From configure scripts to Makefiles? - makefile

I'd like to build my own GNU/Linux system from scratch using cross-compilation (just like the CLFS project). Most of the packages I would use are distributed with a configure script, and you just have to run it with the right arguments. For various reasons, I'd like to skip this step, and run make instead. Of course I need a custom Makefile for this to work. The question is: is it feasible to create custom Makefiles without having to read and comprehend all the source code? Is it possible to just read the configure.ac files or something like those? Thanks.

Probably not. What happens is that configure tests which of a number of options are most suited for your environment then substitutes them into Makefile.in to build the Makefile, config.h.in to build config.h etc. You could skip running configure and just determine what these values should be from simple cases of configure.ac (or just keep one huge cache if your environment won't change) but I think packages can define extra inline checks in configure.ac that you'd have to parse and implement correctly. It's going to be a lot easier to just run configure, even if you do have to figure out the correct parameter values for your cross-compiled environment without runtime checks.
However hopefully you only need to build a small number of packages cross (kernel, glibc, gcc, make, bash, etc.), then you can switch into your new environment and build the remaining packages there using configure? If you want inspiration as to what switch values you should be using you can always look at the parameters in Fedora SRPMs or Debian source-debs.

Related

Yocto, remove autotools from (userspace) package build process

Userspace package built for and along with root file system image of some embedded Linux-based system here (using Yocto project) apparently uses autotools - one can see Makefile.am's and configure.ac in package's sources. pkg-config or its successor seems to be used too (.pc.in is present), however out-of scope here.
Package in focus here does it this way (by involving autotools) as in the beginning of its development it was apparently the line of lowest resistance to copy and adopt build scripts from similar but already-existing package.
Actually autotools seem to be dispensable when building with Yocto, as Yocto build system meta data do specify target precisely enough for every target. For good reason standard build flow in Yocto is download, unpack, patch, configure, build,... with scan-and-detect-target-environment not included in this chain.
Now I wonder if it was good to streamline package's build process by removing autotools stage. I'm going to conduct it by proceeding in sequence of few steps starting with replacing .am file with real makefile. Question is if it will be sufficient enough to find env. variables defined and used in .am and .ac then transfer them to makefile? Remaining target-device specification should actually come from Yocto build system meta data. Possibly it will work this straightforward if to build package in scope of root file system image build. But how to ensure build environment provides complete target device specification when building only this package bitbake package-name?
Replacing autotools with a bare makefile isn't a trivial operation, as https://nibblestew.blogspot.co.uk/2017/12/a-simple-makefile-is-unicorn.html demonstrates nicely.
If you don't want to use autotools in your packages then alternatives such as Meson are generally faster.

Methods for Targeting Multiple Embedded Hardware Platforms with GNU Make

How can I ensure that object files compiled for one hardware target will not be used for a different hardware target that needs to be compiled differently?
I am using the GNU ARM Embedded Toolchain while I am learning about embedded development. I already have a couple of development boards (with STM32F0 and STM32F4 processors), and plan to make my own boards in the future. I want to have several iterations of hardware using a common software repository.
Obviously I will have multiple targets in my Makefile, invoking the appropriate defines and compiler flags for each platform, and perhaps a make all to build for all platforms at once. As I understand it, make is an incremental build system that only re-compiles object code (*.o) files if the source file has been changed, it won't recompile if I have use different defines and options, and the wrong object code will be passed to the linker.
It seems that I could diligently make clean when switching between different targets, but that would rely on the human action and could produce bad builds if I forgot, and could not be used for a make all that produces multiple binaries for their respective hardware.
Edit Notes: Per feedback comments, I have shorted and rearranged to make the question more clear and objective. I'm not asking generically how to use Make, but rather how to prevent, say mylib.o being compiled for an STM32F0 and then later being re-used in a build for an STM32F4.
I am curious about alternative tools, and welcome discussion in the comments, but this question is specific to GNU Make.
To avoid the need for a clean build between targets, it is necessary for each target to have separate build directories in order that the target dependencies are independent and specifically generated using the appropriate tool chain and build switches etc.

Building only a small subset of project using autotools

I have a large project using autotools that contains some code that builds into a utility library. The project has quite a few dependencies and I would like to compile a specific subset of that utility library for mobile environments (Android/iOS). I expect a lot of dependencies to be unnecessary for that particular subset of functionality, and compiling the whole project for those architectures/platforms is impossible for technical reasons.
This mini version of the library would actually be useful not just to me but other people, as well. This is why the maintainer of the project suggested introducing a --enable-mini flag for the configure script. After experimenting a little (I have never done anything inside a configure.ac before) I actually got a build working that builds this extra mini library.
Now to the point: Is there a clean way to exclude all the other project executables and libraries from being built? What I want is a ./configure --enable-mini invocation that will result in only the libutilmini.a/libutilmini.la being built. Sure, there are some components that could be disabled via --disable-X options, but obviously the project was not set up in a way that makes all components optional. Apart from the fact that it does not seem necessary to build everything else just to build the mini library, the whole project will not build for, for instance, the iOS platform.
I really would like to avoid adding an if HAVE_MINI [...] to all the Makefile.ams in every subdirectory, especially since the mini library is not useful to most of the other developers, this does not seem like an elegant approach. Are there any recommended ways of achieving these goals?
I am aware I could just create a new project using the sources I need and build those, but as I said the mini library is useful to some other developers, too.
If you want to conditionally compile something with automake using a regular make command with no arguments, you have to use automake conditionals (the if HAVE_MINI thing you refer to); there is no other way. However, what you can do, alternatively, is to create an extra target (say, build_mini) in your toplevel Makefile.am which depends on everything needed to build your libmini. You could then tell people that if they want to build libmini (and nothing else), they don't run make, but they run make build_mini. This would look something like:
(toplevel Makefile.am)
SUBDIRS = foo bar baz
build_mini:
$(MAKE) -C foo libmini-depends
$(MAKE) -C bar libmini.la
or some such (the details would depend on what is needed to build libmini.la).
You would then have bar/Makefile.am look something like this:
if WANT_MINI
lib_LTLIBRARIES += libmini.la
endif
libmini_la_SOURCES = # ...
the only thing that really needs to be inside the conditional is adding the libmini.la to lib_LTLIBRARIES; everything else can be unconditional. So with this method, you should have only one if FOO...endif construct.

How to install and use open source library on Windows?

I'd like to use open source library on Windows. (ex:Aquila, following http://aquila-dsp.org/articles/iteration-over-wave-file-data-revisited/) But I can't understand anything about "Build System"... Everyone just say like, "Unzip the tar, do configure, make, make file" at Linux, but I want to use them for Windows. There are some several questions.
i) Why do I have to "Install" for just source code? Why can't I use these header files by copying them to the working directory and throw #include ".\aquila\global.h" ??
ii) What are Configuration and Make/Make Install? I can't understand them. I just know that configuration open source with Windows need "CMake", and it is configuration tool... But what it actually does??
iii) Though I've done : cmake, mingw32-make, mingw32-make install... My compiler said "undefined references to ...". What this means and what should I do with them?
You don't need to install for sources. You do need to install for the libraries that get built from that source code and that your code is going to use.
configure is the standard name for the script that does build configuration for the software about to be built. The usual way it is run (and how you will see it mentioned) is ./configure.
make is a build management tool (as the tag here on SO will tell you). One of the most common mechanisms for building code on linux (etc.) is to use the autotools suite which uses the aforementioned configure script to generate build configuration information for use by generated makefiles which make then uses to build the software. make is also the way to run the default build target defined in a makefile (which is often the all target and which usually builds the appropriate library/binary/etc.).
make install is a specific, secondary, invocation of the make tool on the install target which (generally) installs the (in this case previously) built code into an appropriate location (in the autotools/configure universe the default location is generally under /usr/local).
cmake is, again as the SO tag says, a build system that generates configuration files for other build tools (make, VS, etc.). This allows the developers to create the build configuration once and build on multiple platforms/etc. (at least in theory).
If running cmake worked correctly then it should have generated the correct information for whatever target system you told it to use (make or VS or whatever). Assuming that was make that should have allowed mingw32-make to build the software correctly (assuming additionally that mingw32-make is not a distinct cmake target than make). If that is not working correctly then something is still missing from your system (and cmake probably should have caught that).
But to give any more detail you will need to give more detail about what errors you are actually getting and from what command.
(Oh, and on Windows, and especially if you plan on building your software with VS (or some other non-mingw32-make tool) the chances of you needing to run mingw32-make install are incredibly small).
For Windows use cmake or latest ninja.
The process is not simple or straight, but achievable. You need to write CMake configuration.
Building process is not simple and straight, that's why there exists language like Java(that's another thing though)
Rely on CMake build the library, and you will get the Open-Source library for Windows.
You can distribute this as library for Windows systems, distribute and integrate with your own software, include the Open Source library, in either cases, you would have to build it for Windows.
Writing CMake helps, it would be helpful to build for other platforms as well.
Now Question comes: Is there any other way except CMake for Windows Build
Would you love the flavor of writing directly Assembly?
If obviously answer is no, you would have to write CMake and generate sln for MSVC and other compilers.
Just fix some of the errors comes, read the FAQ, Documentation before building an Open Source library. And fix the errors as they lurk through.
It is like handling burning iron, but it pays if you're working on something meaningful. Most of the server libraries are Open Source(e.g. age old Apache httpd). So, think before what you're doing.
There are also not many useful Open Source libraries which you could use in your project, but it's the way to Use the Open Source libraries.

When/how to specify configure/make target

Large variety of open-source projects are distributed in source-code and supposed to be compiled with ./configure && make approach. But if I want to cross-compile, at which of those two steps I am supposed to tell them what target platform I want to get the binary?
Does it have to do with configure/make in general, or this is specific to every project? What could be an example of compiling some project, library or console application and specifying target?
I know many projects have a web-page on their websites that is dedicated to "cross compiling this program". So it seems to be project-specific setting. But the project still uses configure/make, so what is the relation of all that?
If your system is using standard GNU autoconf, then you would always define the cross-compilation at configure time, not at make time. If the configure script does not know you're cross-compiling it may obtain incorrect answers when it probes the system looking for what is supported and what is not supported.
Cross-compilation is what the --build, --host, and --target flags to configure are for. You should never need to set --build: it always refers to the system you're running configure on, and configure can figure that out for itself. For a normal cross-compilation you also do not set --host, and you would set --target to the cross-compilation target. You may also need to set the CC (for C programs) and/or CXX (for C++ programs), LD, AR, STRIP, and a few others, if needed. Personally I prefer to build in a separate directory as well, although some packages don't support it unfortunately):
tar xzf foo-1.1.tar.gz
mkdir obj
cd obj
../foo-1.1/configure --target=... CC=...-gcc CXX=...-g++ ...
make
Note this is all provided by basic autoconf / automake, so all projects will do it the same way (although in my experience many projects which do not attempt cross-compilation somewhat regularly, do something wrong such that it doesn't work so well).

Resources