I'm using procedural techniques to generate graphics for a game I am writing.
To generate some woods I would like to scatter trees randomly within a regular hexagonal area centred at <0,0>.
What is the best way to generate these points in a uniform way?
If you can find a good rectangular bounding box for your hexagon, the easiest way to generate uniformly random points is by rejection sampling (http://en.wikipedia.org/wiki/Rejection_sampling)
That is, find a rectangle that entirely contains your hexagon, and then generate uniformly random points within the rectangle (this is easy, just independently generate random values for each coordinate in the right range). Check if the random point falls within the hexagon. If yes, keep it. If no, draw another point.
So long as you can find a good bounding box (the area of the rectangle should not be more than a constant factor larger than the area of the hexagon it encloses), this will be extremely fast.
A possibly simple way is the following:
F ____ B
/\ /\
A /__\/__\ E
\ /\ /
\/__\/
D C
Consider the parallelograms ADCO (center is O) and AOBF.
Any point in this can be written as a linear combination of two vectors AO and AF.
An point P in those two parallelograms satisfies
P = x* AO + y * AF or xAO + yAD.
where 0 <= x < 1 and 0 <= y <= 1 (we discount the edges shared with BECO).
Similarly any point Q in the parallelogram BECO can be written as the linear combination of vectors BO and BE such that
Q = xBO + yBE where 0 <=x <=1 and 0 <=y <= 1.
Thus to select a random point
we select
A with probability 2/3 and B with probability 1/3.
If you selected A, select x in [0,1) (note, half-open interval [0,1)) and y in [-1,1] and choose point P = xAO+yAF if y > 0 else choose P = x*AO + |y|*AD.
If you selected B, select x in [0,1] and y in [0,1] and choose point Q = xBO + yBE.
So it will take three random number calls to select one point, which might be good enough, depending on your situation.
If it's a regular hexagon, the simplest method that comes to mind is to divide it into three rhombuses. That way (a) they have the same area, and (b) you can pick a random point in any one rhombus with two random variables from 0 to 1. Here is a Python code that works.
from math import sqrt
from random import randrange, random
from matplotlib import pyplot
vectors = [(-1.,0),(.5,sqrt(3.)/2.),(.5,-sqrt(3.)/2.)]
def randinunithex():
x = randrange(3);
(v1,v2) = (vectors[x], vectors[(x+1)%3])
(x,y) = (random(),random())
return (x*v1[0]+y*v2[0],x*v1[1]+y*v2[1])
for n in xrange(500):
v = randinunithex()
pyplot.plot([v[0]],[v[1]],'ro')
pyplot.show()
A couple of people in the discussion raised the question of uniformly sampling a discrete version of the hexagon. The most natural discretization is with a triangular lattice, and there is a version of the above solution that still works. You can trim the rhombuses a little bit so that they each contain the same number of points. They only miss the origin, which has to be allowed separately as a special case. Here is a code for that:
from math import sqrt
from random import randrange, random
from matplotlib import pyplot
size = 10
vectors = [(-1.,0),(.5,sqrt(3.)/2.),(.5,-sqrt(3.)/2.)]
def randinunithex():
if not randrange(3*size*size+1): return (0,0)
t = randrange(3);
(v1,v2) = (vectors[t], vectors[(t+1)%3])
(x,y) = (randrange(0,size),randrange(1,size))
return (x*v1[0]+y*v2[0],x*v1[1]+y*v2[1])
# Plot 500 random points in the hexagon
for n in xrange(500):
v = randinunithex()
pyplot.plot([v[0]],[v[1]],'ro')
# Show the trimmed rhombuses
for t in xrange(3):
(v1,v2) = (vectors[t], vectors[(t+1)%3])
corners = [(0,1),(0,size-1),(size-1,size-1),(size-1,1),(0,1)]
corners = [(x*v1[0]+y*v2[0],x*v1[1]+y*v2[1]) for (x,y) in corners]
pyplot.plot([x for (x,y) in corners],[y for (x,y) in corners],'b')
pyplot.show()
And here is a picture.
alt text http://www.freeimagehosting.net/uploads/0f80ad5d9a.png
The traditional approach (applicable to regions of any polygonal shape) is to perform trapezoidal decomposition of your original hexagon. Once that is done, you can select your random points through the following two-step process:
1) Select a random trapezoid from the decomposition. Each trapezoid is selected with probability proportional to its area.
2) Select a random point uniformly in the trapezoid chosen on step 1.
You can use triangulation instead of trapezoidal decomposition, if you prefer to do so.
Chop it up into six triangles (hence this applies to any regular polygon), randomly choose one triangle, and randomly choose a point in the selected triangle.
Choosing random points in a triangle is a well-documented problem.
And of course, this is quite fast and you'll only have to generate 3 random numbers per point --- no rejection, etc.
Update:
Since you will have to generate two random numbers, this is how you do it:
R = random(); //Generate a random number called R between 0-1
S = random(); //Generate a random number called S between 0-1
if(R + S >=1)
{
R = 1 – R;
S = 1 – S;
}
You may check my 2009 paper, where I derived an "exact" approach to generate "random points" inside different lattice shapes: "hexagonal", "rhombus", and "triangular". As far as I know it is the "most optimized approach" because for every 2D position you only need two random samples. Other works derived earlier require 3 samples for each 2D position!
Hope this answers the question!
http://arxiv.org/abs/1306.0162
1) make biection from points to numbers (just enumerate them), get random number -> get point.
Another solution.
2) if N - length of hexagon's side, get 3 random numbers from [1..N], start from some corner and move 3 times with this numbers for 3 directions.
The rejection sampling solution above is intuitive and simple, but uses a rectangle, and (presumably) euclidean, X/Y coordinates. You could make this slightly more efficient (though still suboptimal) by using a circle with radius r, and generate random points using polar coordinates from the center instead, where distance would be rand()*r, and theta (in radians) would be rand()*2*PI.
Related
For example, in a 2D space, with x [0 ; 1] and y [0 ; 1]. For p = 4, intuitively, I will place each point at each corner of the square.
But what can be the general algorithm?
Edit: The algorithm needs modification if dimensions are not orthogonal to eachother
To uniformly place the points as described in your example you could do something like this:
var combinedSize = 0
for each dimension d in d0..dn {
combinedSize += d.length;
}
val listOfDistancesBetweenPointsAlongEachDimension = new List
for each d dimension d0..dn {
val percentageOfWholeDimensionSize = d.length/combinedSize
val pointsToPlaceAlongThisDimension = percentageOfWholeDimensionSize * numberOfPoints
listOfDistancesBetweenPointsAlongEachDimension[d.index] = d.length/(pointsToPlaceAlongThisDimension - 1)
}
Run on your example it gives:
combinedSize = 2
percentageOfWholeDimensionSize = 1 / 2
pointsToPlaceAlongThisDimension = 0.5 * 4
listOfDistancesBetweenPointsAlongEachDimension[0] = 1 / (2 - 1)
listOfDistancesBetweenPointsAlongEachDimension[1] = 1 / (2 - 1)
note: The minus 1 deals with the inclusive interval, allowing points at both endpoints of the dimension
2D case
In 2D (n=2) the solution is to place your p points evenly on some circle. If you want also to define the distance d between points then the circle should have radius around:
2*Pi*r = ~p*d
r = ~(p*d)/(2*Pi)
To be more precise you should use circumference of regular p-point polygon instead of circle circumference (I am too lazy to do that). Or you can compute the distance of produced points and scale up/down as needed instead.
So each point p(i) can be defined as:
p(i).x = r*cos((i*2.0*Pi)/p)
p(i).y = r*sin((i*2.0*Pi)/p)
3D case
Just use sphere instead of circle.
ND case
Use ND hypersphere instead of circle.
So your question boils down to place p "equidistant" points to a n-D hypersphere (either surface or volume). As you can see 2D case is simple, but in 3D this starts to be a problem. See:
Make a sphere with equidistant vertices
sphere subdivision triangulation
As you can see there are quite a few approaches to do this (there are much more of them even using Fibonacci sequence generated spiral) which are more or less hard to grasp or implement.
However If you want to generalize this into ND space you need to chose general approach. I would try to do something like this:
Place p uniformly distributed place inside bounding hypersphere
each point should have position,velocity and acceleration vectors. You can also place the points randomly (just ensure none are at the same position)...
For each p compute acceleration
each p should retract any other point (opposite of gravity).
update position
just do a Newton D'Alembert physics simulation in ND. Do not forget to include some dampening of speed so the simulation will stop in time. Bound the position and speed to the sphere so points will not cross it's border nor they would reflect the speed inwards.
loop #2 until max speed of any p crosses some threshold
This will more or less accurately place p points on the circumference of ND hypersphere. So you got minimal distance d between them. If you got some special dependency between n and p then there might be better configurations then this but for arbitrary numbers I think this approach should be safe enough.
Now by modifying #2 rules you can achieve 2 different outcomes. One filling hypersphere surface (by placing massive negative mass into center of surface) and second filling its volume. For these two options also the radius will be different. For one you need to use surface and for the other volume...
Here example of similar simulation used to solve a geometry problem:
How to implement a constraint solver for 2-D geometry?
Here preview of 3D surface case:
The number on top is the max abs speed of particles used to determine the simulations stopped and the white-ish lines are speed vectors. You need to carefully select the acceleration and dampening coefficients so the simulation is fast ...
I have a large number of (x,y) grid points with integer coordinates which i want to test if they are in small number of circles given by radius and center. The points are some marked parts of an image, which means there are a small number of irregular shaped blocks, which contain the points. There i want to check for collisions and count the number of points inside a circle. My current approaches are rather slow (with python and numpy).
Now i have two tasks:
Test, if any point of set A are in any circle
Count the number of points of set B, which are in a circle
My current implementation looks like this (setA and setB are Nx2 numpy arrays and center is a 1x2 array.):
1) For each circle create an array of point - center, square it elementwise and take the sum, then check if it's smaller than radius**2
for circle in circles:
if (((setA - circle.center)**2).sum(axis=1) < circle.radius**2).any():
return "collision"
return "no collision"
This could be optimized by using a python loop and breaking on the first collision, but usually numpy loops are a lot faster than python loops and actually both versions were slower than expected.
2) For each circle create an array of distances and do an elementwise less than radius test. Add up all arrays and count the non-zero elements of the result.
pixels = sp.zeros(len(setB))
for circle in circles:
pixels += (((setB - circle.center)**2).sum(axis=1) < circle.radius**2)
return np.count_nonzero(pixels)
Is there an easy option to speedup this?
I do not want to over optimize (and make the program a lot more complicated), but just to use numpy in the most efficient way, using the numpy vectorization as much as possible.
So building the most perfect spatial tree or similiar isn't my goal, but i think a O(n^2) algorithm for a few thousand points and 10-20 circles should be possible in as fast way on an average desktop computer today.
Taking advantage of coordinates being integers:
create a lookup image
radius = max([circle.radius for circle in circles])
mask = np.zeros((image.shape[0] + 2*radius, image.shape[1] + 2*radius), dtype=int)
for circle in circles:
center = circle.center + radius
mask[center[0]-circle.radius:center[0]+circle.radius + 1,
center[1]-circle.radius:center[1]+circle.radius + 1] += circle.mask
circle.mask is a small square patch containing a mask of the disc of interior points
counting collisions is now as easy as
mask[radius:-radius, radius:-radius][setB[:,0], setB[:,1]].sum()
fast creation of discs (no multiplications, no square roots):
r = circle.radius
h2 = np.r_[0, np.add.accumulate(np.arange(1, 2*r+1, 2))]
w = np.searchsorted(h2[-1] - h2[::-1], h2)
q = np.zeros(((r+1), (r+1)), dtype=int)
q[np.arange(r+1), w[::-1]] = 1
q[1:, 0] -= 1
q = np.add.accumulate(q.ravel()).reshape(r+1, r+1)
h = np.c_[q, q[:, -2::-1]]
circle.mask = np.r_[h, h[-2::-1]]
Given a bunch of arbitrary vectors (stored in a matrix A) and a radius r, I'd like to find all integer-valued linear combinations of those vectors which land inside a sphere of radius r. The necessary coordinates I would then store in a Matrix V. So, for instance, if the linear combination
K=[0; 1; 0]
lands inside my sphere, i.e. something like
if norm(A*K) <= r then
V(:,1)=K
end
etc.
The vectors in A are sure to be the simplest possible basis for the given lattice and the largest vector will have length 1. Not sure if that restricts the vectors in any useful way but I suspect it might. - They won't have as similar directions as a less ideal basis would have.
I tried a few approaches already but none of them seem particularly satisfying. I can't seem to find a nice pattern to traverse the lattice.
My current approach involves starting in the middle (i.e. with the linear combination of all 0s) and go through the necessary coordinates one by one. It involves storing a bunch of extra vectors to keep track of, so I can go through all the octants (in the 3D case) of the coordinates and find them one by one. This implementation seems awfully complex and not very flexible (in particular it doesn't seem to be easily generalizable to arbitrary numbers of dimension - although that isn't strictly necessary for the current purpose, it'd be a nice-to-have)
Is there a nice* way to find all the required points?
(*Ideally both efficient and elegant**. If REALLY necessary, it wouldn't matter THAT much to have a few extra points outside the sphere but preferably not that many more. I definitely do need all the vectors inside the sphere. - if it makes a large difference, I'm most interested in the 3D case.
**I'm pretty sure my current implementation is neither.)
Similar questions I found:
Find all points in sphere of radius r around arbitrary coordinate - this is actually a much more general case than what I'm looking for. I am only dealing with periodic lattices and my sphere is always centered at 0, coinciding with one point on the lattice.
But I don't have a list of points but rather a matrix of vectors with which I can generate all the points.
How to efficiently enumerate all points of sphere in n-dimensional grid - the case for a completely regular hypercubic lattice and the Manhattan-distance. I'm looking for completely arbitary lattices and euclidean distance (or, for efficiency purposes, obviously the square of that).
Offhand, without proving any assertions, I think that 1) if the set of vectors is not of maximal rank then the number of solutions is infinite; 2) if the set is of maximal rank, then the image of the linear transformation generated by the vectors is a subspace (e.g., plane) of the target space, which intersects the sphere in a lower-dimensional sphere; 3) it follows that you can reduce the problem to a 1-1 linear transformation (kxk matrix on a k-dimensional space); 4) since the matrix is invertible, you can "pull back" the sphere to an ellipsoid in the space containing the lattice points, and as a bonus you get a nice geometric description of the ellipsoid (principal axis theorem); 5) your problem now becomes exactly one of determining the lattice points inside the ellipsoid.
The latter problem is related to an old problem (counting the lattice points inside an ellipse) which was considered by Gauss, who derived a good approximation. Determining the lattice points inside an ellipse(oid) is probably not such a tidy problem, but it probably can be reduced one dimension at a time (the cross-section of an ellipsoid and a plane is another ellipsoid).
I found a method that makes me a lot happier for now. There may still be possible improvements, so if you have a better method, or find an error in this code, definitely please share. Though here is what I have for now: (all written in SciLab)
Step 1: Figure out the maximal ranges as defined by a bounding n-parallelotope aligned with the axes of the lattice vectors. Thanks for ElKamina's vague suggestion as well as this reply to another of my questions over on math.se by chappers: https://math.stackexchange.com/a/1230160/49989
function I=findMaxComponents(A,r) //given a matrix A of lattice basis vectors
//and a sphere radius r,
//find the corners of the bounding parallelotope
//built from the lattice, and store it in I.
[dims,vecs]=size(A); //figure out how many vectors there are in A (and, unnecessarily, how long they are)
U=eye(vecs,vecs); //builds matching unit matrix
iATA=pinv(A'*A); //finds the (pseudo-)inverse of A^T A
iAT=pinv(A'); //finds the (pseudo-)inverse of A^T
I=[]; //initializes I as an empty vector
for i=1:vecs //for each lattice vector,
t=r*(iATA*U(:,i))/norm(iAT*U(:,i)) //find the maximum component such that
//it fits in the bounding n-parallelotope
//of a (n-1)-sphere of radius r
I=[I,t(i)]; //and append it to I
end
I=[-I;I]; //also append the minima (by symmetry, the negative maxima)
endfunction
In my question I only asked for a general basis, i.e, for n dimensions, a set of n arbitrary but linearly independent vectors. The above code, by virtue of using the pseudo-inverse, works for matrices of arbitrary shapes and, similarly, Scilab's "A'" returns the conjugate transpose rather than just the transpose of A so it equally should work for complex matrices.
In the last step I put the corresponding minimal components.
For one such A as an example, this gives me the following in Scilab's console:
A =
0.9701425 - 0.2425356 0.
0.2425356 0.4850713 0.7276069
0.2425356 0.7276069 - 0.2425356
r=3;
I=findMaxComponents(A,r)
I =
- 2.9494438 - 3.4186986 - 4.0826424
2.9494438 3.4186986 4.0826424
I=int(I)
I =
- 2. - 3. - 4.
2. 3. 4.
The values found by findMaxComponents are the largest possible coefficients of each lattice vector such that a linear combination with that coefficient exists which still land on the sphere. Since I'm looking for the largest such combinations with integer coefficients, I can safely drop the part after the decimal point to get the maximal plausible integer ranges. So for the given matrix A, I'll have to go from -2 to 2 in the first component, from -3 to 3 in the second and from -4 to 4 in the third and I'm sure to land on all the points inside the sphere (plus superfluous extra points, but importantly definitely every valid point inside) Next up:
Step 2: using the above information, generate all the candidate combinations.
function K=findAllCombinations(I) //takes a matrix of the form produced by
//findMaxComponents() and returns a matrix
//which lists all the integer linear combinations
//in the respective ranges.
v=I(1,:); //starting from the minimal vector
K=[];
next=1; //keeps track of what component to advance next
changed=%F; //keeps track of whether to add the vector to the output
while or(v~=I(2,:)) //as long as not all components of v match all components of the maximum vector
if v <= I(2,:) then //if each current component is smaller than each largest possible component
if ~changed then
K=[K;v]; //store the vector and
end
v(next)=v(next)+1; //advance the component by 1
next=1; //also reset next to 1
changed=%F;
else
v(1:next)=I(1,1:next); //reset all components smaller than or equal to the current one and
next=next+1; //advance the next larger component next time
changed=%T;
end
end
K=[K;I(2,:)]'; //while loop ends a single iteration early so add the maximal vector too
//also transpose K to fit better with the other functions
endfunction
So now that I have that, all that remains is to check whether a given combination actually does lie inside or outside the sphere. All I gotta do for that is:
Step 3: Filter the combinations to find the actually valid lattice points
function points=generatePoints(A,K,r)
possiblePoints=A*K; //explicitly generates all the possible points
points=[];
for i=possiblePoints
if i'*i<=r*r then //filter those that are too far from the origin
points=[points i];
end
end
endfunction
And I get all the combinations that actually do fit inside the sphere of radius r.
For the above example, the output is rather long: Of originally 315 possible points for a sphere of radius 3 I get 163 remaining points.
The first 4 are: (each column is one)
- 0.2425356 0.2425356 1.2126781 - 0.9701425
- 2.4253563 - 2.6678919 - 2.4253563 - 2.4253563
1.6977494 0. 0.2425356 0.4850713
so the remainder of the work is optimization. Presumably some of those loops could be made faster and especially as the number of dimensions goes up, I have to generate an awful lot of points which I have to discard, so maybe there is a better way than taking the bounding n-parallelotope of the n-1-sphere as a starting point.
Let us just represent K as X.
The problem can be represented as:
(a11x1 + a12x2..)^2 + (a21x1 + a22x2..)^2 ... < r^2
(x1,x2,...) will not form a sphere.
This can be done with recursion on dimension--pick a lattice hyperplane direction and index all such hyperplanes that intersect the r-radius ball. The ball intersection of each such hyperplane itself is a ball, in one lower dimension. Repeat. Here's the calling function code in Octave:
function lat_points(lat_bas_mx,rr)
% **globals for hyperplane lattice point recursive function**
clear global; % this seems necessary/important between runs of this function
global MLB;
global NN_hat;
global NN_len;
global INP; % matrix of interior points, each point(vector) a column vector
global ctr; % integer counter, for keeping track of lattice point vectors added
% in the pre-allocated INP matrix; will finish iteration with actual # of points found
ctr = 0; % counts number of ball-interior lattice points found
MLB = lat_bas_mx;
ndim = size(MLB)(1);
% **create hyperplane normal vectors for recursion step**
% given full-rank lattice basis matrix MLB (each vector in lattice basis a column),
% form set of normal vectors between successive, nested lattice hyperplanes;
% store them as columnar unit normal vectors in NN_hat matrix and their lengths in NN_len vector
NN_hat = [];
for jj=1:ndim-1
tmp_mx = MLB(:,jj+1:ndim);
tmp_mx = [NN_hat(:,1:jj-1),tmp_mx];
NN_hat(:,jj) = null(tmp_mx'); % null space of transpose = orthogonal to columns
tmp_len = norm(NN_hat(:,jj));
NN_hat(:,jj) = NN_hat(:,jj)/tmp_len;
NN_len(jj) = dot(MLB(:,jj),NN_hat(:,jj));
if (NN_len(jj)<0) % NN_hat(:,jj) and MLB(:,jj) must have positive dot product
% for cutting hyperplane indexing to work correctly
NN_hat(:,jj) = -NN_hat(:,jj);
NN_len(jj) = -NN_len(jj);
endif
endfor
NN_len(ndim) = norm(MLB(:,ndim));
NN_hat(:,ndim) = MLB(:,ndim)/NN_len(ndim); % the lowest recursion level normal
% is just the last lattice basis vector
% **estimate number of interior lattice points, and pre-allocate memory for INP**
vol_ppl = prod(NN_len); % the volume of the ndim dimensional lattice paralellepiped
% is just the product of the NN_len's (they amount to the nested altitudes
% of hyperplane "paralellepipeds")
vol_bll = exp( (ndim/2)*log(pi) + ndim*log(rr) - gammaln(ndim/2+1) ); % volume of ndim ball, radius rr
est_num_pts = ceil(vol_bll/vol_ppl); % estimated number of lattice points in the ball
err_fac = 1.1; % error factor for memory pre-allocation--assume max of err_fac*est_num_pts columns required in INP
INP = zeros(ndim,ceil(err_fac*est_num_pts));
% **call the (recursive) function**
% for output, global variable INP (matrix of interior points)
% stores each valid lattice point (as a column vector)
clp = zeros(ndim,1); % confirmed lattice point (start at origin)
bpt = zeros(ndim,1); % point at center of ball (initially, at origin)
rd = 1; % initial recursion depth must always be 1
hyp_fun(clp,bpt,rr,ndim,rd);
printf("%i lattice points found\n",ctr);
INP = INP(:,1:ctr); % trim excess zeros from pre-allocation (if any)
endfunction
Regarding the NN_len(jj)*NN_hat(:,jj) vectors--they can be viewed as successive (nested) altitudes in the ndim-dimensional "parallelepiped" formed by the vectors in the lattice basis, MLB. The volume of the lattice basis parallelepiped is just prod(NN_len)--for a quick estimate of the number of interior lattice points, divide the volume of the ndim-ball of radius rr by prod(NN_len). Here's the recursive function code:
function hyp_fun(clp,bpt,rr,ndim,rd)
%{
clp = the lattice point we're entering this lattice hyperplane with
bpt = location of center of ball in this hyperplane
rr = radius of ball
rd = recrusion depth--from 1 to ndim
%}
global MLB;
global NN_hat;
global NN_len;
global INP;
global ctr;
% hyperplane intersection detection step
nml_hat = NN_hat(:,rd);
nh_comp = dot(clp-bpt,nml_hat);
ix_hi = floor((rr-nh_comp)/NN_len(rd));
ix_lo = ceil((-rr-nh_comp)/NN_len(rd));
if (ix_hi<ix_lo)
return % no hyperplane intersections detected w/ ball;
% get out of this recursion level
endif
hp_ix = [ix_lo:ix_hi]; % indices are created wrt the received reference point
hp_ln = length(hp_ix);
% loop through detected hyperplanes (updated)
if (rd<ndim)
bpt_new_mx = bpt*ones(1,hp_ln) + NN_len(rd)*nml_hat*hp_ix; % an ndim by length(hp_ix) matrix
clp_new_mx = clp*ones(1,hp_ln) + MLB(:,rd)*hp_ix; % an ndim by length(hp_ix) matrix
dd_vec = nh_comp + NN_len(rd)*hp_ix; % a length(hp_ix) row vector
rr_new_vec = sqrt(rr^2-dd_vec.^2);
for jj=1:hp_ln
hyp_fun(clp_new_mx(:,jj),bpt_new_mx(:,jj),rr_new_vec(jj),ndim,rd+1);
endfor
else % rd=ndim--so at deepest level of recursion; record the points on the given 1-dim
% "lattice line" that are inside the ball
INP(:,ctr+1:ctr+hp_ln) = clp + MLB(:,rd)*hp_ix;
ctr += hp_ln;
return
endif
endfunction
This has some Octave-y/Matlab-y things in it, but most should be easily understandable; M(:,jj) references column jj of matrix M; the tic ' means take transpose; [A B] concatenates matrices A and B; A=[] declares an empty matrix.
Updated / better optimized from original answer:
"vectorized" the code in the recursive function, to avoid most "for" loops (those slowed it down a factor of ~10; the code now is a bit more difficult to understand though)
pre-allocated memory for the INP matrix-of-interior points (this speeded it up by another order of magnitude; before that, Octave was having to resize the INP matrix for every call to the innermost recursion level--for large matrices/arrays that can really slow things down)
Because this routine was part of a project, I also coded it in Python. From informal testing, the Python version is another 2-3 times faster than this (Octave) version.
For reference, here is the old, much slower code in the original posting of this answer:
% (OLD slower code, using for loops, and constantly resizing
% the INP matrix) loop through detected hyperplanes
if (rd<ndim)
for jj=1:length(hp_ix)
bpt_new = bpt + hp_ix(jj)*NN_len(rd)*nml_hat;
clp_new = clp + hp_ix(jj)*MLB(:,rd);
dd = nh_comp + hp_ix(jj)*NN_len(rd);
rr_new = sqrt(rr^2-dd^2);
hyp_fun(clp_new,bpt_new,rr_new,ndim,rd+1);
endfor
else % rd=ndim--so at deepest level of recursion; record the points on the given 1-dim
% "lattice line" that are inside the ball
for jj=1:length(hp_ix)
clp_new = clp + hp_ix(jj)*MLB(:,rd);
INP = [INP clp_new];
endfor
return
endif
Generate a random point within a rectangle (uniformly)
This suppose to be a simple problem.
However, in RANDOM_DATA homepage I found the following note:
However, we will not achieve uniform distribution in the simple case
of a rectangle of nonequal sides [0,A] x [0,B], if we naively scale
the random values (u1,u2) to (A*u1,B*u2). In that case, the expected
point density of a wide, short region will differ from that of a
narrow tall region. The absence of uniformity is most obvious if the
points are plotted.
I found it quite of strange... I can't figure out why such scaling will affect the uniformity.
What am I missing?
Edit:
Thank you Patrick87 and missingno. I was searching for a theoretical reason for the statement. I now understand that the reason is not theoretical, but practical - the granularity of floating-point values.
If I'll generate two uniform floating-points between 0 and 1 (which is an issue by itself due to the nature of floating-point value representation. Look here for an algorithm) - the granularity will be limited.
Suppose that there are X different values between 0 and 1. By scaling (u1,u2) to (u1,2*u2) we'll have X different values in the range [0,u1] and X different values in the range [0,2*u2]. For area uniformity we should have twice as many different values in [0,2*u2] than in [0,u1].
Given that, Allow me to change my question:
How should I generate a random point within a rectangle (with uniform distribution by area)?
That statement is incorrect, direct product of two independent uniform measures is a uniform measure. This can be shown as follows:
A probability for a random point to hit a rectangle with sides a and b is equal to probability for the first coordinate to hit the segment with the length a and the second coordinate to hit the segment with the length b. (We are talking about projections of a rectangle to axes).
First probability is a / A, the second one is b / B.
As these variables are independent, the probabilities multiply, so the resulting probability is ab / AB, so we have a uniform 2D distribution as the probability is proportional to the area of the rectangle. This formula is symmetric with respect to a and b, so the observation in the quote is wrong about narrow and wide rectangles.
How should I generate a random point within a rectangle (with uniform distribution by area)?
This should work:
// given A, B, dimensions of rectangle
// given g, granularity of shorter side
if A > B then
bm := g
am := floor(g * A / B)
else then
am := g
bm := floor(g * B / A)
for i := 1 to n do
av := A * RandomInt(0..am) / am
bv := B * RandomInt(0..bm) / bm
print (av, bb)
EDIT: A simpler alternative would be to simply scale random floating point values by the same factor, choose points at random, and throw away points that fall outside your rectangle. However, you don't know how many trials you'd need before you got N points in the rectangle...
Ascii art:
Take a 3x3 rectangle:
***
***
***
And spread one of the sides by 3x:
*..*..*..*
*..*..*..*
*..*..*..*
You can kind of see here that the points are more densely packed vertically than they are horizontaly. What you actually want instead is uniform distribution by area
The most straightforward way to handle this is through rejection sampling:
http://en.wikipedia.org/wiki/Rejection_sampling
// Given dimensions of the rectangle A, B where A <= B
boolean flag = true
while (flag) do:
double a = NextRandomDouble(0,B)
double b = NextRandomDouble(0,B)
if (a <= A)
return(a, b)
else
next
You essentially generate uniform numbers from a square that fits the original rectangle (of length B, in this example). If the number falls in the rectangle, keep the pair. If it does not, throw it away and try again!
I'm working on a data mining algorithm where i want to pick a random direction from a particular point in the feature space.
If I pick a random number for each of the n dimensions from [-1,1] and then normalize the vector to a length of 1 will I get an even distribution across all possible directions?
I'm speaking only theoretically here since computer generated random numbers are not actually random.
One simple trick is to select each dimension from a gaussian distribution, then normalize:
from random import gauss
def make_rand_vector(dims):
vec = [gauss(0, 1) for i in range(dims)]
mag = sum(x**2 for x in vec) ** .5
return [x/mag for x in vec]
For example, if you want a 7-dimensional random vector, select 7 random values (from a Gaussian distribution with mean 0 and standard deviation 1). Then, compute the magnitude of the resulting vector using the Pythagorean formula (square each value, add the squares, and take the square root of the result). Finally, divide each value by the magnitude to obtain a normalized random vector.
If your number of dimensions is large then this has the strong benefit of always working immediately, while generating random vectors until you find one which happens to have magnitude less than one will cause your computer to simply hang at more than a dozen dimensions or so, because the probability of any of them qualifying becomes vanishingly small.
You will not get a uniformly distributed ensemble of angles with the algorithm you described. The angles will be biased toward the corners of your n-dimensional hypercube.
This can be fixed by eliminating any points with distance greater than 1 from the origin. Then you're dealing with a spherical rather than a cubical (n-dimensional) volume, and your set of angles should then be uniformly distributed over the sample space.
Pseudocode:
Let n be the number of dimensions, K the desired number of vectors:
vec_count=0
while vec_count < K
generate n uniformly distributed values a[0..n-1] over [-1, 1]
r_squared = sum over i=0,n-1 of a[i]^2
if 0 < r_squared <= 1.0
b[i] = a[i]/sqrt(r_squared) ; normalize to length of 1
add vector b[0..n-1] to output list
vec_count = vec_count + 1
else
reject this sample
end while
There is a boost implementation of the algorithm that samples from normal distributions: random::uniform_on_sphere
I had the exact same question when also developing a ML algorithm.
I got to the same conclusion as Jim Lewis after drawing samples for the 2-d case and plotting the resulting distribution of the angle.
Furthermore, if you try to derive the density distribution for the direction in 2d when you draw at random from [-1,1] for the x- and y-axis ,you will see that:
f_X(x) = 1/(4*cos²(x)) if 0 < x < 45⁰
and
f_X(x) = 1/(4*sin²(x)) if x > 45⁰
where x is the angle, and f_X is the probability density distribution.
I have written about this here:
https://aerodatablog.wordpress.com/2018/01/14/random-hyperplanes/
#define SCL1 (M_SQRT2/2)
#define SCL2 (M_SQRT2*2)
// unitrand in [-1,1].
double u = SCL1 * unitrand();
double v = SCL1 * unitrand();
double w = SCL2 * sqrt(1.0 - u*u - v*v);
double x = w * u;
double y = w * v;
double z = 1.0 - 2.0 * (u*u + v*v);