Fibonacci recursion with a stack - algorithm

I've already asked a question about this, yet I'm still confused. I want to convert a recursive function into a stack based function without recursion. Take, for example, the fibonacci function:
algorithm Fibonacci(x):
i = 0
i += Fibonacci(x-1)
i += Fibonacci(x-2)
return i
(Yes I know I didn't put a base case and that recursion for fibonacci is really inefficient)
How would this be implemented using an explicit stack? For example, if I have the stack as a while loop, I have to jump out of the loop in order to evaluate the first recursion, and I have no way of returning to the line after the first recursion and continue on with the second recursion.

in pseudo python
def fib(x):
tot = 0
stack = [x]
while stack:
a = stack.pop()
if a in [0,1]:
tot += 1
else:
stack.push(a - 1)
stack.push(a - 2)
return tot
If you do not want the external counter then you will need to push tuples that keep track of the accumulated sum and whether this was a - 1 or a - 2.
It is probably worth your time to explicitly write out the call stack (by hand, on paper) for a run of say fib(3) for your code (though fix your code first so it handles the boundary conditions). Once you do this it should be clear how to do it without a stack.
Edit:
Let us analyze the running of the following Fibonacci algorithm
def fib(x):
if (x == 0) or (x == 1):
return 1
else:
temp1 = fib(x - 1)
temp2 = fib(x - 2)
return temp1 + temp2
(Yes, I know that this isn't even an efficient implementation of an inefficient algorithm, I have declared more temporaries than necessary.)
Now when we use a stack for function calling we need to store two kinds of things on the stack.
Where to return the result.
Space for local variables.
In our case we have three possible places to return to.
Some outside caller
Assign to temp1
Assign to temp2
we also need space for three local variables x, temp1, and temp2. let us examine fib(3)
when we initially call fib we tell the stack that we want to return to wherever we cam from, x = 3, and temp1 and temp2 are uninitialized.
Next we push onto the stack that we want to assign temp1, x = 2 and temp1 and temp2 are uninitialized. We call again and we have a stack of
(assign temp1, x = 1, -, -)
(assign temp1, x = 2, -, -)
(out , x = 3, -, -)
we now return 1 and do the second call and get
(assign temp2, x = 0, -, -)
(assign temp1, x = 2, temp1 = 1, -)
(out , x = 3, -, -)
this now again returns 1
(assign temp1, x = 2, temp1 = 1, temp2 = 1)
(out , x = 3, -, -)
so this returns 2 and we get
(out , x = 3, temp1 =2, -)
So we now recurse to
(assign temp2, x = 1, -, -)
(out , x = 3, temp1 =2, -)
from which we can see our way out.

algorithm Fibonacci(x):
stack = [1,1]
while stack.length < x
push to the stack the sum of two topmost stack elements
return stack.last
You can preserve stack between calls as some kind of cache.
This stack is not a "true stack" since you can do more than only pushing, popping and checking its emptiness, but I believe this is what you are planning to do.

Your question inspired me to write a piece of code, that initially scared me, but I'm not really sure what to think about it now, so here it is for Your amusement. Maybe it can help a bit, with understanding things.
It's a blatant simulation of an execution of a recursive Fibonacci function implementation. The language is C#. For an argument 0 the function returns 0 - according to the definition of the Fibonacci sequence given by Ronald Graham, Donald Knuth, and Oren Patashnik in "Concrete Mathematics". It's defined this way also in Wikipedia. Checks for negative arguments are omitted.
Normally a return address is stored on the stack and execution just jumps to the right address. To simulate this I used an enum
enum JumpAddress
{
beforeTheFirstRecursiveInvocation,
betweenRecursiveInvocations,
afterTheSecondRecursiveInvocation,
outsideFibFunction
}
and a little state machine.
The Frame stored on the stack is defined like this:
class Frame
{
public int argument;
public int localVariable;
public JumpAddress returnAddress;
public Frame(int argument, JumpAddress returnAddress)
{
this.argument = argument;
this.localVariable = 0;
this.returnAddress = returnAddress;
}
}
It's a C# class - a reference type. The stack holds references to the objects placed on the heap, so when I'm doing this:
Frame top = stack.Peek();
top.localVariable = lastresult;
I'm modifying the object still referenced by the reference at the top of a stack, not a copy.
I model invocation of a function, by pushing a frame on the stack and setting the execution address in my state machine to the beginning - beforeTheFirstRecursiveInvocation.
To return form the function I set the lastresult variable, pointOfExecution variable to the return address stored in the top frame and pop the frame from the stack.
Here is the code.
public static int fib(int n)
{
Stack<Frame> stack = new Stack<Frame>(n);
//Constructor uses the parameter to reserve space.
int lastresult = 0;
//variable holding the result of the last "recursive" invocation
stack.Push(new Frame(n, JumpAddress.outsideFibFunction));
JumpAddress pointOfExecution = JumpAddress.beforeTheFirstRecursiveInvocation;
// that's how I model function invocation. I push a frame on the stack and set
// pointOfExecution. Above the frame stores the argument n and a return address
// - outsideFibFunction
while(pointOfExecution != JumpAddress.outsideFibFunction)
{
Frame top = stack.Peek();
switch(pointOfExecution)
{
case JumpAddress.beforeTheFirstRecursiveInvocation:
if(top.argument <= 1)
{
lastresult = top.argument;
pointOfExecution = top.returnAddress;
stack.Pop();
}
else
{
stack.Push(new Frame(top.argument - 1, JumpAddress.betweenRecursiveInvocations));
pointOfExecution = JumpAddress.beforeTheFirstRecursiveInvocation;
}
break;
case JumpAddress.betweenRecursiveInvocations:
top.localVariable = lastresult;
stack.Push(new Frame(top.argument - 2, JumpAddress.afterTheSecondRecursiveInvocation));
pointOfExecution = JumpAddress.beforeTheFirstRecursiveInvocation;
break;
case JumpAddress.afterTheSecondRecursiveInvocation:
lastresult += top.localVariable;
pointOfExecution = top.returnAddress;
stack.Pop();
break;
default:
System.Diagnostics.Debug.Assert(false,"This point should never be reached");
break;
}
}
return lastresult;
}

// 0<x<100
int fib[100];
fib[1]=1;
fib[2]=1;
if(x<=2)
cout<<1;
else{
for(i=3;i<=x;i++)
fib[i]=fib[i-1]+fib[i-2];
cout<<fib[x];
}
OR without using a vector
int x,y,z;
x=1;y=1;z=1;
if(x<=2)
cout<<1;
else{
for(i=3;i<=x;i++){
z=x+y;
x=y;
y=z;
}
cout<<z;
}
The last method works because you only need the previous 2 fibonacci numbers for creating the current one.

Related

How is a reference counter implemented at compile time?

Here is a made up set of function calls (I tried to make it complicated but perhaps it is easy).
function main(arg1, arg2) {
do_foo(arg1, arg2)
}
function do_foo(a, b) {
let x = a + b
let y = x * a
let z = x * b
let p = y + z
let q = x + z
let r = do_bar(&p)
let s = do_bar(&q)
}
function do_bar(&p, &q) {
*p += 1
*q += 3
let r = &p * &q
let s = &p + &q
let v = do_baz(&r, &s)
return &v
}
function do_baz(&a, &b) {
return *a + *b
}
How do you generally go about figuring out the liveness of variables and where you can insert instructions for reference counting?
Here is my attempt...
Start at the top function main. It starts with 2 arguments. Assume there is no copying that occurs. It passes the actual mutable values to do_foo.
Then we have x. X owns a and b. Then we see y. y is set to x, so link the previous x to this x. By r, we don't see x anymore, so perhaps it can be freed.... Looking at do_bar by itself, we know basically that p and q can't be garbage collected within this scope.
Basically, I have no idea how to start implementing an algorithm to implement ARC (ideally compile time reference counting, but runtime would be okay for now too to get started).
function main(arg1, arg2) {
let x = do_foo(arg1, arg2)
free(arg1)
free(arg2)
free(x)
}
function do_foo(a, b) {
let x = a + b
let y = x * a
let z = x * b
let p = y + z
free(y)
let q = x + z
free(x)
free(z)
let r = do_bar(&p)
let s = do_bar(&q)
return r + s
}
function do_bar(&p, &q) {
*p += 1
*q += 3
let r = &p * &q
let s = &p + &q
let v = do_baz(&r, &s)
free(r)
free(s)
return &v
}
function do_baz(&a, &b) {
return *a + *b
}
How do I start with implementing such an algorithm. I have searched for every paper on the topic but found no algorithms.
The following rules should do the job for your language.
When a variable is declared, increment its refcount
When a variable goes out of scope, decrement its refcount
When a reference-to-variable is assigned to a variable, adjust the reference counts for the variable(s):
increment the refcount for the variable whose reference is being assigned
decrement the refcount for the variable whose references was previously in the variable being assigned to (if it was not null)
When a variable containing a non-null reference-to-variable goes out of scope, decrement the refcount for the variable it referred to.
Note:
If your language allows reference-to-variable types to be used in data structures, "static" variables, etcetera, the rules abouve need to be extended ... in the obvious fashion.
An optimizing compiler may be able to eliminate some refcount increments and decrements.
Compile time reference counting:
There isn't really any such thing. Reference counting is done at runtime. It doesn't make sense to do it at compile time.
You are probably talking about analyzing the code to determine if runtime reference counting can be optimized or entirely eliminated.
I alluded to the former above. It is really a kind of peephole optimization.
The latter entails checking whether a reference-to-variable can ever escape; i.e. whether it could be used after the variable goes out of scope. (Try Googling for "escape analysis". This is kind of analogous to the "escape analysis" that a compiler could do to decide if an object could be allocated on the stack rather than in the heap.)

How can I transform the code I wrote down below?

I am suppose to code the snake game in java with processing for IT classes and since I had no idea how to do it I searched for a YouTube tutorial. Now I did find one but he used the keys 'w','s','d','a' to move the snake around - I on the other hand want to use the arrow keys. Could someone explain to me how I transform this code:
if (keyPressed == true) {
int newdir = key=='s' ? 0 : (key=='w' ? 1 : (key=='d' ? 2 : (key=='a' ? 3 : -1)));
}
if(newdir != -1 && (x.size() <= 1 || !(x.get(1) ==x.get(0) + dx[newdir] && y.get (1) == y.get(0) + dy[newdir]))) dir = newdir;
}
into something like this:
void keyPressed () {
if (key == CODED) {
if (keyCode == UP) {}
else if (keyCode == RIGHT) {}
else if (keyCode == DOWN) {}
else if (keyCode == LEFT) {}
}
This is my entire coding so far:
ArrayList<Integer> x = new ArrayList<Integer> (), y = new ArrayList<Integer> ();
int w = 900, h = 900, bs = 20, dir = 1; // w = width ; h = height ; bs = blocksize ; dir = 2 --> so that the snake goes up when it starts
int[] dx = {0,0,1,-1} , dy = {1,-1,0,0};// down, up, right, left
void setup () {
size (900,900); // the 'playing field' is going to be 900x900px big
// the snake starts off on x = 5 and y = 30
x.add(5);
y.add(30);
}
void draw() {
//white background
background (255);
//
// grid
// vertical lines ; the lines are only drawn if they are smaller than 'w'
// the operator ++ increases the value 'l = 0' by 1
//
for(int l = 0 ; l < w; l++) line (l*bs, 0, l*bs, height);
//
// horizontal lines ; the lines are only drawn if they are smaller than 'h'
// the operator ++ increases the value 'l = 0' by 1
//
for(int l = 0 ; l < h; l++) line (0, l*bs, width, l*bs);
//
// snake
for (int l = 0 ; l < x.size() ; l++) {
fill (0,255,0); // the snake is going to be green
rect (x.get(l)*bs, y.get(l)*bs, bs, bs);
}
if(frameCount%5==0) { // will check it every 1/12 of a second -- will check it every 5 frames at a frameRate = 60
// adding points
x.add (0,x.get(0) + dx[dir]); // will add a new point x in the chosen direction
y.add (0,y.get(0) + dy[dir]); // will add a new point y in the chosen direction
// removing points
x.remove(x.size()-1); // will remove the previous point x
y.remove(y.size()-1); // will remove the previous point y
}
}
It's hard to answer general "how do I do this" type questions. Stack Overflow is designed for more specific "I tried X, expected Y, but got Z instead" type questions. That being said, I'll try to answer in a general sense:
You're going to have a very difficult time trying to take random code you find on the internet and trying to make it work in your sketch. That's not a very good way to proceed.
Instead, you need to take a step back and really think about what you want to happen. Instead of taking on your entire end goal at one time, try breaking your problem down into smaller steps and taking on those steps one at a time.
Step 1: Can you store the state of your game in variables? You might store things like the direction the snake is traveling the location of the snake, etc.
Step 2: Can you write code that just prints something to the console when you press the arrow keys? You might do this in a separate example sketch instead of trying to add it directly to your full sketch.
Step 3: Can you combine those two steps and change the state of your sketch when an arrow key is pressed? Maybe you change the direction the snake is traveling.
The point is that you need to try something instead of trying to copy-paste random code without really understanding it. Break your problem down into small steps, and then post an MCVE of that specific step if you get stuck. Good luck.
You should take a look into Java API KeyEvent VK_LEFT.
And as pczeus already told you, you need to implement a capturing of the keystrokes! This can be checked here (Link from this SO answer).

pseudocode function to return two results for processing a tree

I'm trying to write a pseudocode for a recursive function that should process a binary tree. But the problem is that the function should return two variables. I know that functions are supposed to return on variable, and for more return values they should use list, array or vector, but I don't know how to present it as a pseudocode.
Does it look correct for a pseudocode?
function get_min(node *p)
begin
if (p==NULL) then
return list(0,0);
else
(vl,wl) = get_min(p->left)
(vr,wr) = get_min(p->right)
if (vl > vr) then
return list(vr + p->cost, 1)
else
return list(vl + p->cost, 0)
end if
end if
end function
Since it's pseudo-code, just about anything goes.
However, I'd rather go for omitting "list":
return (0, 0)
return (vr + p->cost, 1)
return (vl + p->cost, 0)
There doesn't seem to be any real benefit to putting "list" there - the (..., ...) format pretty clearly indicates returning two values already - there's no need to explicitly say you're returning them in a list.
Side note: You mention list, array or vector, but pair is another option in some languages, or wrapping the two in an object (typically giving the advantage of compile-time type checking - not really applicable in pseudo-code, obviously).
You could consider replacing "list" with "pair" instead of removing it if you wish to make it clear that the function only ever returns exactly 2 values.
If you pass parameters as reference , then there is no need to use lists as #Dukeling suggested .
void function get_min(node *p , int *cost , int * a)
begin
if (p==NULL) then
*cost =0 ; *a =0 ; return ;
else
get_min(p->left ,vl ,vw)
get_min(p->right , vr , wr)
if (vl > vr) then
*cost = vl + p->cost , *a =0 ; return;
else
*cost = vl + p->cost , *a =0 ; return ;
end if
end if
end function

How to design an algorithm to calculate countdown style maths number puzzle

I have always wanted to do this but every time I start thinking about the problem it blows my mind because of its exponential nature.
The problem solver I want to be able to understand and code is for the countdown maths problem:
Given set of number X1 to X5 calculate how they can be combined using mathematical operations to make Y.
You can apply multiplication, division, addition and subtraction.
So how does 1,3,7,6,8,3 make 348?
Answer: (((8 * 7) + 3) -1) *6 = 348.
How to write an algorithm that can solve this problem? Where do you begin when trying to solve a problem like this? What important considerations do you have to think about when designing such an algorithm?
Very quick and dirty solution in Java:
public class JavaApplication1
{
public static void main(String[] args)
{
List<Integer> list = Arrays.asList(1, 3, 7, 6, 8, 3);
for (Integer integer : list) {
List<Integer> runList = new ArrayList<>(list);
runList.remove(integer);
Result result = getOperations(runList, integer, 348);
if (result.success) {
System.out.println(integer + result.output);
return;
}
}
}
public static class Result
{
public String output;
public boolean success;
}
public static Result getOperations(List<Integer> numbers, int midNumber, int target)
{
Result midResult = new Result();
if (midNumber == target) {
midResult.success = true;
midResult.output = "";
return midResult;
}
for (Integer number : numbers) {
List<Integer> newList = new ArrayList<Integer>(numbers);
newList.remove(number);
if (newList.isEmpty()) {
if (midNumber - number == target) {
midResult.success = true;
midResult.output = "-" + number;
return midResult;
}
if (midNumber + number == target) {
midResult.success = true;
midResult.output = "+" + number;
return midResult;
}
if (midNumber * number == target) {
midResult.success = true;
midResult.output = "*" + number;
return midResult;
}
if (midNumber / number == target) {
midResult.success = true;
midResult.output = "/" + number;
return midResult;
}
midResult.success = false;
midResult.output = "f" + number;
return midResult;
} else {
midResult = getOperations(newList, midNumber - number, target);
if (midResult.success) {
midResult.output = "-" + number + midResult.output;
return midResult;
}
midResult = getOperations(newList, midNumber + number, target);
if (midResult.success) {
midResult.output = "+" + number + midResult.output;
return midResult;
}
midResult = getOperations(newList, midNumber * number, target);
if (midResult.success) {
midResult.output = "*" + number + midResult.output;
return midResult;
}
midResult = getOperations(newList, midNumber / number, target);
if (midResult.success) {
midResult.output = "/" + number + midResult.output;
return midResult
}
}
}
return midResult;
}
}
UPDATE
It's basically just simple brute force algorithm with exponential complexity.
However you can gain some improvemens by leveraging some heuristic function which will help you to order sequence of numbers or(and) operations you will process in each level of getOperatiosn() function recursion.
Example of such heuristic function is for example difference between mid result and total target result.
This way however only best-case and average-case complexities get improved. Worst case complexity remains untouched.
Worst case complexity can be improved by some kind of branch cutting. I'm not sure if it's possible in this case.
Sure it's exponential but it's tiny so a good (enough) naive implementation would be a good start. I suggest you drop the usual infix notation with bracketing, and use postfix, it's easier to program. You can always prettify the outputs as a separate stage.
Start by listing and evaluating all the (valid) sequences of numbers and operators. For example (in postfix):
1 3 7 6 8 3 + + + + + -> 28
1 3 7 6 8 3 + + + + - -> 26
My Java is laughable, I don't come here to be laughed at so I'll leave coding this up to you.
To all the smart people reading this: yes, I know that for even a small problem like this there are smarter approaches which are likely to be faster, I'm just pointing OP towards an initial working solution. Someone else can write the answer with the smarter solution(s).
So, to answer your questions:
I begin with an algorithm that I think will lead me quickly to a working solution. In this case the obvious (to me) choice is exhaustive enumeration and testing of all possible calculations.
If the obvious algorithm looks unappealing for performance reasons I'll start thinking more deeply about it, recalling other algorithms that I know about which are likely to deliver better performance. I may start coding one of those first instead.
If I stick with the exhaustive algorithm and find that the run-time is, in practice, too long, then I might go back to the previous step and code again. But it has to be worth my while, there's a cost/benefit assessment to be made -- as long as my code can outperform Rachel Riley I'd be satisfied.
Important considerations include my time vs computer time, mine costs a helluva lot more.
A working solution in c++11 below.
The basic idea is to use a stack-based evaluation (see RPN) and convert the viable solutions to infix notation for display purposes only.
If we have N input digits, we'll use (N-1) operators, as each operator is binary.
First we create valid permutations of operands and operators (the selector_ array). A valid permutation is one that can be evaluated without stack underflow and which ends with exactly one value (the result) on the stack. Thus 1 1 + is valid, but 1 + 1 is not.
We test each such operand-operator permutation with every permutation of operands (the values_ array) and every combination of operators (the ops_ array). Matching results are pretty-printed.
Arguments are taken from command line as [-s] <target> <digit>[ <digit>...]. The -s switch prevents exhaustive search, only the first matching result is printed.
(use ./mathpuzzle 348 1 3 7 6 8 3 to get the answer for the original question)
This solution doesn't allow concatenating the input digits to form numbers. That could be added as an additional outer loop.
The working code can be downloaded from here. (Note: I updated that code with support for concatenating input digits to form a solution)
See code comments for additional explanation.
#include <iostream>
#include <vector>
#include <algorithm>
#include <stack>
#include <iterator>
#include <string>
namespace {
enum class Op {
Add,
Sub,
Mul,
Div,
};
const std::size_t NumOps = static_cast<std::size_t>(Op::Div) + 1;
const Op FirstOp = Op::Add;
using Number = int;
class Evaluator {
std::vector<Number> values_; // stores our digits/number we can use
std::vector<Op> ops_; // stores the operators
std::vector<char> selector_; // used to select digit (0) or operator (1) when evaluating. should be std::vector<bool>, but that's broken
template <typename T>
using Stack = std::stack<T, std::vector<T>>;
// checks if a given number/operator order can be evaluated or not
bool isSelectorValid() const {
int numValues = 0;
for (auto s : selector_) {
if (s) {
if (--numValues <= 0) {
return false;
}
}
else {
++numValues;
}
}
return (numValues == 1);
}
// evaluates the current values_ and ops_ based on selector_
Number eval(Stack<Number> &stack) const {
auto vi = values_.cbegin();
auto oi = ops_.cbegin();
for (auto s : selector_) {
if (!s) {
stack.push(*(vi++));
continue;
}
Number top = stack.top();
stack.pop();
switch (*(oi++)) {
case Op::Add:
stack.top() += top;
break;
case Op::Sub:
stack.top() -= top;
break;
case Op::Mul:
stack.top() *= top;
break;
case Op::Div:
if (top == 0) {
return std::numeric_limits<Number>::max();
}
Number res = stack.top() / top;
if (res * top != stack.top()) {
return std::numeric_limits<Number>::max();
}
stack.top() = res;
break;
}
}
Number res = stack.top();
stack.pop();
return res;
}
bool nextValuesPermutation() {
return std::next_permutation(values_.begin(), values_.end());
}
bool nextOps() {
for (auto i = ops_.rbegin(), end = ops_.rend(); i != end; ++i) {
std::size_t next = static_cast<std::size_t>(*i) + 1;
if (next < NumOps) {
*i = static_cast<Op>(next);
return true;
}
*i = FirstOp;
}
return false;
}
bool nextSelectorPermutation() {
// the start permutation is always valid
do {
if (!std::next_permutation(selector_.begin(), selector_.end())) {
return false;
}
} while (!isSelectorValid());
return true;
}
static std::string buildExpr(const std::string& left, char op, const std::string &right) {
return std::string("(") + left + ' ' + op + ' ' + right + ')';
}
std::string toString() const {
Stack<std::string> stack;
auto vi = values_.cbegin();
auto oi = ops_.cbegin();
for (auto s : selector_) {
if (!s) {
stack.push(std::to_string(*(vi++)));
continue;
}
std::string top = stack.top();
stack.pop();
switch (*(oi++)) {
case Op::Add:
stack.top() = buildExpr(stack.top(), '+', top);
break;
case Op::Sub:
stack.top() = buildExpr(stack.top(), '-', top);
break;
case Op::Mul:
stack.top() = buildExpr(stack.top(), '*', top);
break;
case Op::Div:
stack.top() = buildExpr(stack.top(), '/', top);
break;
}
}
return stack.top();
}
public:
Evaluator(const std::vector<Number>& values) :
values_(values),
ops_(values.size() - 1, FirstOp),
selector_(2 * values.size() - 1, 0) {
std::fill(selector_.begin() + values_.size(), selector_.end(), 1);
std::sort(values_.begin(), values_.end());
}
// check for solutions
// 1) we create valid permutations of our selector_ array (eg: "1 1 + 1 +",
// "1 1 1 + +", but skip "1 + 1 1 +" as that cannot be evaluated
// 2) for each evaluation order, we permutate our values
// 3) for each value permutation we check with each combination of
// operators
//
// In the first version I used a local stack in eval() (see toString()) but
// it turned out to be a performance bottleneck, so now I use a cached
// stack. Reusing the stack gives an order of magnitude speed-up (from
// 4.3sec to 0.7sec) due to avoiding repeated allocations. Using
// std::vector as a backing store also gives a slight performance boost
// over the default std::deque.
std::size_t check(Number target, bool singleResult = false) {
Stack<Number> stack;
std::size_t res = 0;
do {
do {
do {
Number value = eval(stack);
if (value == target) {
++res;
std::cout << target << " = " << toString() << "\n";
if (singleResult) {
return res;
}
}
} while (nextOps());
} while (nextValuesPermutation());
} while (nextSelectorPermutation());
return res;
}
};
} // namespace
int main(int argc, const char **argv) {
int i = 1;
bool singleResult = false;
if (argc > 1 && std::string("-s") == argv[1]) {
singleResult = true;
++i;
}
if (argc < i + 2) {
std::cerr << argv[0] << " [-s] <target> <digit>[ <digit>]...\n";
std::exit(1);
}
Number target = std::stoi(argv[i]);
std::vector<Number> values;
while (++i < argc) {
values.push_back(std::stoi(argv[i]));
}
Evaluator evaluator{values};
std::size_t res = evaluator.check(target, singleResult);
if (!singleResult) {
std::cout << "Number of solutions: " << res << "\n";
}
return 0;
}
Input is obviously a set of digits and operators: D={1,3,3,6,7,8,3} and Op={+,-,*,/}. The most straight forward algorithm would be a brute force solver, which enumerates all possible combinations of these sets. Where the elements of set Op can be used as often as wanted, but elements from set D are used exactly once. Pseudo code:
D={1,3,3,6,7,8,3}
Op={+,-,*,/}
Solution=348
for each permutation D_ of D:
for each binary tree T with D_ as its leafs:
for each sequence of operators Op_ from Op with length |D_|-1:
label each inner tree node with operators from Op_
result = compute T using infix traversal
if result==Solution
return T
return nil
Other than that: read jedrus07's and HPM's answers.
By far the easiest approach is to intelligently brute force it. There is only a finite amount of expressions you can build out of 6 numbers and 4 operators, simply go through all of them.
How many? Since you don't have to use all numbers and may use the same operator multiple times, This problem is equivalent to "how many labeled strictly binary trees (aka full binary trees) can you make with at most 6 leaves, and four possible labels for each non-leaf node?".
The amount of full binary trees with n leaves is equal to catalan(n-1). You can see this as follows:
Every full binary tree with n leaves has n-1 internal nodes and corresponds to a non-full binary tree with n-1 nodes in a unique way (just delete all the leaves from the full one to get it). There happen to be catalan(n) possible binary trees with n nodes, so we can say that a strictly binary tree with n leaves has catalan(n-1) possible different structures.
There are 4 possible operators for each non-leaf node: 4^(n-1) possibilities
The leaves can be numbered in n! * (6 choose (n-1)) different ways. (Divide this by k! for each number that occurs k times, or just make sure all numbers are different)
So for 6 different numbers and 4 possible operators you get Sum(n=1...6) [ Catalan(n-1) * 6!/(6-n)! * 4^(n-1) ] possible expressions for a total of 33,665,406. Not a lot.
How do you enumerate these trees?
Given a collection of all trees with n-1 or less nodes, you can create all trees with n nodes by systematically pairing all of the n-1 trees with the empty tree, all n-2 trees with the 1 node tree, all n-3 trees with all 2 node tree etc. and using them as the left and right sub trees of a newly formed tree.
So starting with an empty set you first generate the tree that has just a root node, then from a new root you can use that either as a left or right sub tree which yields the two trees that look like this: / and . And so on.
You can turn them into a set of expressions on the fly (just loop over the operators and numbers) and evaluate them as you go until one yields the target number.
I've written my own countdown solver, in Python.
Here's the code; it is also available on GitHub:
#!/usr/bin/env python3
import sys
from itertools import combinations, product, zip_longest
from functools import lru_cache
assert sys.version_info >= (3, 6)
class Solutions:
def __init__(self, numbers):
self.all_numbers = numbers
self.size = len(numbers)
self.all_groups = self.unique_groups()
def unique_groups(self):
all_groups = {}
all_numbers, size = self.all_numbers, self.size
for m in range(1, size+1):
for numbers in combinations(all_numbers, m):
if numbers in all_groups:
continue
all_groups[numbers] = Group(numbers, all_groups)
return all_groups
def walk(self):
for group in self.all_groups.values():
yield from group.calculations
class Group:
def __init__(self, numbers, all_groups):
self.numbers = numbers
self.size = len(numbers)
self.partitions = list(self.partition_into_unique_pairs(all_groups))
self.calculations = list(self.perform_calculations())
def __repr__(self):
return str(self.numbers)
def partition_into_unique_pairs(self, all_groups):
# The pairs are unordered: a pair (a, b) is equivalent to (b, a).
# Therefore, for pairs of equal length only half of all combinations
# need to be generated to obtain all pairs; this is set by the limit.
if self.size == 1:
return
numbers, size = self.numbers, self.size
limits = (self.halfbinom(size, size//2), )
unique_numbers = set()
for m, limit in zip_longest(range((size+1)//2, size), limits):
for numbers1, numbers2 in self.paired_combinations(numbers, m, limit):
if numbers1 in unique_numbers:
continue
unique_numbers.add(numbers1)
group1, group2 = all_groups[numbers1], all_groups[numbers2]
yield (group1, group2)
def perform_calculations(self):
if self.size == 1:
yield Calculation.singleton(self.numbers[0])
return
for group1, group2 in self.partitions:
for calc1, calc2 in product(group1.calculations, group2.calculations):
yield from Calculation.generate(calc1, calc2)
#classmethod
def paired_combinations(cls, numbers, m, limit):
for cnt, numbers1 in enumerate(combinations(numbers, m), 1):
numbers2 = tuple(cls.filtering(numbers, numbers1))
yield (numbers1, numbers2)
if cnt == limit:
return
#staticmethod
def filtering(iterable, elements):
# filter elements out of an iterable, return the remaining elements
elems = iter(elements)
k = next(elems, None)
for n in iterable:
if n == k:
k = next(elems, None)
else:
yield n
#staticmethod
#lru_cache()
def halfbinom(n, k):
if n % 2 == 1:
return None
prod = 1
for m, l in zip(reversed(range(n+1-k, n+1)), range(1, k+1)):
prod = (prod*m)//l
return prod//2
class Calculation:
def __init__(self, expression, result, is_singleton=False):
self.expr = expression
self.result = result
self.is_singleton = is_singleton
def __repr__(self):
return self.expr
#classmethod
def singleton(cls, n):
return cls(f"{n}", n, is_singleton=True)
#classmethod
def generate(cls, calca, calcb):
if calca.result < calcb.result:
calca, calcb = calcb, calca
for result, op in cls.operations(calca.result, calcb.result):
expr1 = f"{calca.expr}" if calca.is_singleton else f"({calca.expr})"
expr2 = f"{calcb.expr}" if calcb.is_singleton else f"({calcb.expr})"
yield cls(f"{expr1} {op} {expr2}", result)
#staticmethod
def operations(x, y):
yield (x + y, '+')
if x > y: # exclude non-positive results
yield (x - y, '-')
if y > 1 and x > 1: # exclude trivial results
yield (x * y, 'x')
if y > 1 and x % y == 0: # exclude trivial and non-integer results
yield (x // y, '/')
def countdown_solver():
# input: target and numbers. If you want to play with more or less than
# 6 numbers, use the second version of 'unsorted_numbers'.
try:
target = int(sys.argv[1])
unsorted_numbers = (int(sys.argv[n+2]) for n in range(6)) # for 6 numbers
# unsorted_numbers = (int(n) for n in sys.argv[2:]) # for any numbers
numbers = tuple(sorted(unsorted_numbers, reverse=True))
except (IndexError, ValueError):
print("You must provide a target and numbers!")
return
solutions = Solutions(numbers)
smallest_difference = target
bestresults = []
for calculation in solutions.walk():
diff = abs(calculation.result - target)
if diff <= smallest_difference:
if diff < smallest_difference:
bestresults = [calculation]
smallest_difference = diff
else:
bestresults.append(calculation)
output(target, smallest_difference, bestresults)
def output(target, diff, results):
print(f"\nThe closest results differ from {target} by {diff}. They are:\n")
for calculation in results:
print(f"{calculation.result} = {calculation.expr}")
if __name__ == "__main__":
countdown_solver()
The algorithm works as follows:
The numbers are put into a tuple of length 6 in descending order. Then, all unique subgroups of lengths 1 to 6 are created, the smallest groups first.
Example: (75, 50, 5, 9, 1, 1) -> {(75), (50), (9), (5), (1), (75, 50), (75, 9), (75, 5), ..., (75, 50, 9, 5, 1, 1)}.
Next, the groups are organised into a hierarchical tree: every group is partitioned into all unique unordered pairs of its non-empty subgroups.
Example: (9, 5, 1, 1) -> [(9, 5, 1) + (1), (9, 1, 1) + (5), (5, 1, 1) + (9), (9, 5) + (1, 1), (9, 1) + (5, 1)].
Within each group of numbers, the calculations are performed and the results are stored. For groups of length 1, the result is simply the number itself. For larger groups, the calculations are carried out on every pair of subgroups: in each pair, all results of the first subgroup are combined with all results of the second subgroup using +, -, x and /, and the valid outcomes are stored.
Example: (75, 5) consists of the pair ((75), (5)). The result of (75) is 75; the result of (5) is 5; the results of (75, 5) are [75+5=80, 75-5=70, 75*5=375, 75/5=15].
In this manner, all results are generated, from the smallest groups to the largest. Finally, the algorithm iterates through all results and selects the ones that are the closest match to the target number.
For a group of m numbers, the maximum number of arithmetic computations is
comps[m] = 4*sum(binom(m, k)*comps[k]*comps[m-k]//(1 + (2*k)//m) for k in range(1, m//2+1))
For all groups of length 1 to 6, the maximum total number of computations is then
total = sum(binom(n, m)*comps[m] for m in range(1, n+1))
which is 1144386. In practice, it will be much less, because the algorithm reuses the results of duplicate groups, ignores trivial operations (adding 0, multiplying by 1, etc), and because the rules of the game dictate that intermediate results must be positive integers (which limits the use of the division operator).
I think, you need to strictly define the problem first. What you are allowed to do and what you are not. You can start by making it simple and only allowing multiplication, division, substraction and addition.
Now you know your problem space- set of inputs, set of available operations and desired input. If you have only 4 operations and x inputs, the number of combinations is less than:
The number of order in which you can carry out operations (x!) times the possible choices of operations on every step: 4^x. As you can see for 6 numbers it gives reasonable 2949120 operations. This means that this may be your limit for brute force algorithm.
Once you have brute force and you know it works, you can start improving your algorithm with some sort of A* algorithm which would require you to define heuristic functions.
In my opinion the best way to think about it is as the search problem. The main difficulty will be finding good heuristics, or ways to reduce your problem space (if you have numbers that do not add up to the answer, you will need at least one multiplication etc.). Start small, build on that and ask follow up questions once you have some code.
I wrote a terminal application to do this:
https://github.com/pg328/CountdownNumbersGame/tree/main
Inside, I've included an illustration of the calculation of the size of the solution space (it's n*((n-1)!^2)*(2^n-1), so: n=6 -> 2,764,800. I know, gross), and more importantly why that is. My implementation is there if you care to check it out, but in case you don't I'll explain here.
Essentially, at worst it is brute force because as far as I know it's impossible to determine whether any specific branch will result in a valid answer without explicitly checking. Having said that, the average case is some fraction of that; it's {that number} divided by the number of valid solutions (I tend to see around 1000 on my program, where 10 or so are unique and the rest are permutations fo those 10). If I handwaved a number, I'd say roughly 2,765 branches to check which takes like no time. (Yes, even in Python.)
TL;DR: Even though the solution space is huge and it takes a couple million operations to find all solutions, only one answer is needed. Best route is brute force til you find one and spit it out.
I wrote a slightly simpler version:
for every combination of 2 (distinct) elements from the list and combine them using +,-,*,/ (note that since a>b then only a-b is needed and only a/b if a%b=0)
if combination is target then record solution
recursively call on the reduced lists
import sys
def driver():
try:
target = int(sys.argv[1])
nums = list((int(sys.argv[i+2]) for i in range(6)))
except (IndexError, ValueError):
print("Provide a list of 7 numbers")
return
solutions = list()
solve(target, nums, list(), solutions)
unique = set()
final = list()
for s in solutions:
a = '-'.join(sorted(s))
if not a in unique:
unique.add(a)
final.append(s)
for s in final: #print them out
print(s)
def solve(target, nums, path, solutions):
if len(nums) == 1:
return
distinct = sorted(list(set(nums)), reverse = True)
rem1 = list(distinct)
for n1 in distinct: #reduce list by combining a pair
rem1.remove(n1)
for n2 in rem1:
rem2 = list(nums) # in case of duplicates we need to start with full list and take out the n1,n2 pair of elements
rem2.remove(n1)
rem2.remove(n2)
combine(target, solutions, path, rem2, n1, n2, '+')
combine(target, solutions, path, rem2, n1, n2, '-')
if n2 > 1:
combine(target, solutions, path, rem2, n1, n2, '*')
if not n1 % n2:
combine(target, solutions, path, rem2, n1, n2, '//')
def combine(target, solutions, path, rem2, n1, n2, symb):
lst = list(rem2)
ans = eval("{0}{2}{1}".format(n1, n2, symb))
newpath = path + ["{0}{3}{1}={2}".format(n1, n2, ans, symb[0])]
if ans == target:
solutions += [newpath]
else:
lst.append(ans)
solve(target, lst, newpath, solutions)
if __name__ == "__main__":
driver()

Scala PriorityQueue on Array[Int] performance issue with complex comparison function (caching is needed)

The problem involves the Scala PriorityQueue[Array[Int]] performance on large data set. The following operations are needed: enqueue, dequeue, and filter. Currently, my implementation is as follows:
For every element of type Array[Int], there is a complex evaluation function: (I'm not sure how to write it in a more efficient way, because it excludes the position 0)
def eval_fun(a : Array[Int]) =
if(a.size < 2) 3
else {
var ret = 0
var i = 1
while(i < a.size) {
if((a(i) & 0x3) == 1) ret += 1
else if((a(i) & 0x3) == 3) ret += 3
i += 1
}
ret / a.size
}
The ordering with a comparison function is based on the evaluation function: (Reversed, descendent order)
val arr_ord = new Ordering[Array[Int]] {
def compare(a : Array[Int], b : Array[Int]) = eval_fun(b) compare eval_fun(a) }
The PriorityQueue is defined as:
val pq: scala.collection.mutable.PriorityQueue[Array[Int]] = PriorityQueue()
Question:
Is there a more elegant and efficient way to write such a evaluation function? I'm thinking of using fold, but fold cannot exclude the position 0.
Is there a data structure to generate a priorityqueue with unique elements? Applying filter operation after each enqueue operation is not efficient.
Is there a cache method to reduce the evaluation computation? Since when adding a new element to the queue, every element may need to be evaluated by eval_fun again, which is not necessary if evaluated value of every element can be cached. Also, I should mention that two distinct element may have the same evaluated value.
Is there a more efficient data structure without using generic type? Because if the size of elements reaches 10,000 and the size of size reaches 1,000, the performance is terribly slow.
Thanks you.
(1) If you want maximum performance here, I would stick to the while loop, even if it is not terribly elegant. Otherwise, if you use a view on Array, you can easily drop the first element before going into the fold:
a.view.drop(1).foldLeft(0)( (sum, a) => sum + ((a & 0x03) match {
case 0x01 => 1
case 0x03 => 3
case _ => 0
})) / a.size
(2) You can maintain two structures, the priority queue, and a set. Both combined give you a sorted-set... So you could use collection.immutable.SortedSet, but there is no mutable variant in the standard library. Do want equality based on the priority function, or the actual array contents? Because in the latter case, you won't get around comparing arrays element by element for each insertion, undoing the effect of caching the priority function value.
(3) Just put the calculated priority along with the array in the queue. I.e.
implicit val ord = Ordering.by[(Int, Array[Int]), Int](_._1)
val pq = new collection.mutable.PriorityQueue[(Int, Array[Int])]
pq += eval_fun(a) -> a
Well, you can use a tail recursive loop (generally these are more "idiomatic":
def eval(a: Array[Int]): Int =
if (a.size < 2) 3
else {
#annotation.tailrec
def loop(ret: Int = 0, i: Int = 1): Int =
if (i >= a.size) ret / a.size
else {
val mod3 = (a(i) & 0x3)
if (mod3 == 1) loop(ret + 1, i + 1)
else if (mod3 == 3) loop(ret + 3, i + 1)
else loop(ret, i + 1)
}
loop()
}
Then you can use that to initialise a cached priority value:
case class PriorityArray(a: Array[Int]) {
lazy val priority = if (a.size < 2) 3 else {
#annotation.tailrec
def loop(ret: Int = 0, i: Int = 1): Int =
if (i >= a.size) ret / a.size
else {
val mod3 = (a(i) & 0x3)
if (mod3 == 2) loop(ret, i + 1)
else loop(ret + mod3, i + 1)
}
loop()
}
}
You may note also that I removed a redundant & op and have only the single conditional (for when it equals 2, rather than two checks for 1 && 3) – these should have some minimal effect.
There is not a huge difference from 0__'s proposal that just came though.
My answers:
If evaluation is critical, keep it as it is. You might get better performance with recursion (not sure why, but it happens), but you'll certainly get worse performance with pretty much any other approach.
No, there isn't, but you can come pretty close to it just modifying the dequeue operation:
def distinctDequeue[T](q: PriorityQueue[T]): T = {
val result = q.dequeue
while (q.head == result) q.dequeue
result
}
Otherwise, you'd have to keep a second data structure just to keep track of whether an element has been added or not. Either way, that equals sign is pretty heavy, but I have a suggestion to make it faster in the next item.
Note, however, that this requires that ties on the the cost function get solved in some other way.
Like 0__ suggested, put the cost on the priority queue. But you can also keep a cache on the function if that would be helpful. I'd try something like this:
val evalMap = scala.collection.mutable.HashMapWrappedArray[Int], Int
def eval_fun(a : Array[Int]) =
if(a.size < 2) 3
else evalMap.getOrElseUpdate(a, {
var ret = 0
var i = 1
while(i < a.size) {
if((a(i) & 0x3) == 1) ret += 1
else if((a(i) & 0x3) == 3) ret += 3
i += 1
}
ret / a.size
})
import scala.math.Ordering.Implicits._
val pq = new collection.mutable.PriorityQueue[(Int, WrappedArray[Int])]
pq += eval_fun(a) -> (a : WrappedArray[Int])
Note that I did not create a special Ordering -- I'm using the standard Ordering so that the WrappedArray will break the ties. There's little cost to wrap the Array, and you get it back with .array, but, on the other hand, you'll get the following:
Ties will be broken by comparing the array themselves. If there aren't many ties in the cost, this should be good enough. If there are, add something else to the tuple to help break ties without comparing the arrays.
That means all equal elements will be kept together, which will enable you to dequeue all of them at the same time, giving the impression of having kept only one.
And that equals will actually work, because WrappedArray compare like Scala sequences do.
I don't understand what you mean by that fourth point.

Resources