I am currently doing Project Euler problem 1. I have no idea why these two loops are not the same.
total = 0
for i in 0..1000
if (i % 3 == 0 || i % 5 == 0)
total += i
end
end
and
total = 0
(0...1000).each do |i|
total += i if (i % 3 == 0 || i % 5 == 0)
end
puts total
When you use three dots in range (0...1000), the end value is not part of the range - it is equivalent to (0..999)
So, in first case 1000 is part of the loop, but in second case it is not.
I am practicing ruby. In one of the exercises, it asks me to try and use a 'while' loop to print the numbers 1 to 50 inclusively. (counting up)
I also have a code that counts down.
i = 50
while i > 0 do
print i
i -= 1
end
anyway you could make the code above counting up?
Thanks
Try Below Simple Ruby Magics :)
(1..50).each { |n| puts n }
50.times { |n| puts n }
1.upto(50) { |n| print n }
Here counting up is being automatically inside ruby library, so dont worry about it
try
$i = 1
$num = 51
while $i < $num do
print("#$i" )
$i +=1
end
that would help..
and go to this for more help
http://www.tutorialspoint.com/ruby/ruby_loops.htm
Just to help you understand what you typed :
when you type: i -= 1, it is the same as typing: i = i - 1
when you type : i += 1, it is the same as typing : i = i + 1
You should then easily understand why, when you want to decrement your variable i, you start by initializing i at 50 (before the while loop starts).
And when you want to increment your variable i, you start by initializing i at 1 or 0.
Your are counting backwards, from i = 50 to 1. You must go from i = 1 to 50, increasing i += 1 on each loop.
Change it to this:
i = 1
while i <= 50 do
print i
i += 1
end
And a bit simplified:
(1..50).each { |number| puts number }
I'm learning Ruby On Rails program and I've came to a road block on one of the lessons. The assignment has me creating an odd numbers for the script to read starting from "20 to 0" using the next component. This is the example they've given me to change :
i = 20
loop do
i -= 1
print "#{i}"
break if i <= 0
end
This is the problem:
Add a line to your loop before your print statement. Use the next keyword so that you skip to the next iteration if the number i is odd.
How do I accomplish this?
You can just insert a next that skips the rest of the loop if the number is odd:
i = 20
loop do
i -= 1
next if i.odd?
puts "#{i}"
break if i <= 0
end
I would solve it this way:
i = 20
loop do
i -= 1
next if i%2 != 0
print "#{i}"
break if i <= 0
end
i = 20
loop do
i -= 1
next if i % 2 == 0
print "#{i}"
break if i <=1
end
I have the following method for doing a check digit on a tracking number, but it just feels lengthy/sloppy. Can it be refactored and just generally cleaned up?
I'm running Ruby 1.8.7.
def is_fedex(number)
n = number.reverse[0..14]
check_digit = n.first.to_i
even_numbers = n[1..1].to_i + n[3..3].to_i + n[5..5].to_i + n[7..7].to_i + n[9..9].to_i + n[11..11].to_i + n[13..13].to_i
even_numbers = even_numbers * 3
odd_numbers = n[2..2].to_i + n[4..4].to_i + n[6..6].to_i + n[8..8].to_i + n[10..10].to_i + n[12..12].to_i + n[14..14].to_i
total = even_numbers + odd_numbers
multiple_of_ten = total + 10 - (total % 10)
remainder = multiple_of_ten - total
if remainder == check_digit
true
else
false
end
end
EDIT: Here are valid and invalid numbers.
Valid: 9612019950078574025848
Invalid: 9612019950078574025847
def is_fedex(number)
total = (7..20).inject(0) {|sum, i| sum + number[i..i].to_i * ( i.odd? ? 1 : 3 ) }
number[-1].to_i == (total / 10.0).ceil * 10 - total
end
I believe you should keep your code. While it's not idiomatic or clever, it's the one you will have the least trouble to understand a few months from now.
I'm not a ruby programmer, so if any of the syntax is off, I apologize but you should get the general idea. A few things I see: First, you don't need to slice the array, a single index should be sufficient. Second, Instead of splitting even and odd, you could do something like this:
total = 0
for i in (1..14)
total += n[i].to_i * ( i % 2 == 1 ? 1 : 3 )
end
Third, remainder could be simplified to 10 - (total % 10).
I realize you're running 1.8.7, but here's my attempt using each_slice and inject in conjunction, a 1.9.2 feature:
def is_fedex(number)
total = number.reverse[1..14].split(//).map(&:to_i).each_slice(2).inject(0) do |t, (e,o)|
t += e*3 + o
end
10 - (total % 10) == number[-1].to_i
end
It passes both tests
Give this a try:
#assuming number comes in as a string
def is_fedex(number)
n = number.reverse[0..14].scan(/./)
check_digit = n[0].to_i
total = 0
n[1..14].each_with_index {|d,i| total += d.to_i * (i.even? ? 3 : 1) }
check_digit == 10 - (total % 10)
end
> is_fedex("12345678901231") => true
edit incorporating simplified remainder logic as Kevin suggested
Something like this?
def is_fedex(number)
even_arr, odd_arr = number.to_s[1..13].split(//).map(&:to_i).partition.with_index { |n, i| i.even? }
total = even_arr.inject(:+) * 3 + odd_arr.inject(:+)
number.to_s.reverse[0..0].to_i == (total + 10 - (total % 10)) - total
end
If you can give me a valid and invalid number I can test if it works and maybe tweak it further :)
This function should to:
def is_fedex(number)
# sanity check
return false unless number.length == 15
data = number[0..13].reverse
check_digit = number[14..14].to_i
total = (0..data.length-1).inject(0) do |total, i|
total += data[i..i].to_i * 3**((i+1)%2)
end
(10 - total % 10) == check_digit
end
The arithmetic expression 3**((i+1)%2) might look a bit complex, but is essentially the same as (i.odd? ? 1 : 3). Both variants are correct, which you use is up to you (and might affect speed...)
Also note, that if you use Ruby 1.9, you can use data[i] instead of data[i..i] which is required for for Ruby 1.8.
Ruby may not be the optimal language for this but I'm sort of comfortable working with this in my terminal so that's what I'm going with.
I need to process the numbers from 1 to 666666 so I pin out all the numbers that contain 6 but doesn't contain 7, 8 or 9. The first number will be 6, the next 16, then 26 and so forth.
Then I needed it printed like this (6=6) (16=6) (26=6) and when I have ranges like 60 to 66 I need it printed like (60 THRU 66=6) (SPSS syntax).
I have this code and it works but it's neither beautiful nor very efficient so how could I optimize it?
(silly code may follow)
class Array
def to_ranges
array = self.compact.uniq.sort
ranges = []
if !array.empty?
# Initialize the left and right endpoints of the range
left, right = array.first, nil
array.each do |obj|
# If the right endpoint is set and obj is not equal to right's successor
# then we need to create a range.
if right && obj != right.succ
ranges << Range.new(left,right)
left = obj
end
right = obj
end
ranges << Range.new(left,right) unless left == right
end
ranges
end
end
write = ""
numbers = (1..666666).to_a
# split each number in an array containing it's ciphers
numbers = numbers.map { |i| i.to_s.split(//) }
# delete the arrays that doesn't contain 6 and the ones that contains 6 but also 8, 7 and 9
numbers = numbers.delete_if { |i| !i.include?('6') }
numbers = numbers.delete_if { |i| i.include?('7') }
numbers = numbers.delete_if { |i| i.include?('8') }
numbers = numbers.delete_if { |i| i.include?('9') }
# join the ciphers back into the original numbers
numbers = numbers.map { |i| i.join }
numbers = numbers.map { |i| i = Integer(i) }
# rangify consecutive numbers
numbers = numbers.to_ranges
# edit the ranges that go from 1..1 into just 1
numbers = numbers.map do |i|
if i.first == i.last
i = i.first
else
i = i
end
end
# string stuff
numbers = numbers.map { |i| i.to_s.gsub(".."," thru ") }
numbers = numbers.map { |i| "(" + i.to_s + "=6)"}
numbers.each { |i| write << " " + i }
File.open('numbers.txt','w') { |f| f.write(write) }
As I said it works for numbers even in the millions - but I'd like some advice on how to make prettier and more efficient.
I deleted my earlier attempt to parlez-vous-ruby? and made up for that. I know have an optimized version of x3ro's excellent example.
$,="\n"
puts ["(0=6)", "(6=6)", *(1.."66666".to_i(7)).collect {|i| i.to_s 7}.collect do |s|
s.include?('6')? "(#{s}0 THRU #{s}6=6)" : "(#{s}6=6)"
end ]
Compared to x3ro's version
... It is down to three lines
... 204.2 x faster (to 66666666)
... has byte-identical output
It uses all my ideas for optimization
gen numbers based on modulo 7 digits (so base-7 numbers)
generate the last digit 'smart': this is what compresses the ranges
So... what are the timings? This was testing with 8 digits (to 66666666, or 823544 lines of output):
$ time ./x3ro.rb > /dev/null
real 8m37.749s
user 8m36.700s
sys 0m0.976s
$ time ./my.rb > /dev/null
real 0m2.535s
user 0m2.460s
sys 0m0.072s
Even though the performance is actually good, it isn't even close to the C optimized version I posted before: I couldn't run my.rb to 6666666666 (6x10) because of OutOfMemory. When running to 9 digits, this is the comparative result:
sehe#meerkat:/tmp$ time ./my.rb > /dev/null
real 0m21.764s
user 0m21.289s
sys 0m0.476s
sehe#meerkat:/tmp$ time ./t2 > /dev/null
real 0m1.424s
user 0m1.408s
sys 0m0.012s
The C version is still some 15x faster... which is only fair considering that it runs on the bare metal.
Hope you enjoyed it, and can I please have your votes if only for learning Ruby for the purpose :)
(Can you tell I'm proud? This is my first encounter with ruby; I started the ruby koans 2 hours ago...)
Edit by #johndouthat:
Very nice! The use of base7 is very clever and this a great job for your first ruby trial :)
Here's a slight modification of your snippet that will let you test 10+ digits without getting an OutOfMemory error:
puts ["(0=6)", "(6=6)"]
(1.."66666666".to_i(7)).each do |i|
s = i.to_s(7)
puts s.include?('6') ? "(#{s}0 THRU #{s}6=6)" : "(#{s}6=6)"
end
# before:
real 0m26.714s
user 0m23.368s
sys 0m2.865s
# after
real 0m15.894s
user 0m13.258s
sys 0m1.724s
Exploiting patterns in the numbers, you can short-circuit lots of the loops, like this:
If you define a prefix as the 100s place and everything before it,
and define the suffix as everything in the 10s and 1s place, then, looping
through each possible prefix:
If the prefix is blank (i.e. you're testing 0-99), then there are 13 possible matches
elsif the prefix contains a 7, 8, or 9, there are no possible matches.
elsif the prefix contains a 6, there are 49 possible matches (a 7x7 grid)
else, there are 13 possible matches. (see the image below)
(the code doesn't yet exclude numbers that aren't specifically in the range, but it's pretty close)
number_range = (1..666_666)
prefix_range = ((number_range.first / 100)..(number_range.last / 100))
for p in prefix_range
ps = p.to_s
# TODO: if p == prefix_range.last or p == prefix_range.first,
# TODO: test to see if number_range.include?("#{ps}6".to_i), etc...
if ps == '0'
puts "(6=6) (16=6) (26=6) (36=6) (46=6) (56=6) (60 thru 66) "
elsif ps =~ /7|8|9/
# there are no candidate suffixes if the prefix contains 7, 8, or 9.
elsif ps =~ /6/
# If the prefix contains a 6, then there are 49 candidate suffixes
for i in (0..6)
print "(#{ps}#{i}0 thru #{ps}#{i}6) "
end
puts
else
# If the prefix doesn't contain 6, 7, 8, or 9, then there are only 13 candidate suffixes.
puts "(#{ps}06=6) (#{ps}16=6) (#{ps}26=6) (#{ps}36=6) (#{ps}46=6) (#{ps}56=6) (#{ps}60 thru #{ps}66) "
end
end
Which prints out the following:
(6=6) (16=6) (26=6) (36=6) (46=6) (56=6) (60 thru 66)
(106=6) (116=6) (126=6) (136=6) (146=6) (156=6) (160 thru 166)
(206=6) (216=6) (226=6) (236=6) (246=6) (256=6) (260 thru 266)
(306=6) (316=6) (326=6) (336=6) (346=6) (356=6) (360 thru 366)
(406=6) (416=6) (426=6) (436=6) (446=6) (456=6) (460 thru 466)
(506=6) (516=6) (526=6) (536=6) (546=6) (556=6) (560 thru 566)
(600 thru 606) (610 thru 616) (620 thru 626) (630 thru 636) (640 thru 646) (650 thru 656) (660 thru 666)
(1006=6) (1016=6) (1026=6) (1036=6) (1046=6) (1056=6) (1060 thru 1066)
(1106=6) (1116=6) (1126=6) (1136=6) (1146=6) (1156=6) (1160 thru 1166)
(1206=6) (1216=6) (1226=6) (1236=6) (1246=6) (1256=6) (1260 thru 1266)
(1306=6) (1316=6) (1326=6) (1336=6) (1346=6) (1356=6) (1360 thru 1366)
(1406=6) (1416=6) (1426=6) (1436=6) (1446=6) (1456=6) (1460 thru 1466)
(1506=6) (1516=6) (1526=6) (1536=6) (1546=6) (1556=6) (1560 thru 1566)
(1600 thru 1606) (1610 thru 1616) (1620 thru 1626) (1630 thru 1636) (1640 thru 1646) (1650 thru 1656) (1660 thru 1666)
etc...
Note I don't speak ruby, but I intend to dohave done a ruby version later just for speed comparison :)
If you just iterate all numbers from 0 to 117648 (ruby <<< 'print "666666".to_i(7)') and print them in base-7 notation, you'll at least have discarded any numbers containing 7,8,9. This includes the optimization suggestion by MrE, apart from lifting the problem to simple int arithmetic instead of char-sequence manipulations.
All that remains, is to check for the presence of at least one 6. This would make the algorithm skip at most 6 items in a row, so I deem it less unimportant (the average number of skippable items on the total range is 40%).
Simple benchmark to 6666666666
(Note that this means outputting 222,009,073 (222M) lines of 6-y numbers)
Staying close to this idea, I wrote this quite highly optimized C code (I don't speak ruby) to demonstrate the idea. I ran it to 282475248 (congruent to 6666666666 (mod 7)) so it was more of a benchmark to measure: 0m26.5s
#include <stdio.h>
static char buf[11];
char* const bufend = buf+10;
char* genbase7(int n)
{
char* it = bufend; int has6 = 0;
do
{
has6 |= 6 == (*--it = n%7);
n/=7;
} while(n);
return has6? it : 0;
}
void asciify(char* rawdigits)
{
do { *rawdigits += '0'; }
while (++rawdigits != bufend);
}
int main()
{
*bufend = 0; // init
long i;
for (i=6; i<=282475248; i++)
{
char* b7 = genbase7(i);
if (b7)
{
asciify(b7);
puts(b7);
}
}
}
I also benchmarked another approach, which unsurprisingly ran in less than half the time because
this version directly manipulates the results in ascii string form, ready for display
this version shortcuts the has6 flag for deeper recursion levels
this version also optimizes the 'twiddling' of the last digit when it is required to be '6'
the code is simply shorter...
Running time: 0m12.8s
#include <stdio.h>
#include <string.h>
inline void recursive_permute2(char* const b, char* const m, char* const e, int has6)
{
if (m<e)
for (*m = '0'; *m<'7'; (*m)++)
recursive_permute2(b, m+1, e, has6 || (*m=='6'));
else
if (has6)
for (*e = '0'; *e<'7'; (*e)++)
puts(b);
else /* optimize for last digit must be 6 */
puts((*e='6', b));
}
inline void recursive_permute(char* const b, char* const e)
{
recursive_permute2(b, b, e-1, 0);
}
int main()
{
char buf[] = "0000000000";
recursive_permute(buf, buf+sizeof(buf)/sizeof(*buf)-1);
}
Benchmarks measured with:
gcc -O4 t6.c -o t6
time ./t6 > /dev/null
$range_start = -1
$range_end = -1
$f = File.open('numbers.txt','w')
def output_number(i)
if $range_end == i-1
$range_end = i
elsif $range_start < $range_end
$f.puts "(#{$range_start} thru #{$range_end})"
$range_start = $range_end = i
else
$f.puts "(#{$range_start}=6)" if $range_start > 0 # no range, print out previous number
$range_start = $range_end = i
end
end
'1'.upto('666') do |n|
next unless n =~ /6/ # keep only numbers that contain 6
next if n =~ /[789]/ # remove nubmers that contain 7, 8 or 9
output_number n.to_i
end
if $range_start < $range_end
$f.puts "(#{$range_start} thru #{$range_end})"
end
$f.close
puts "Ruby is beautiful :)"
I came up with this piece of code, which I tried to keep more or less in FP-styling. Probably not much more efficient (as it has been said, with basic number logic you will be able to increase performance, for example by skipping from 19xx to 2000 directly, but that I will leave up to you :)
def check(n)
n = n.to_s
n.include?('6') and
not n.include?('7') and
not n.include?('8') and
not n.include?('9')
end
def spss(ranges)
ranges.each do |range|
if range.first === range.last
puts "(" + range.first.to_s + "=6)"
else
puts "(" + range.first.to_s + " THRU " + range.last.to_s + "=6)"
end
end
end
range = (1..666666)
range = range.select { |n| check(n) }
range = range.inject([0..0]) do |ranges, n|
temp = ranges.last
if temp.last + 1 === n
ranges.pop
ranges.push(temp.first..n)
else
ranges.push(n..n)
end
end
spss(range)
My first answer was trying to be too clever. Here is a much simpler version
class MutablePrintingCandidateRange < Struct.new(:first, :last)
def to_s
if self.first == nil and self.last == nil
''
elsif self.first == self.last
"(#{self.first}=6)"
else
"(#{self.first} thru #{self.last})"
end
end
def <<(x)
if self.first == nil and self.last == nil
self.first = self.last = x
elsif self.last == x - 1
self.last = x
else
puts(self) # print the candidates
self.first = self.last = x # reset the range
end
end
end
and how to use it:
numer_range = (1..666_666)
current_range = MutablePrintingCandidateRange.new
for i in numer_range
candidate = i.to_s
if candidate =~ /6/ and candidate !~ /7|8|9/
# number contains a 6, but not a 7, 8, or 9
current_range << i
end
end
puts current_range
Basic observation: If the current number is (say) 1900 you know that you can safely skip up to at least 2000...
(I didn't bother updating my C solution for formatting. Instead I went with x3ro's excellent ruby version and optimized that)
Undeleted:
I still am not sure whether the changed range-notation behaviour isn't actually what the OP wants: This version changes the behaviour of breaking up ranges that are actually contiguous modulo 6; I wouldn't be surprised the OP actually expected
.
....
(555536=6)
(555546=6)
(555556 THRU 666666=6)
instead of
....
(666640 THRU 666646=6)
(666650 THRU 666656=6)
(666660 THRU 666666=6)
I'll let the OP decide, and here is the modified version, which runs in 18% of the time as x3ro's version (3.2s instead of 17.0s when generating up to 6666666 (7x6)).
def check(n)
n.to_s(7).include?('6')
end
def spss(ranges)
ranges.each do |range|
if range.first === range.last
puts "(" + range.first.to_s(7) + "=6)"
else
puts "(" + range.first.to_s(7) + " THRU " + range.last.to_s(7) + "=6)"
end
end
end
range = (1..117648)
range = range.select { |n| check(n) }
range = range.inject([0..0]) do |ranges, n|
temp = ranges.last
if temp.last + 1 === n
ranges.pop
ranges.push(temp.first..n)
else
ranges.push(n..n)
end
end
spss(range)
My answer below is not complete, but just to show a path (I might come back and continue the answer):
There are only two cases:
1) All the digits besides the lowest one is either absent or not 6
6, 16, ...
2) At least one digit besides the lowest one includes 6
60--66, 160--166, 600--606, ...
Cases in (1) do not include any continuous numbers because they all have 6 in the lowest digit, and are different from one another. Cases in (2) all appear as continuous ranges where the lowest digit continues from 0 to 6. Any single continuation in (2) is not continuous with another one in (2) or with anything from (1) because a number one less than xxxxx0 will be xxxxy9, and a number one more than xxxxxx6 will be xxxxxx7, and hence be excluded.
Therefore, the question reduces to the following:
3)
Get all strings between "" to "66666" that do not include "6"
For each of them ("xxx"), output the string "(xxx6=6)"
4)
Get all strings between "" to "66666" that include at least one "6"
For each of them ("xxx"), output the string "(xxx0 THRU xxx6=6)"
The killer here is
numbers = (1..666666).to_a
Range supports iterations so you would be better off by going over the whole range and accumulating numbers that include your segments in blocks. When one block is finished and supplanted by another you could write it out.