I wander why Mercury (10.04) can't infer determinism of next snippet:
:- pred load_freqs(int::in, io.res(list(float))::out, io::di, io::uo) is det.
load_freqs(CPU, ResFreqs, !IO):-
open_input(cpu_fn(CPU, "available_frequencies"), ResStream, !IO),
(ResStream = io.ok(Stream) ->
ResFreqs = io.ok([])
;ResStream = io.error(Err),
ResFreqs = io.error(Err)
).
It complains:
cpugear.m:075: In `load_freqs'(in, out, di, uo):
cpugear.m:075: error: determinism declaration not satisfied.
cpugear.m:075: Declared `det', inferred `semidet'.
cpugear.m:080: Unification of `ResStream' and `io.error(Err)' can fail.
cpugear.m:076: In clause for predicate `cpugear.load_freqs'/4:
cpugear.m:076: warning: variable `CPU' occurs only once in this scope.
cpugear.m:078: In clause for predicate `cpugear.load_freqs'/4:
cpugear.m:078: warning: variable `Stream' occurs only once in this scope.
But io.res have only io.ok/1 and io.error/1.
And next snippet of code compiles well:
:- pred read_freqs(io.res(io.input_stream)::in, io.res(list(float))::out, io::di, io::uo) is det.
read_freqs(io.ok(Stream), io.ok([]), IO, IO).
read_freqs(io.error(Err), io.error(Err), IO, IO).
Update #1:
It can decide det even for:
:- pred read_freqs(bool::in, io.res(io.input_stream)::in, io.res(list(float))::out, io::di, io::uo) is det.
read_freqs(no, ResStream, io.ok([]), IO, IO):- ResStream = io.ok(_).
read_freqs(F, io.ok(_), io.ok([]), IO, IO):- F = yes.
read_freqs(yes, io.error(Err), io.error(Err), IO, IO).
read_freqs(F, ResStream, io.error(Err), IO, IO):- ResStream = io.error(Err), F = no.
My reading of the Mercury rules for determinism with conditionals (below) is that for this to be considered deterministic, you should replace the -> with a ,
From the Mercury reference manual:
If the condition of an if-then-else
cannot fail, the if-then-else is
equivalent to the conjunction of the
condition and the “then” part, and its
determinism is computed accordingly.
Otherwise, an if-then-else can fail if
either the “then” part or the “else”
part can fail.
As for 'Why'. lets look at the original code with the if-then-else:
(ResStream = io.ok(Stream) ->
ResFreqs = io.ok([])
;ResStream = io.error(Err),
ResFreqs = io.error(Err)
).
If the condition fails, then the first conjunct in the else case is a semidet test. The compiler doesn't know that it must succeed (which can be inferred by the knowledge that this condition failed). In other words, the compiler is not smart enough.
That said, it's vary rare to find this problem, because usually the condition is more complicated and won't allow for this inference to be made, so it's not important that the compiler is not smart enough to determine the correct determinism here.
It is recommended to program using switches whenever possible (such as this example), it prevents the current problem and helps ensure that you've covered all the possible cases of ResStream. For example, if in the future io.error was re factored and could be io.error_file_not_found or io.error_disk_full etc the compiler would direct the programmer to fix their switch as it would now be incomplete.
Ok, it can infer det for:
:- pred load_freqs(int::in, io.res(list(float))::out, io::di, io::uo) is det.
load_freqs(CPU, ResFreqs, !IO):-
open_input(cpu_fn(0, "available_frequencies"), ResStream, !IO),
(ResStream = io.ok(Stream),
ResFreqs = io.ok([])
;ResStream = io.error(Err),
ResFreqs = io.error(Err)
).
But why "if-then-else" construction introduces semidet?
Related
I am trying to use Prolog to represent state of a room.
I have a set of rules and a set of facts, but sometimes some of the facts are
not defined. For instance, temperature in a room can decrease due to either
cooling or opening a window, but sometimes I do not have a window sensor.
% Rules
temperature_trend(decrease) :-
cooling(on).
temperature_trend(decrease) :-
window(open).
% Facts
cooling(off).
%window(close). % Unknown, I do not have a window sensor
% Main
main() :-
temperature_trend(decrease).
If I run this program I would get an undefined procedure error. I can deal with
this by explicitly setting the window
status to "anything" with window(W). (I programmatically prepare the Prolog
source, so this is quite easy).
Now the query temperature_trend(decrease)
would succeed because window(W) would lead to window(open). However, in this
case I want to know that W = open.
Is there a way to return the variable assignments for this fact? Or maybe am I approaching the problem in the wrong way?
Note that the
rule tree could be arbitrarily deep, for instance I could add a new rule next_temperature(lower) :- temperature_trend(decrease). and I still
want to know that next_temperature(lower) succeeds only by setting W = open. Terms are also more complex
because they also have a time index (T = 232).
Maybe one option would be to return a list of assignments, which would be empty
if all facts were known.
Write a meta-interpreter that gives you what is true, e.g.,
prove(Goal, True) :-
phrase(prove(Goal), True).
prove(true) -->
!.
prove((A,B)) -->
!,
prove(A),
prove(B).
prove((A;B)) -->
!,
( prove(A)
; prove(B)
).
prove(Fact) -->
[Fact],
{ clause(Fact, Body) },
prove(Body).
Now, given window(_), we get:
?- prove(temperature_trend(decrease), L).
L = [temperature_trend(decrease), window(open)].
Lots of variations are possible!
I have just started learning Prolog, and I'm wondering about the first question of this exercise.
%% Suppose we are working with the following knowledge base:
wizard(ron).
hasWand(harry).
quidditchPlayer(harry).
wizard(X) :- hasBroom(X), hasWand(X).
hasBroom(X) :- quidditchPlayer(X).
How does Prolog respond to the following queries?
wizard(ron). -> true
witch(ron). -> undefined procedure
wizard(hermione). -> false
witch(hermione). -> undefined procedure
wizard(harry). -> true
wizard(Y). -> Y = ron ; Y = harry.
witch(Y). -> undefined procedure
Using swipl on Ubuntu, importing the knowledge base for this exercise, first of course trying to decipher what Prolog will returns, and finally checking by myself.
Ok pretty boring stuff until now, I have seen a few answer to these exercises over Github (here, here and there), and I don't understand the answer to the first one: %% 1. wizard(ron). -> true.
First of all the interpreter is complaining about the two definition of what is a wizard:
Warning: /tmp/prolog/ex15.pl:4:
Clauses of wizard/1 are not together in the source-file
Earlier definition at /tmp/prolog/ex15.pl:1
Current predicate: quidditchPlayer/1
Use :- discontiguous wizard/1. to suppress this message
Secondly, when querying I obtain:
?- wizard(ron).
true ;
false.
The way I get it, first Prolog returns the first fact from the knowledge base, then apply the rule head and find out that ron has neither a broom nor a wand.
All this leading to my question: what subtlety have I missed that makes others writing true as an answer to this query?
what subtlety have I missed that makes others writing true as an answer to this query?
`?- wizard(ron).`
true;
false
You have the clause (fact) wizard(ron). in your KB.
To make the things clearer you can write the fact also as the rule clause:
wizard(ron) :- true.
As you can see this is pretty redundant notation but useful in some cases as the general fact representation.
So your query can be interpreted as follows:
Is there an wizard called ron?
Since you have the fact wizard(ron) :- true.
Prolog will first unify the goal and the head.
In your case unify is trivial comparison because no variables are in the goal and the head.
Then Prolog tries to prove body. The body is builtin predicate true, so you quickly get the answer - true.
Then pressing ';' you initiate the search for the alternative solution.
Since no (more) solutions exist for the query wizard(ron), Prolog writes false.
The dot operator designates the clause end. So you wrongly typed dots in your examples:
-> operator means if-then-else relation. It can be used within clause body.
For example you can write std_member/2 as if_member/2
std_member(X, [ X | _ ]).
std_member(X, [ _ | Xs ]) :-
std_member(X, [ _ | Xs).
if_member(X, [ Y | Xs ]) :-
X = Y -> true;
if_member( X, Xs ).
I have to write a predicate to do work like following:
?- cat(north,south,X).
X = northsouth
?- cat(alley,'91',Y).
X = alley91
?-cat(7,uthah,H).
Bad Input
H = H
Please Help..
atom_concat_redefined(A1, A2, A3) :-
( nonvar(A1) -> atom_chars(A1, Chs1) ; true ),
( nonvar(A2) -> atom_chars(A2, Chs2) ; true ),
( nonvar(A1), nonvar(A2) -> true ; atom_chars(A3, Chs3) ),
append(Chs1, Chs2, Chs3),
atom_chars(A1, Chs1),
atom_chars(A2, Chs2),
atom_chars(A3, Chs3).
This definition produces the same errors in a standard conforming implementation like SICStus or GNU - there should be no other differences, apart from performance. To compare the errors use the goal:
?- catch(atom_concat_redefined(A,B,abc+1), error(E,_), true).
E = type_error(atom,abc+1).
Note the underscore in error(E,_), which hides the implementation defined differences. Implementations provide additional information in this argument, in particular, they would reveal that atom_chars/2 or atom_concat/3 produced the error.
atom_codes/2 it's the ISO approved predicate to convert between an atom and a list of codes. When you have 2 lists corresponding to first two arguments, append/3 (alas, not ISO approved, but AFAIK available in every Prolog), will get the list corresponding to third argument, then, convert that list to atom...
Note that, while append/3 is a 'pure' Prolog predicate, and can work with any instantiation pattern, atom_codes/2 requires at least one of it's argument instantiated. Here is a SWI-Prolog implementation of cat/3, 'working' a bit more generally. I hope it will inspire you to read more about Prolog...
ac(X,Xs) :- when((ground(X);ground(Xs)), atom_codes(X,Xs)).
cat(X,Y,Z) :- maplist(ac, [X,Y,Z],[Xs,Ys,Zs]), append(Xs,Ys,Zs).
edit
as noted by #false I was wrong about append/3. Now I'll try to understand better what append/3 does... wow, a so simple predicate, so behaviour rich!
I want to parse a logical expression using DCG in Prolog.
The logical terms are represented as lists e.g. ['x','&&','y'] for x ∧ y the result should be the parse tree and(X,Y) (were X and Y are unassigned Prolog variables).
I implemented it and everything works as expected but I have one problem:
I can't figure out how to parse the variable 'x' and 'y' to get real Prolog variables X and Y for the later assignment of truth values.
I tried the following rule variations:
v(X) --> [X].:
This doesn't work of course, it only returns and('x','y').
But can I maybe uniformly replace the logical variables in this term with Prolog variables? I know of the predicate term_to_atom (which is proposed as a solution for a similar problem) but I don't think it can be used here to achieve the desired result.
v(Y) --> [X], {nonvar(Y)}.:
This does return an unbound variable but of course a new one every time even if the logical variable ('x','y',...) was already in the term so
['X','&&','X'] gets evaluated to and(X,Y) which is not the desired result, either.
Is there any elegant or idiomatic solution to this problem?
Many thanks in advance!
EDIT:
The background to this question is that I'm trying to implement the DPLL-algorithm in Prolog. I thought it would by clever to directly parse the logical term to a Prolog-term to make easy use of the Prolog backtracking facility:
Input: some logical term, e.g T = [x,'&&',y]
Term after parsing: [G_123,'&&',G_456] (now featuring "real" Prolog variables)
Assign a value from { boolean(t), boolean(f) } to the first unbound variable in T.
simplify the term.
... repeat or backtrack until a assignment v is found so that v(T) = t or the search space is depleted.
I'm pretty new to Prolog and honestly couldn't figure out a better approach. I'm very interested in better alternatives! (So I'm kinda half-shure that this is what I want ;-) and thank you very much for your support so far ...)
You want to associate ground terms like x (no need to write 'x') with uninstantiated variables. Certainly that does not constitute a pure relation. So it is not that clear to me that you actually want this.
And where do you get the list [x, &&, x] in the first place? You probably have some kind of tokenizer. If possible, try to associate variable names to variables prior to the actual parsing. If you insist to perform that association during parsing you will have to thread a pair of variables throughout your entire grammar. That is, instead of a clean grammar like
power(P) --> factor(F), power_r(F, P).
you will now have to write
power(P, D0,D) --> factor(F, D0,D1), power_r(F, P, D1,D).
% ^^^^ ^^^^^ ^^^^
since you are introducing context into an otherwise context free grammar.
When parsing Prolog text, the same problem occurs. The association between a variable name and a concrete variable is already established during tokenizing. The actual parser does not have to deal with it.
There are essentially two ways to perform this during tokenization:
1mo collect all occurrences Name=Variable in a list and unify them later:
v(N-V, [N-V|D],D) --> [N], {maybesometest(N)}.
unify_nvs(NVs) :-
keysort(NVs, NVs2),
uniq(NVs2).
uniq([]).
uniq([NV|NVs]) :-
head_eq(NVs, NV).
uniq(NVs).
head_eq([], _).
head_eq([N-V|_],N-V).
head_eq([N1-_|_],N2-_) :-
dif(N1,N2).
2do use some explicit dictionary to merge them early on.
Somewhat related is this question.
Not sure if you really want to do what you asked. You might do it by keeping a list of variable associations so that you would know when to reuse a variable and when to use a fresh one.
This is an example of a greedy descent parser which would parse expressions with && and ||:
parse(Exp, Bindings, NBindings)-->
parseLeaf(LExp, Bindings, MBindings),
parse_cont(Exp, LExp, MBindings, NBindings).
parse_cont(Exp, LExp, Bindings, NBindings)-->
parse_op(Op, LExp, RExp),
{!},
parseLeaf(RExp, Bindings, MBindings),
parse_cont(Exp, Op, MBindings, NBindings).
parse_cont(Exp, Exp, Bindings, Bindings)-->[].
parse_op(and(LExp, RExp), LExp, RExp)--> ['&&'].
parse_op(or(LExp, RExp), LExp, RExp)--> ['||'].
parseLeaf(Y, Bindings, NBindings)-->
[X],
{
(member(bind(X, Var), Bindings)-> Y-NBindings=Var-Bindings ; Y-NBindings=Var-[bind(X, Var)|Bindings])
}.
It parses the expression and returns also the variable bindings.
Sample outputs:
?- phrase(parse(Exp, [], Bindings), ['x', '&&', 'y']).
Exp = and(_G683, _G696),
Bindings = [bind(y, _G696), bind(x, _G683)].
?- phrase(parse(Exp, [], Bindings), ['x', '&&', 'x']).
Exp = and(_G683, _G683),
Bindings = [bind(x, _G683)].
?- phrase(parse(Exp, [], Bindings), ['x', '&&', 'y', '&&', 'x', '||', 'z']).
Exp = or(and(and(_G839, _G852), _G839), _G879),
Bindings = [bind(z, _G879), bind(y, _G852), bind(x, _G839)].
I would need help about Prolog.
I posted my code, the problem is that i do not obtain the expected result.
I want planning actions for moving on table all blocks until is possible. To do this I prompt :
?- do(while(some(x, block(x) & -onTable(x)),pi(x,putOnTable(x))),s0,S).
I expect to see a response like :
S = do(putOnTable(e), do(putOnTable(b), do(putOnTable(c), s0)))
but Prolog returns "false" only. Someone can help me??
% Golog interpreter
%:- [golog_swi].
:- discontiguous clear/2, on/3, onTable/2.
:- op(800,xfy,[&]).
do(E,S,do(E,S)):- primitive_action(E),poss(a,S).
% Primitive Action Declarations.
primitive_action(putOn(_,_)).
primitive_action(putOnTable(_)).
poss(putOn(X,Y),S) :- clear(X,S), clear(Y,S), \+ on(X,Y,S), \+ X=Y.
poss(putOnTable(X),S):- clear(X,S), \+(onTable(X,S)).
% Successor State Axioms.
on(X,Y,do(A,S)):- A = putOn(X,Y); on(X,Y,S), \+ (A = putOnTable(X); A = putOn(X,_)).
onTable(X,do(A,S)) :- A = putOnTable(X); onTable(X,S), \+ A= putOn(X,_).
clear(X,do(A,S)) :- on(Y,X,S), (A = putOn(Y,_) ; A = putOnTable(Y)); clear(X,S), \+ A = putOn(_,X).
% Restore suppressed situation arguments
restoreSitArg(onTable(X),S,onTable(X,S)).
restoreSitArg(on(X,Y),S,on(X,Y,S)).
restoreSitArg(clear(X),S,clear(X,S)).
block(X):- member(X,[a,b,c,d,e]).
% iniTial COndition
onTable(a,s0).
on(b,a,s0).
on(c,b,s0).
clear(c,s0).
onTable(d,s0).
on(e,d,s0).
clear(3,s0).
thank you!!!
Your predicate do/3 cannot succeed because the goal primitive_action/1 will fail with your query.
Currently, while/2 is not described in primitive_action/1 and it seems it is missing also from your program. So you need to extend primitive_action/1 by further facts, or add a new rule to do/3. And in addition to that you need to describe what while/2 means.
This question is actually about Golog. Your mistake is pretty mundane: you didn't copy the Golog interpreter code into your source file/directory.
Golog defines a number of high-level programming constructs, including while-loops and non-deterministic picks (pi), used here. I'm sure you don't want to reinvent Golog, so just go and get it. I'm assuming that your question is part of an assignment of sorts, and your teacher probably pointed you to the Golog interpreter. Otherwise, you can always find it on the pages of the cognitive robotics group at the Univ. of Toronto: http://www.cs.toronto.edu/cogrobo/main/systems/index.html