing?` gives you ability to take methods:
class A
def method_missing name, *args, &block
if name == :meth1
puts 'YES!'
else
raise NoMethodError
end
end
def respond_to_missing? name, flag = true
if name == :meth1
true
else
false
end
end
end
[65] pry(main)> A.new.method :meth1
# => #<Method: A#meth1>
Why respond_to? couldn't do this?
What I guess:
respond_to? checks if method is in:
Current object.
Parent object.
Included modules.
respond_to_missing? checks if method is:
Defined via method_missing:
Via array of possible methods:
def method_missing name, *args, &block
arr = [:a, :b, :c]
if arr.include? name
puts name
else
raise NoMethodError
end
end
Delegating it to different object:
class A
def initialize name
#str = String name
end
def method_missing name, *args, &block
#str.send name, *args, &block
end
end
2 . Other way that I'm not aware of.
Where should both be defined/used(my guessing too):
Starting from 1.9.3(as fair I remember) define only respond_to_missing? but use only respond_to?
Last questions:
Am I right? Did I missed something? Correct everything that is bad and/or answer questions asked in this question.
respond_to_missing? is supposed to be updated when you make available additional methods using the method missing technique. This will cause the Ruby interpreter to better understand the existence of the new method.
In fact, without using respond_to_missing?, you can't get the method using method.
Marc-André posted a great article about the respond_to_missing?.
In order for respond_to? to return true, one can specialize it, as follows:
class StereoPlayer
# def method_missing ...
# ...
# end
def respond_to?(method, *)
method.to_s =~ /play_(\w+)/ || super
end
end
p.respond_to? :play_some_Beethoven # => true
This is better, but it still doesn’t make play_some_Beethoven behave exactly like a method. Indeed:
p.method :play_some_Beethoven
# => NameError: undefined method `play_some_Beethoven'
# for class `StereoPlayer'
Ruby 1.9.2 introduces respond_to_missing? that provides for a clean solution to the problem. Instead of specializing respond_to? one specializes respond_to_missing?. Here’s a full example:
class StereoPlayer
# def method_missing ...
# ...
# end
def respond_to_missing?(method, *)
method =~ /play_(\w+)/ || super
end
end
p = StereoPlayer.new
p.play_some_Beethoven # => "Here's some_Beethoven"
p.respond_to? :play_some_Beethoven # => true
m = p.method(:play_some_Beethoven) # => #<Method: StereoPlayer#play_some_Beethoven>
# m acts like any other method:
m.call # => "Here's some_Beethoven"
m == p.method(:play_some_Beethoven) # => true
m.name # => :play_some_Beethoven
StereoPlayer.send :define_method, :ludwig, m
p.ludwig # => "Here's some_Beethoven"
See also Always Define respond_to_missing? When Overriding method_missing.

Change the binding of a Proc in Ruby

I have this code:
l = lambda { a }
def some_function
a = 1
end
I just want to access a by the lambda and a special scope which has defined a already somewhere like inside some_function in the example, or just soon later in the same scope as:
l = lambda { a }
a = 1
l.call
Then I found when calling l, it is still using its own binding but not the new one where it was called.
And then I tried to use it as:
l.instance_eval do
a = 1
call
end
But this also failed, it is strange that I can't explain why.
I know the one of the solution is using eval, in which I could special a binding and executing some code in text, but I really do not want to use as so.
And, I know it is able to use a global variable or instance variable. However, actually my code is in a deeper embedded environment, so I don't want to break the completed parts if not quite necessary.
I have referred the Proc class in the documentation, and I found a function names binding that referred to the Proc's context. While the function only provided a way to access its binding but cannot change it, except using Binding#eval. It evaluate text also, which is exactly what I don't like to do.
Now the question is, do I have a better (or more elegant) way to implement this? Or using eval is already the regular manner?
Edit to reply to #Andrew:
Okay, this is a problem which I met when I'm writing a lexical parser, in which I defined a array with fixed-number of items, there including at least a Proc and a regular expression. My purpose is to matching the regular expressions and execute the Procs under my special scope, where the Proce will involved some local variables that should be defined later. And then I met the problem above.
Actually I suppose it is not same completely to that question, as mine is how to pass in binding to a Proc rather than how to pass it out.
#Niklas:
Got your answer, I think that is what exactly I want. It has solved my problem perfectly.
You can try the following hack:
class Proc
def call_with_vars(vars, *args)
Struct.new(*vars.keys).new(*vars.values).instance_exec(*args, &self)
end
end
To be used like this:
irb(main):001:0* lambda { foo }.call_with_vars(:foo => 3)
=> 3
irb(main):002:0> lambda { |a| foo + a }.call_with_vars({:foo => 3}, 1)
=> 4
This is not a very general solution, though. It would be better if we could give it Binding instance instead of a Hash and do the following:
l = lambda { |a| foo + a }
foo = 3
l.call_with_binding(binding, 1) # => 4
Using the following, more complex hack, this exact behaviour can be achieved:
class LookupStack
def initialize(bindings = [])
#bindings = bindings
end
def method_missing(m, *args)
#bindings.reverse_each do |bind|
begin
method = eval("method(%s)" % m.inspect, bind)
rescue NameError
else
return method.call(*args)
end
begin
value = eval(m.to_s, bind)
return value
rescue NameError
end
end
raise NoMethodError
end
def push_binding(bind)
#bindings.push bind
end
def push_instance(obj)
#bindings.push obj.instance_eval { binding }
end
def push_hash(vars)
push_instance Struct.new(*vars.keys).new(*vars.values)
end
def run_proc(p, *args)
instance_exec(*args, &p)
end
end
class Proc
def call_with_binding(bind, *args)
LookupStack.new([bind]).run_proc(self, *args)
end
end
Basically we define ourselves a manual name lookup stack and instance_exec our proc against it. This is a very flexible mechanism. It not only enables the implementation of call_with_binding, it can also be used to build up much more complex lookup chains:
l = lambda { |a| local + func(2) + some_method(1) + var + a }
local = 1
def func(x) x end
class Foo < Struct.new(:add)
def some_method(x) x + add end
end
stack = LookupStack.new
stack.push_binding(binding)
stack.push_instance(Foo.new(2))
stack.push_hash(:var => 4)
p stack.run_proc(l, 5)
This prints 15, as expected :)
UPDATE: Code is now also available at Github. I use this for one my projects too now.
class Proc
def call_with_obj(obj, *args)
m = nil
p = self
Object.class_eval do
define_method :a_temp_method_name, &p
m = instance_method :a_temp_method_name; remove_method :a_temp_method_name
end
m.bind(obj).call(*args)
end
end
And then use it as:
class Foo
def bar
"bar"
end
end
p = Proc.new { bar }
bar = "baz"
p.call_with_obj(self) # => baz
p.call_with_obj(Foo.new) # => bar
Perhaps you don't actually need to define a later, but instead only need to set it later.
Or (as below), perhaps you don't actually need a to be a local variable (which itself references an array). Instead, perhaps you can usefully employ a class variable, such as ##a. This works for me, by printing "1":
class SomeClass
def l
#l ||= lambda { puts ##a }
end
def some_function
##a = 1
l.call
end
end
SomeClass.new.some_function
a similar way:
class Context
attr_reader :_previous, :_arguments
def initialize(_previous, _arguments)
#_previous = _previous
#_arguments = _arguments
end
end
def _code_def(_previous, _arguments = [], &_block)
define_method("_code_#{_previous}") do |_method_previous, _method_arguments = []|
Context.new(_method_previous, _method_arguments).instance_eval(&_block)
end
end
_code_def('something') do
puts _previous
puts _arguments
end

Resources