In Memory Caching of Dataset - caching

I am planning to do some in memory caching of my data for operations in my web service. This data would be basically lookup values which do not change frequently. I was planning to get all that data in datasets (multiple tables) and store them till the data does not change on DB side. This is so because some of my data never changes, where some may change quite frequently. Any idea?

I would probably cache it at the DataTable level, then each table could have it's own caching rules (expiration time, last updated, etc, etc).

Related

Cache only specific tables in Spring boot

I have a table with millions of rows (with 98% reads, maybe 1 - 2% writes) which has references to couple of other config tables (with maybe 20 entries each). What are the best practices for caching the tables in this case? I cannot cache the table with millions of rows. But at the same time, I also don't want to hit the DB for the config tables. Is there a work around for this? I'm using Spring boot, and the data is in postgres.
Thanks.
First of all, let me refer to this:
What are the best practices for caching the tables in this case
I don't think you should "cache tables" as you say. In the Application, you work with the data, and this is what should be cached. This means the object that you cache should be already in a structure that includes these relations. Of course, in order to fetch the whole object from the database, you can use JOINs, but when the object gets cached, it doesn't matter already, the translation from Relational model to the object model was done.
Now the question is too broad because the actual answer can vary on the technologies you use, nature of data, and so forth.
You should answer the following questions before you design the cache (the list is out my head, but hopefully you'll get the idea):
What is the cache invalidation strategy? You say, there are 2% writes, what happens if the data gets updated, the data in the cache may become stale. Is it ok?
A kind of generalization of the previous question: If you have multiple instances (JVMs) of the same application, and one of them triggered the update to the DB data, what should happen to other apps' caches?
How long the stale/invalid data can reside in the cache?
Do the use cases of your application access all the data from the tables with the same frequencies or some data is more "interesting" (for example, the oldest data is not read, but the latest data is always "hot")? Probably if its millions of data for configuration, the JVM doesn't have all these objects in the heap at the same time, so there should be some "slice" of this data...
What are the performance implications of having the cache? How does it affect the GC behavior?
What technologies can be used in your case (maybe due to some regulations/licensing, some technologies are just not available, this is more a case in large organizations)
Based on these observations you can go with:
In-memory cache:
Spring integrates with various in-memory cache technologies, you can also use them without spring at all, to name a few:
Google Guava cache (for older spring cache implementations)
Coffeine (for newer spring cache implementations)
In memory map of key / value
In memory but in another process:
Redis
Infinispan
Now, these caches are slower than those listed in the previous category but still can
be significantly faster than the DB.
Data Grids:
Hazelcast
Off heap memory-based caches (this means that you store the data off-heap, so its not eligible for garbage collection)
Postgres related solutions. For example, you can still go to db, but since you can opt for keeping the index in-memory the queries will be significantly faster.
Some ORM mapping specific caches (like hibernate has its cache as well).
Some kind of mix of all above.
Implement your own solution - well, this is something that probably you shouldn't do as the first attempt to address the issue, because caching can be tricky.
In the end, let me provide a link to some very interesting session given by Michael Plod about caching. I believe it will help you to find the solution that works for you best.

Difference between In-Memory cache and In-Memory Database

I was wondering if I could get an explanation between the differences between In-Memory cache(redis, memcached), In-Memory data grids (gemfire) and In-Memory database (VoltDB). I'm having a hard time distinguishing the key characteristics between the 3.
Cache - By definition means it is stored in memory. Any data stored in memory (RAM) for faster access is called cache. Examples: Ehcache, Memcache Typically you put an object in cache with String as Key and access the cache using the Key. It is very straight forward. It depends on the application when to access the cahce vs database and no complex processing happens in the Cache. If the cache spans multiple machines, then it is called distributed cache. For example, Netflix uses EVCAche which is built on top of Memcache to store the users movie recommendations that you see on the home screen.
In Memory Database - It has all the features of a Cache plus come processing/querying capabilities. Redis falls under this category. Redis supports multiple data structures and you can query the data in the Redis ( examples like get last 10 accessed items, get the most used item etc). It can span multiple machine and is usually very high performant and also support persistence to disk if needed. For example, Twitter uses Redis database to store the timeline information.
I don't know about gemfire and VoltDB, but even memcached and redis are very different. Memcached is really simple caching, a place to store variables in a very uncomplex fashion, and then retrieve them so you don't have to go to a file or database lookup every time you need that data. The types of variable are very simple. Redis on the other hand is actually an in memory database, with a very interesting selection of data types. It has a wonderful data type for doing sorted lists, which works great for applications such as leader boards. You add your new record to the data, and it gets sorted automagically.
So I wouldn't get too hung up on the categories. You really need to examine each tool differently to see what it can do for you, and the application you're building. It's kind of like trying to draw comparisons on nosql databases - they are all very different, and do different things well.
I would add that things in the "database" category tend to have more features to protect and replicate your data than a simple "cache". Cache is temporary (usually) where as database data should be persistent. Many cache solutions I've seen do not persist to disk, so if you lost power to your whole cluster, you'd lose everything in cache.
But there are some cache solutions that have persistence and replication features too, so the line is blurry.
An in-memory Cache is a common query store therefore relieves DB of read Workloads. Common examples of in-memory cache are Redis cache. An example could be Web site storing popular searches made by clients thereby relieving the DB of some load.
In-memory Cache provides query functionality on top of caching (storing session data in RAM (temporary storage)).
Memcache falls in the temp store caching category.

Searching/selecting query in cache

I have been using cache for a long time. We store data against some key and fetch it from cache whenever required. I know that StackOverflow and many other sites heavily rely on cache. My question is do they always use key-value mechanism for caching or do they form some sql like query within a cache? For instance, I want to view last week report. This report's content will vary each day. Do i need to store different reports against each day (where day as a key) or can I get this result from forming some query that aggregate result across different key? Does any caching product (like redis) provide this functionality?
Thanks In Advance
Cache is always done as a key-value hash table. This is how it stays so fast. If you're doing querying then you're not doing cache.
What you may be trying to ask is... you could have in your database a table that contains agregated report data. And you could query against that pre-calculated table.
One of the reasons for cache (e.g. memcached ) being fast is its simplicity of data access and querying protocol.
The more functionality you add, more tradeoff you will have to do on the efficiency part. A full fledged SQL engine in a "caching" database is not a good design. Though you can utilize a data structures oriented database like Redis to design your cache data to suit your querying needs. For example: one set or one hash for each date.
A step further, you can use databases like MongoDb , or memsql which are pretty fast and have rich querying support.So an aggregation report once a while won't be an issue.
However, as a design decision, you will have to accept that their caching throughput will not be as much as memcached or redis.

How is memcached updated?

I have never used memcached before and I am confused on the following basic question.
Memcached is a cache right? And I assume we cache data from a DB for faster access. So when the DB is updated who is responsible to update the cache? Our code is does memcached "understand" when the DB has been updated?
Memcached is a cache right? And I assume we cache data from a DB for
faster access
Yes it is a cache, but you have to understand that a cache speed up the access when you are often accessing same data. If you access thousand times data/objects which are always different each other a cache doesn't help.
To answer your question:
So when the DB is updated who is responsible to update the cache?
Always you but you don't have to worry about if you are doing the right thing.
Our code is does memcached "understand" when the DB has been updated?
memcached doesn't know about your database. (actually the client doesn't know even about servers..) So when you use an object of your database you should check if is present in cache, if not you put in cache otherwise you are fine.. that is all. When the moment comes memcache will free the memory used by old data, or you can tell memcached to free data after a time you choose(read the API for details).
You are responsible to update the cache (or some plugin).
What happens is that the query is compressed to some key features and these are hashed. This is tested against the cache. If the value is in the cache, the data is returned directly from cache. Otherwise the query is performed, stored in cache and returned to the user.
In pseudo code:
key = query_key(your_sql_query)
if key in cache:
return cache.get(key)
else:
results = execute(your_sql_query)
cache.set(key, results, time_to_live)
return results.
The cache is cleared once in a while, you can give a time to live to a key, then your cached results are refreshed.
This is the most simple model, but can cause some inconsistencies.
One strategy is that if your code is also the only app that updates data, then your code can also refresh memcached as a second step after it has updated the database. Or at least evict the stale data from memcached, so the next time an app wants to read it, it will be forced to re-query the current data from the database and restore that latest data to memcached.
Another strategy is to store data in memcached with an expiration time, so memcached automatically purges that data element after a certain time. You pick the expiration time, based on your knowledge of how frequently the data might be updated, and how tolerant your app is of reading stale data.
So ultimately, you are the one responsible for putting data into memcached. Only you know what data is worth storing in the cache, what format you want to store it in, how frequently you expect to query it, and when to refresh it. You make this judgment on a case-by-case basis, because you know better than any automatic system the likely behavior of your data and your app.

Loading data to shared memory from database tables

Any idea about loading the data from database to shared memory, the idea is to fasten the data retrieval from frequently used tables?
the server will automatically cache frequently used tables. So I would no optimize from the server side. Now, if the client is querying remotely you might consider coying the data to a local database (like the free SQL Express).
You are talking about cache.
it is easily implemented.
but there are some tricks you need to remember:
You will need to log changes in the underlying table - and reload the cache when they happens.
(poll a change table).
Some operation might be faster inside the database then in your own memory structure.
(If you intereseted in a fast data access with no work at all there are some in-memory Databases that can do the trick for you).

Resources