Geographic grid search algorithm - algorithm

Many of the location based services provide APIs for finding places/venues/spots around a given latitude longitude pair. I'm looking into how I can search for these places across an entire city.
I can build a grid for a city by getting its bounds from the Google Maps Geocoder and then incrementing the lat/longs to lay down points to form the grid. I've prototyped this grid (click the Fill Grid button to see all of the points) to visualize this idea.
// gather a collection of lat/long pairs that represents a grid of the city
var latIncrement = .04;
var lngIncrement = .04;
var newLat = nw.lat();
while(newLat >= sw.lat()) {
var newLng = nw.lng();
while(newLng <= ne.lng()) {
// western and northern border as well as grid infill
addMarker(new google.maps.LatLng(newLat, newLng));
newLng += lngIncrement;
}
// eastern border
addMarker(new google.maps.LatLng(newLat, ne.lng()));
newLat -= latIncrement;
}
// southern border
var newLng = sw.lng();
while(newLng <= se.lng()) {
addMarker(new google.maps.LatLng(sw.lat(), newLng));
newLng += lngIncrement;
}
addMarker(se);
I can then take all of these points and run searches for them against the LBS APIs.
My question is, are there more scientific ways/algorithms to establish this grid? I'd like to learn more about them. I'm just arbitrarily incrementing the lat/lngs until I reach the border of the grid. The density of places is going to vary wildly by city and area of a city, so sometimes the increment will be too small, and sometimes too large. I'm looking for ideas about how to tune this a little better?

A perhaps more efficient/clean way would be to find the bounding rectangle of the city, which is the rectangle with each edge being the extreme cardinal points between the city border points, if you can find them, and then filling them in iteratively. But that is basically what you are already doing, anyway.
As for place density, do you have a specific API that you are going to be using this with? If you know the "reach" of the your API's points when detecting places, you ever only have to have grid points as close as their radius.
That being said, have you looked into seeing perhaps if the API directly supports searching for places within a border? That might be your best and cleanest bet.
After reading your comment, here is a possibly inefficient way that I'm going to think over and refine in the future, but it might help you get started.
Place a point in the center of your city, and observe all locations detected. Find the convex hull of your locations, and place a new point on each location on the convex hull. Then, add to your list of locations all locations that fall within reach of these newly added points.
Then, find the convex hull of those, and repeat the same process.
This might actually reduce your amount of points for sparsely populated cities. For dense ones, it might be less than optimal, but it might get you started on a working track.

While I was facing same problem. I came up with a solution, where you will go do grid search in a top down recursive way. This will work if that API supports bounding box search. Initially assume your city as a square. Now fetch data/places using API in that square (bounding box query). Now if number of returned places are more than some threshold, than split the city square into 4 equal squares and repeat the process for each square. Don't split if number of returned places are less. This will prevent grid searching into non business areas (squares) like forests,rivers etc. Here is the prototype python code for that:
Here fetch is function which fetch results from API based on bounding box with sw as southwest latitude,logitude tuple and ne as northeast latitude,logitude tuple
allresults = []
def grid_search(sw,ne):
global results
results = fetch(sw,ne)
if len(results) <= 10:
return
allresults.append(results)
swlat,swlon = sw
nelat,nelon = ne
grid_search( (swlat + delta, swlon), (nelat, sw + delta) )
grid_search( (swlat + delta, swlon + delta), ne )
grid_search( sw, (swlat + delta, swlon + delta) )
grid_search( (swlat,swlon + delta), (swlat + delta, nelon) )

Related

Algorithm to find the smallest box containing a set of 3D objects

This is a problem that I meet on Unity3D, but it's actually a request for help for a general graphical algorithm.
I have a set of 3D objects/meshes that form a map. To generalize let's say that they are arrays of 6 numbers: position and size.
I need to create a box that contains all these objects. The box must have the minimum possible volume. To generalize, we can say that also the box will end to be an array of 9 numbers: position, size and rotation.
So at the end I'm talking about a function that takes a set of array[6] and returns an array[9].
The box can be obviously rotated in 3 directions as needed, so it's not just "take the smallest and the biggest x, y and z values".
Probably this question can some how easily resolved with a few trigonometrical functions, but i don't have any idea of how to do it! I only could create something that does that iteratively, but that's not what I want.
A particular case of this problem could be to find the minimum box containing a set of points. Probably this question is easier and some how can be extended to the main problem. Anyway... I can't solve neither this one! :)
Thanks for the help.
You can find the 3d convex hull of all the vertex. Using the points of the convex hull you can form the faces of the convex hull. Then incline one by one all the faces parallel to x-axis. Then find the min x/y/z and max x/y/z along each face rotation.Calculate the volume using min x/y/z and max x/y/z. Find the index corresponding to the minimum volume. Rotate back this volume using the rotation you used for the corresponding face. This problem is similar to the 2d problem of minimum area rectangle. For minimum area rectangle the reference is https://gis.stackexchange.com/questions/22895/how-to-find-the-minimum-area-rectangle-for-given-points
Quick easy way to get the bottom left rear corner of your new box, and the top right forward corner.
Either:
List<GameObjects> gameObjects; // <-- your game objects here
List<Bounds> objectsBounds = gameObjects.Select(item => item.GetComponent<MeshRenderer>().bounds);
Vector3 min = objectsBounds.Min(item => item.min);
Vector3 max = objectsBounds.Max(item => item.max);
Or:
List<GameObjects> gameObjects; // <-- your game objects here
List<Bounds> objectsBounds = gameObjects.Select(item => item.GetComponent<MeshRenderer>().bounds);
Vector3 min = Vector3.one * Single.MaxValue;
Vector3 max = Vector3.one * Single.MinValue;
foreach(Bounds bounds in objectsBounds)
if(bounds.min < min) min = bounds.min;
foreach(Bounds bounds in objectsBounds)
if(bounds.max > max) max = bounds.max;

Multiliteration implementation with inaccurate distance data

I am trying to create an android smartphone application which uses Apples iBeacon technology to determine the current indoor location of itself. I already managed to get all available beacons and calculate the distance to them via the rssi signal.
Currently I face the problem, that I am not able to find any library or implementation of an algorithm, which calculates the estimated location in 2D by using 3 (or more) distances of fixed points with the condition, that these distances are not accurate (which means, that the three "trilateration-circles" do not intersect in one point).
I would be deeply grateful if anybody can post me a link or an implementation of that in any common programming language (Java, C++, Python, PHP, Javascript or whatever). I already read a lot on stackoverflow about that topic, but could not find any answer I were able to convert in code (only some mathematical approaches with matrices and inverting them, calculating with vectors or stuff like that).
EDIT
I thought about an own approach, which works quite well for me, but is not that efficient and scientific. I iterate over every meter (or like in my example 0.1 meter) of the location grid and calculate the possibility of that location to be the actual position of the handset by comparing the distance of that location to all beacons and the distance I calculate with the received rssi signal.
Code example:
public Location trilaterate(ArrayList<Beacon> beacons, double maxX, double maxY)
{
for (double x = 0; x <= maxX; x += .1)
{
for (double y = 0; y <= maxY; y += .1)
{
double currentLocationProbability = 0;
for (Beacon beacon : beacons)
{
// distance difference between calculated distance to beacon transmitter
// (rssi-calculated distance) and current location:
// |sqrt(dX^2 + dY^2) - distanceToTransmitter|
double distanceDifference = Math
.abs(Math.sqrt(Math.pow(beacon.getLocation().x - x, 2)
+ Math.pow(beacon.getLocation().y - y, 2))
- beacon.getCurrentDistanceToTransmitter());
// weight the distance difference with the beacon calculated rssi-distance. The
// smaller the calculated rssi-distance is, the more the distance difference
// will be weighted (it is assumed, that nearer beacons measure the distance
// more accurate)
distanceDifference /= Math.pow(beacon.getCurrentDistanceToTransmitter(), 0.9);
// sum up all weighted distance differences for every beacon in
// "currentLocationProbability"
currentLocationProbability += distanceDifference;
}
addToLocationMap(currentLocationProbability, x, y);
// the previous line is my approach, I create a Set of Locations with the 5 most probable locations in it to estimate the accuracy of the measurement afterwards. If that is not necessary, a simple variable assignment for the most probable location would do the job also
}
}
Location bestLocation = getLocationSet().first().location;
bestLocation.accuracy = calculateLocationAccuracy();
Log.w("TRILATERATION", "Location " + bestLocation + " best with accuracy "
+ bestLocation.accuracy);
return bestLocation;
}
Of course, the downside of that is, that I have on a 300m² floor 30.000 locations I had to iterate over and measure the distance to every single beacon I got a signal from (if that would be 5, I do 150.000 calculations only for determine a single location). That's a lot - so I will let the question open and hope for some further solutions or a good improvement of this existing solution in order to make it more efficient.
Of course it has not to be a Trilateration approach, like the original title of this question was, it is also good to have an algorithm which includes more than three beacons for the location determination (Multilateration).
If the current approach is fine except for being too slow, then you could speed it up by recursively subdividing the plane. This works sort of like finding nearest neighbors in a kd-tree. Suppose that we are given an axis-aligned box and wish to find the approximate best solution in the box. If the box is small enough, then return the center.
Otherwise, divide the box in half, either by x or by y depending on which side is longer. For both halves, compute a bound on the solution quality as follows. Since the objective function is additive, sum lower bounds for each beacon. The lower bound for a beacon is the distance of the circle to the box, times the scaling factor. Recursively find the best solution in the child with the lower lower bound. Examine the other child only if the best solution in the first child is worse than the other child's lower bound.
Most of the implementation work here is the box-to-circle distance computation. Since the box is axis-aligned, we can use interval arithmetic to determine the precise range of distances from box points to the circle center.
P.S.: Math.hypot is a nice function for computing 2D Euclidean distances.
Instead of taking confidence levels of individual beacons into account, I would instead try to assign an overall confidence level for your result after you make the best guess you can with the available data. I don't think the only available metric (perceived power) is a good indication of accuracy. With poor geometry or a misbehaving beacon, you could be trusting poor data highly. It might make better sense to come up with an overall confidence level based on how well the perceived distance to the beacons line up with the calculated point assuming you trust all beacons equally.
I wrote some Python below that comes up with a best guess based on the provided data in the 3-beacon case by calculating the two points of intersection of circles for the first two beacons and then choosing the point that best matches the third. It's meant to get started on the problem and is not a final solution. If beacons don't intersect, it slightly increases the radius of each up until they do meet or a threshold is met. Likewise, it makes sure the third beacon agrees within a settable threshold. For n-beacons, I would pick 3 or 4 of the strongest signals and use those. There are tons of optimizations that could be done and I think this is a trial-by-fire problem due to the unwieldy nature of beaconing.
import math
beacons = [[0.0,0.0,7.0],[0.0,10.0,7.0],[10.0,5.0,16.0]] # x, y, radius
def point_dist(x1,y1,x2,y2):
x = x2-x1
y = y2-y1
return math.sqrt((x*x)+(y*y))
# determines two points of intersection for two circles [x,y,radius]
# returns None if the circles do not intersect
def circle_intersection(beacon1,beacon2):
r1 = beacon1[2]
r2 = beacon2[2]
dist = point_dist(beacon1[0],beacon1[1],beacon2[0],beacon2[1])
heron_root = (dist+r1+r2)*(-dist+r1+r2)*(dist-r1+r2)*(dist+r1-r2)
if ( heron_root > 0 ):
heron = 0.25*math.sqrt(heron_root)
xbase = (0.5)*(beacon1[0]+beacon2[0]) + (0.5)*(beacon2[0]-beacon1[0])*(r1*r1-r2*r2)/(dist*dist)
xdiff = 2*(beacon2[1]-beacon1[1])*heron/(dist*dist)
ybase = (0.5)*(beacon1[1]+beacon2[1]) + (0.5)*(beacon2[1]-beacon1[1])*(r1*r1-r2*r2)/(dist*dist)
ydiff = 2*(beacon2[0]-beacon1[0])*heron/(dist*dist)
return (xbase+xdiff,ybase-ydiff),(xbase-xdiff,ybase+ydiff)
else:
# no intersection, need to pseudo-increase beacon power and try again
return None
# find the two points of intersection between beacon0 and beacon1
# will use beacon2 to determine the better of the two points
failing = True
power_increases = 0
while failing and power_increases < 10:
res = circle_intersection(beacons[0],beacons[1])
if ( res ):
intersection = res
else:
beacons[0][2] *= 1.001
beacons[1][2] *= 1.001
power_increases += 1
continue
failing = False
# make sure the best fit is within x% (10% of the total distance from the 3rd beacon in this case)
# otherwise the results are too far off
THRESHOLD = 0.1
if failing:
print 'Bad Beacon Data (Beacon0 & Beacon1 don\'t intersection after many "power increases")'
else:
# finding best point between beacon1 and beacon2
dist1 = point_dist(beacons[2][0],beacons[2][1],intersection[0][0],intersection[0][1])
dist2 = point_dist(beacons[2][0],beacons[2][1],intersection[1][0],intersection[1][1])
if ( math.fabs(dist1-beacons[2][2]) < math.fabs(dist2-beacons[2][2]) ):
best_point = intersection[0]
best_dist = dist1
else:
best_point = intersection[1]
best_dist = dist2
best_dist_diff = math.fabs(best_dist-beacons[2][2])
if best_dist_diff < THRESHOLD*best_dist:
print best_point
else:
print 'Bad Beacon Data (Beacon2 distance to best point not within threshold)'
If you want to trust closer beacons more, you may want to calculate the intersection points between the two closest beacons and then use the farther beacon to tie-break. Keep in mind that almost anything you do with "confidence levels" for the individual measurements will be a hack at best. Since you will always be working with very bad data, you will defintiely need to loosen up the power_increases limit and threshold percentage.
You have 3 points : A(xA,yA,zA), B(xB,yB,zB) and C(xC,yC,zC), which respectively are approximately at dA, dB and dC from you goal point G(xG,yG,zG).
Let's say cA, cB and cC are the confidence rate ( 0 < cX <= 1 ) of each point.
Basically, you might take something really close to 1, like {0.95,0.97,0.99}.
If you don't know, try different coefficient depending of distance avg. If distance is really big, you're likely to be not very confident about it.
Here is the way i'll do it :
var sum = (cA*dA) + (cB*dB) + (cC*dC);
dA = cA*dA/sum;
dB = cB*dB/sum;
dC = cC*dC/sum;
xG = (xA*dA) + (xB*dB) + (xC*dC);
yG = (yA*dA) + (yB*dB) + (yC*dC);
xG = (zA*dA) + (zB*dB) + (zC*dC);
Basic, and not really smart but will do the job for some simple tasks.
EDIT
You can take any confidence coef you want in [0,inf[, but IMHO, restraining at [0,1] is a good idea to keep a realistic result.

Algorithm to calculate the distances between many geo points

I have a matrix having around 1000 geospatial points(Longitude, Latitude) and i am trying to find the points that are in 1KM range.
NOTE: "The points are dynamic, Imagine 1000 vehicles are moving, so i have to re-calculate all distances every few seconds"
I did some searches and read about Graph algorithms like (Floyd–Warshall) to solve this, and I ended up with many keywords, and i am kinda lost now. I am considering the performance and since the search radius is short, I will not consider the curvature of the earth.
Basically, It appears that i have to calculate the distance between every point to every other point then sort the distances starting from every point in the matrix and get the points that are in its range. So if I have 1000 co-ordinates, I have to perfom this process (1000^2-1000) times and I do not beleive this is the optimum solution. Thank You.
If you make a modell with a grid of 1km spacing:
0 1 2 3
___|____|____|____
0 | | |
c| b|a | d
___|____|____|____
1 | | |
| |f |
___|e___|____|____
2 | |g |
let's assume your starting point is a.
If your grid is of 1km size, points in 1km reach have to be in the same cell or one of the 8 neighbours (Points b, d, e, f).
Every other cell can be ignored (c,g).
While d is nearly of the same distance to a as c, c can be dropped early, because there are 2 barriers to cross, while a and d lie on opposite areas of their border, and are therefore nearly 2 km away from each other.
For early dropping of element, you can exclude, it is enough to check the x- or y-part of the coordinate. Since a belongs to (0,2), if x is 0 or smaller, or > 3, the point is already out of range.
After filtering only few candidates, you may use exhaustive search.
In your case, you should be looking at the GeoHash which allows you to quickly query the coordinates within a given distance.
FYI, MongoDB uses geohash internally and it's performing excellently.
Try with an R-Tree. The R-Tree supports the operation to find all the points closest to a given point that are not further away than a given radius. The execution time is optimal and I think it's O(number_of_points_in_the_result).
You could compute geocodes of 1km range around each of those 1000 coordinates and check, whether some points are in that range. May be it's not optimum, but you will save yourself some sorting.
If you want to lookup the matrix for each point vs. each point then you already got the right formula (1000^2-1000). There isn't any shortcut for this calculation. However when you know where to start the search and you want look for points within a 1KM radius you can use a grid or spatial algorithm to speed up the lookup. Most likely it's uses a divide and conquer algorithm and the cheapest of it is a geohash or a z curve. You can also try a kd-tree. Maybe this is even simpler. But if your points are in euklidian space then there is this planar method describe here: http://en.wikipedia.org/wiki/Closest_pair_of_points_problem.
Edit: When I say 1000^2-1000 then I mean the size of the grid but it's actually 1000^(1000 − 1) / 2 pairs of points so a lot less math.
I have something sort of similar on a web page I worked on, I think. The user clicks a location on the map and enters a radius, and a function returns all the locations within a database within the given radius. Do you mean you are trying to find the points that are within 1km of one of the points in the radius? Or are you trying to find the points that are within 1km of each other? I think you should do something like this.
radius = given radius
x1 = latitude of given point;
y1 = longitude of given point;
x2 = null;
y2 = null;
x = null;
y = null;
dist = null;
for ( i=0; i<locationArray.length; i++ ) {
x2 = locationArray[i].latitude;
y2 = locationArray[i].longitude;
x = x1 - x2;
y = y1 - y2;
dist = sqrt(x^2 + y^2);
if (dist <= radius)
these are your points
}
If you are trying to calculate all of the points that are within 1km of another point, you could add an outer loop giving the information of x1 and y1, which would then make the inner loop test the distance between the given point and every other point giving every point in your matrix as input. The calculations shouldn't take too long, since it is so basic.
I had the same problem but in a web service development
In my case to avoid the calculation time problem i used a simple divide & conquer solution : The idea was start the calculation of the distance between the new point and the others in every new data insertion, so that my application access directly the distance between those tow points that had been already calculated and put in my database

Inverting a set of rectangles on a 2D plane

I have a rectangular plane of integer dimension. Inside of this plane I have a set of non-intersecting rectangles (of integer dimension and at integer coordinates).
My question is how can I efficiently find the inverse of this set; that is the portions of the plane which are not contained in a sub-rectangle. Naturally, this collection of points forms a set of rectangles --- and it is these that I am interested in.
My current, naive, solution uses a boolean matrix (the size of the plane) and works by setting a point i,j to 0 if it is contained within a sub-rectangle and 1 otherwise. Then I iterate through each element of the matrix and if it is 1 (free) attempt to 'grow' a rectangle outwards from the point. Uniqueness is not a concern (any suitable set of rectangles is fine).
Are there any algorithms which can solve such a problem more effectively? (I.e, without needing to resort to a boolean matrix.
Yes, it's fairly straightforward. I've answered an almost identical question on SO before, but haven't been able to find it yet.
Anyway, essentially you can do this:
start with an output list containing a single output rect equal to the area of interest (some arbitrary bounding box which defines the area of interest and contains all the input rects)
for each input rect
if the input rect intersects any of the rects in the output list
delete the old output rect and generate up to four new output
rects which represent the difference between the intersection
and the original output rect
Optional final step: iterate through the output list looking for pairs of rects which can be merged to a single rect (i.e. pairs of rects which share a common edge can be combined into a single rect).
Alright! First implementation! (java), based of #Paul's answer:
List<Rectangle> slice(Rectangle r, Rectangle mask)
{
List<Rectangle> rects = new ArrayList();
mask = mask.intersection(r);
if(!mask.isEmpty())
{
rects.add(new Rectangle(r.x, r.y, r.width, mask.y - r.y));
rects.add(new Rectangle(r.x, mask.y + mask.height, r.width, (r.y + r.height) - (mask.y + mask.height)));
rects.add(new Rectangle(r.x, mask.y, mask.x - r.x, mask.height));
rects.add(new Rectangle(mask.x + mask.width, mask.y, (r.x + r.width) - (mask.x + mask.width), mask.height));
for (Iterator<Rectangle> iter = rects.iterator(); iter.hasNext();)
if(iter.next().isEmpty())
iter.remove();
}
else rects.add(r);
return rects;
}
List<Rectangle> inverse(Rectangle base, List<Rectangle> rects)
{
List<Rectangle> outputs = new ArrayList();
outputs.add(base);
for(Rectangle r : rects)
{
List<Rectangle> newOutputs = new ArrayList();
for(Rectangle output : outputs)
{
newOutputs.addAll(slice(output, r));
}
outputs = newOutputs;
}
return outputs;
}
Possibly working example here
You should take a look for the space-filling algorithms. Those algorithms are tyring to fill up a given space with some geometric figures. It should not be to hard to modify such algorithm to your needs.
Such algorithm is starting from scratch (empty space), so first you fill his internal data with boxes which you already have on the 2D plane. Then you let algorithm to do the rest - fill up the remaining space with another boxes. Those boxes are making a list of the inverted space chunks of your plane.
You keep those boxes in some list and then checking if a point is on the inverted plane is quite easy. You just traverse through your list and perform a check if point lies inside the box.
Here is a site with buch of algorithms which could be helpful .
I suspect you can get somewhere by ordering the rectangles by y-coordinate, and taking a scan-line approach. I may or may not actually contruct an implementation.
This is relatively simple because your rectangles are non-intersecting. The goal is basically a set of non-intersecting rectangles that fully cover the plane, some marked as original, and some marked as "inverse".
Think in terms of a top-down (or left-right or whatever) scan. You have a current "tide-line" position. Determine what the position of the next horizontal line you will encounter is that is not on the tide-line. This will give you the height of your next tide-line.
Between these tide-lines, you have a strip in which each vertical line reaches from one tide-line to the other (and perhaps beyond in both directions). You can sort the horizontal positions of these vertical lines, and use that to divide your strip into rectangles and identify them as either being (part of) an original rectangle or (part of) an inverse rectangle.
Progress to the end, and you get (probably too many too small) rectangles, and can pick the ones you want. You also have the option (with each step) of combining small rectangles from the current strip with a set of potentially-extendible rectangles from earlier.
You can do the same even when your original rectangles may intersect, but it's a little more fiddly.
Details left as an exercise for the reader ;-)

Fast Collision Detection for Circle Insertion into 2D Plane

I know there are lots of posts about collision detection generally for sprites moving about a 2D plane, but my question is slightly different.
I'm inserting circles into a 2D plane. The circles have variable radii. I'm trying to optimize my method of finding a random position within the plane where I can insert a new circle without it colliding with any other circles already on the plane. Right now I'm using a very "un-optimized" approach that simply generates a random point within the plane and then checks it against all the other circles on the plane.
Are there ways to optimize this? For this particular app, the bounds of the plane can only hold 20-25 circles at a time and typically there are between 5-10 present. As you would expect, when the number of circles approaches the max that can fit, you have to test many points before finding one that works. It gets very slow.
Note: safeDistance is the radius of the circle I want to add to the plane.
Here's the code:
- (CGPoint)getSafePosition:(float)safeDistance {
// Point must be far enough from edges
// Point must be far enough from other sprites
CGPoint thePoint;
BOOL pointIsSafe = NO;
int sd = ceil(safeDistance);
while(!pointIsSafe) {
self.pointsTested++; // DEBUG
// generate a random point inside the plane boundaries to test
thePoint = CGPointMake((arc4random() % ((int)self.manager.gameView.frame.size.width - sd*2)) + sd,
(arc4random() % ((int)self.manager.gameView.frame.size.height - sd*2)) + sd);
if(self.manager.gameView.sprites.count > 0) {
for(BasicSprite *theSprite in self.manager.gameView.sprites) {
// get distance between test point and the sprite position
float distance = [BasicSprite distanceBetweenPoints:thePoint b:theSprite.position];
// check if distance is less than the sum of the min safe distances of the two entities
if(distance < (safeDistance + [theSprite minSafeDistance])) {
// point not safe
pointIsSafe = NO;
break;
}
// if we get here, the point did not collide with the last tested point
pointIsSafe = YES;
}
}
else {
pointIsSafe = YES;
}
}
return thePoint;
}
Subdivide your window into w by h blocks. You'll be maintaining a w by h array, dist. dist[x][y] contains the size of the largest circle that can be centred at (x, y). (You can use pixels as blocks, although we'll be updating the entire array with each circle placed, so you may want to choose larger blocks for improved speed, at the cost of slightly reduced packing densities.)
Initialisation
Initially, set all dist[x][y] to min(x, y, w - x, h - y). This encodes the limits given by the bounding box that is the window.
Update procedure
Every time you add a circle to the window, say one positioned at (a, b) with radius r, you need to update all elements of dist.
The update required for each position (x, y) is:
dist[x][y] = min(dist[x][y], sqrt((x - a)^2 + (y - b)^2) - r);
(Obviously, ^2 here means squaring, not XOR.) Basically, we are saying: "Set dist[x][y] to the minimum distance to the circle just placed, unless the situation is already worse than that." dist values for points inside the circle just placed will be negative, but that doesn't matter.
Finding the next location
Then, when you want to insert the next circle of radius q, just scan through dist looking for a location with dist value >= q. (If you want to randomly choose such a location, find the complete list of valid locations and then randomly choose one.)
Honestly, with only 20-25 circles, you're not going to get much of a speed boost by using a fancier algorithm or data structure (e.g. a quadtree or a kd-tree). Everything is fast for small n.
Are you absolutely sure this is the bottleneck in your application? Have you profiled? If yes, then the way you're going to speed this up is through microoptimization, not through advanced algorithms. Are you making lots of iterations through the while loop because most of the plane is unsafe?
You could split your plane in lots of little rectangles (slightly quadtree-related) and save which rectangles are hit by at least one of the circles.
When you look for a insertion-point, you'll just have to look for some "empty" ones (which doesn't need any random jumps and is possible in constant time).
The number and constellation of rectangles can be computed by the radius.
Just an outline, since this solution is fairly involved.
If you want to guarantee you always find a place to put a circle if it's possible, you can do the following. Consider each existing circle C. We will try to find a location where we can place the new circle so that it is touching C. For each circle D (other than C) that is sufficiently close to C, there will be a range of angles where placing a new circle at one of those angles around C will make it intersect with D. Some geometry will give you that range. Similarly, for each of the four boundaries that are close enough to C, there will be a range of angles where placing a new circle at one of those angles will make it intersect with the boundary. If all these intervals cover all 360 degrees around C, then you cannot place a circle adjacent to C, and you will have to try the next circle, until there are no more candidates for C. If you find a place to put the new circle, you can move it some random distance away from C so that all your new circles do not have to be adjacent to an existing circle if that is not necessary.

Resources