How to get arbitrary shapes, defined by images with transparency, to snap to one another such that there is no seam between the two? - algorithm

I have an application where the user can drag their images (.pngs) around on a virtual table.
The images are of shapes - mostly regular polygons, but some jigsaw pieces, tetris blocks, et cetera.
I want the shapes, as they are being dragged, to snap to one another like two jigsaw pieces might.(Like in MS Word "Snap to grid")
How might I accomplish this?
Constraints:
Speed:
This will be either happening as the user drags the image, or at the point of dropping. Therefore the algorithm must be fast (realtime). Any number of images may be being dragged, and there may be any number of stationary images to snap to.
No further user input:
There should be no requirement for the user to do anything beyond opening the image file, and drag the images.
Possibilities:
Use some sort of concave hull algorithm + simplifaction, then match edge lengths.
The issue with this is that the user's edges can't be guaranteed to be that straight/well defined.
Use a laplace transform on the transparency component of the image (To edge-detect), then treat those regions as being positively and negatively charged, and use a physical simulation to find how they snap together. Limitation: Speed, tuning.
I am currently just assuming the images are one of the regular tessellations: Rectangle, triangle or hexagon, and working from there. But i'd prefer something which works with other shapes.

Each shape should have some reference points and a (possibly curved) line between them. If you need to snap two shapes then the easiest would be to match those reference points first, and if they match then you can match the lines between each two pair of points. Lines should be coded in such a way that you don't need some mathemathical processing to match them, just match the parameters of the lines.
Take tetris blocks. Each block has reference points on grid crossings, and each line is a straight line. A square shape would have 8 points and lines, and L shape would have 10 points/lines. First match reference points, and then match if same points on each shape have the lines between them (and take line orientation into regard).
Take jigsaw puzzles. Usually you have 4 points/lines, but lines are some arbitrary curves. You can actually use mathematical curves, but you can also have some jigsaw curve index for each curve. When you try to match two pieces first you match reference points, and then you match curves by simply comparing their indexes, in regard to both their line orientation and their index pairings.

Related

Dividing a 2D plane into areas that belong together

I have multiple polygons where some are of different color and some of equal color. I want to group them into areas (e.g. new polygons) that completely contain all polygons of the same color.
See the two simple examples which would both satisfy these conditions. The dotted red lines are the desired result.
The first example divides the whole plane, the second does not. I don't care as long as all polygons of same color are grouped.
It can be assumed that a solution exists, i.e. there will not be a polygon of blue color fully enclosed by one of black color. Also polygons do not intersect but may share a border like in the example. However, edge cases like this could occur:
I'm looking for an algorithm that can accomplish this. The first example reminded my of Voronoi diagrams, but it's different because I have polygons not individual points.
A real world example of this would be to divide a city into districts base on housing blocks.
What I ended up doing is to apply these steps iteratively:
Use a buffer algorithm to grow all polygons.
Combine the ones of equal color with a union operation.
Iterate all resulting shapes and substract all other shapes from them, in order to get rid of overlapping areas. This iteration must be done alternatingly from the start and the end, otherwise the shapes will grow unevenly.
These steps are repeated until the result looks visually pleasing. This procedure does not handle the special case mentioned in the second picture of the question (it will isolate the two blue polygons), but it was in the end an acceptable compromise for my use case.

How to find this kind of geometry in images

Suppose I have an image of a scene as depicted above. A sort of a pole with a blob on it next to possibly similar objects with no blobs.
How can I find the blob marked by the red circle (a binary image indicating which pixels belong to the blob).
Note that the pole together with the blob may be rotated arbitrarily and also size may vary.
Can you try to do it in below 4 steps?
Circle detection like: writing robust (color and size invariant) circle detection with opencv (based on Hough transform or other features)
Line detection, like: Finding location of rectangles in an image with OpenCV
Identify rectangle position by combining neighboring lines (For each line segment you have the start and end point position, you also know the direction of each line segment. So that you can figure out if two connecting line segments (whose endpoints are close) are orthogonal. Your goal is to find 3 such segments for each rectangle.)
Check the relative position of each circle and rectangle to see if any pair can form the knob shape.
One approach could be using Viola-Jones object detection framework.
Though the framework is mostly used for face detection - it is actually designed for generic objects you feed to the algorithm.
The algorithm basic idea is to feed samples of "good object" (what you are looking for) and "bad objects" to a machine learning algorithm - which generates patterns from the images as its features.
During Classification - using a sliding window the algorithm will search for a "match" to the object (the classifier returned a positive answer).
The algorithm uses supervised learning and thus requires a labeled set of examples (both positive and negative ones)
I'm sure there is some boundary-map algorithm in image processing to do this.
Otherwise, here is a quick fix: pick a pixel at the center of the
"undiscovered zone", which initially is the whole image.
trace the horizantal and vertical lines at 4 directions each ending at the
borders of the zone and find the value changes from 0 to 1 or the vice verse.
Trace each such value switch and complete the boundary of each figure (Step-A).
Do the same for the zones
that still are undiscovered: start at some center
point and skim thru the lines connecting the center to the image border or to a
pixel at the boundary of a known zone.
In Step-A, you can also check to see whether the boundary you traced is
a line or a curve. Whenever it is a curve, you need only two points on it--
points at some distance from one another for the accuracy of the calculation.
The lines perpendicular each to these two points of tangency
intersect at the center of the circle red in your figure.
You can segment the image. Then use only the pixels in the segments to contribute to a Hough-transform to find the circles.
Then you will only have segments with circle in them. You can use a modified hough transform to find rectangles. The 'best' rectangle and square combination will then be your match. This is very computationally intentsive.
Another approach, if you already have these binary pictures, is to transform to a (for example 256 bin) sample by taking the distance to the centroid compared to the distance travelled along the edge. If you start at the point furthest away from the centroid you have a fairly rotational robust featurevector.

Algorithm to Calculate Symmetry of Points

Given a set of 2D points, I want to calculate a measure of how horizontally symmetrical and vertically symmetrical those points are.
Alternatively, for each set of points I will also have a rasterised image of the lines between those points, so is there any way to calculate a measure of symmetry for images?
BTW, this is for use in a feature vector that will be presented to a neural network.
Clarification
The image on the left is 'horizontally' symmetrical. If we imagine a vertical line running down the middle of it, the left and right parts are symmetrical. Likewise, the image on the right is 'vertically' symmetrical, if you imagine a horizontal line running across its center.
What I want is a measure of just how horizontally symmetrical they are, and another of just how vertically symmetrical they are.
This is just a guideline / idea, you'll need to work out the details:
To detect symmetry with respect to horizontal reflection:
reflect the image horizontally
pad the original (unreflected) image horizontally on both sides
compute the correlation of the padded and the reflected images
The position of the maximum in the result of the correlation will give you the location of the axis of symmetry. The value of the maximum will give you a measure of the symmetry, provided you do a suitable normalization first.
This will only work if your images are "symmetric enough", and it works for images only, not sets of points. But you can create an image from a set of points too.
Leonidas J. Guibas from Stanford University talked about it in ETVC'08.
Detection of Symmetries and Repeated Patterns in 3D Point Cloud Data.

Converting vector-contoured regions (borders) to a raster map (pixel grid)

I have a map that is cut up into a number of regions by borders (contours) like countries on a world map. Each region has a certain surface-cover class S (e.g. 0 for water, 0.03 for grass...). The borders are defined by:
what value of S is on either side of it (0.03 on one side, 0.0 on the other, in the example below)
how many points the border is made of (n=7 in example below), and
n coordinate pairs (x, y).
This is one example.
0.0300 0.0000 7
2660607.5 6332685.5 2660565.0 6332690.5 2660541.5 6332794.5
2660621.7 6332860.5 2660673.8 6332770.5 2660669.0 6332709.5
2660607.5 6332685.5
I want to make a raster map in which each pixel has the value of S corresponding to the region in which the center of the pixel falls.
Note that the borders represent step changes in S. The various values of S represent discrete classes (e.g. grass or water), and are not values that can be averaged (i.e. no wet grass!).
Also note that not all borders are closed loops like the example above. This is a bit like country borders: e.g. the US-Canada border isn't a closed loop, but rather a line joining up at each end with two other borders: the Canada-ocean and the US-ocean "borders". (Closed-loop borders do exist nevertheless!)
Can anyone point me to an algorithm that can do this? I don't want to reinvent the wheel!
The general case for processing this sort of geometry in vector form can be quite difficult, especially since nothing about the structure you describe requires the geometry to be consistent. However, since you just want to rasterize it, then treating the problem as a Voronoi diagram of line segments can be more robust.
Approximating the Voronoi diagram can be done graphically in OpenGL by drawing each line segment as a pair of quads making a tent shape. The z-buffer is used to make the closest quad take precedence, and thus color the pixel based on whichever line is closest. The difference here is that you will want to color the polygons based on which side of the line they are on, instead of which line they represent. A good paper discussing a similar algorithm is Hoff et al's Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware
The 3d geometry will look something like this sketch with 3 red/yellow segments and 1 blue/green segment:
This procedure doesn't require you to convert anything into a closed loop, and doesn't require any fancy geometry libraries. Everything is handled by the z-buffer, and should be fast enough to run in real time on any modern graphics card. A refinement would be to use homogeneous coordinates to make the bases project to infinity.
I implemented this algorithm in a Python script at http://www.pasteall.org/9062/python. One interesting caveat is that using cones to cap the ends of the lines didn't work without distorting the shape of the cone, because the cones representing the end points of the segments were z-fighting. For the sample geometry you provided, the output looks like this:
I'd recommend you to use a geometry algorithm library like CGAL. Especially the second example in the "2D Polygons" page of the reference manual should provide you what you need. You can define each "border" as a polygon and check if certain points are inside the polygons. So basically it would be something like
for every y in raster grid
for every x in raster grid
for each defined polygon p
if point(x,y) is inside polygon p
pixel[X][Y] = inside_color[p]
I'm not so sure about what to do with the outside_color because the outside regions will overlap, won't they? Anyway, looking at your example, every outside region could be water, so you just could do a final
if pixel[X][Y] still undefined then pixel[X][Y] = water_value
(or as an alternative, set pixel[X][Y] to water_value before iterating through the polygon list)
first, convert all your borders into closed loops (possibly including the edges of your map), and indentify the inside colour. this has to be possible, otherwise you have an inconsistency in your data
use bresenham's algorithm to draw all the border lines on your map, in a single unused colour
store a list of all the "border pixels" as you do this
then for each border
triangulate it (delaunay)
iterate through the triangles till you find one whose centre is inside your border (point-in-polygon test)
floodfill your map at that point in the border's interior colour
once you have filled in all the interior regions, iterate through the list of border pixels, seeing which colour each one should be
choose two unused colors as markers "empty" and "border"
fill all area with "empty" color
draw all region borders by "border" color
iterate through points to find first one with "empty" color
determine which region it belongs to (google "point inside polygon", probably you will need to make your borders closed as Martin DeMello suggested)
perform flood-fill algorithm from this point with color of the region
go to next "empty" point (no need to restart search - just continue)
and so on till no "empty" points will remain
The way I've solved this is as follows:
March along each segment; stop at regular intervals L.
At each stop, place a tracer point immediately to the left and to the right of the segment (at a certain small distance d from the segment). The tracer points are attributed the left and right S-value, respectively.
Do a nearest-neighbour interpolation. Each point on the raster grid is attributed the S of the nearest tracer point.
This works even when there are non-closed lines, e.g. at the edge of the map.
This is not a "perfect" analytical algorithm. There are two parameters: L and d. The algorithm works beautifully as long as d << L. Otherwise you can get inaccuracies (usually single-pixel) near segment junctions, especially those with acute angles.

Drawing a Topographical Map

I've been working on a visualization project for 2-dimensional continuous data. It's the kind of thing you could use to study elevation data or temperature patterns on a 2D map. At its core, it's really a way of flattening 3-dimensions into two-dimensions-plus-color. In my particular field of study, I'm not actually working with geographical elevation data, but it's a good metaphor, so I'll stick with it throughout this post.
Anyhow, at this point, I have a "continuous color" renderer that I'm very pleased with:
The gradient is the standard color-wheel, where red pixels indicate coordinates with high values, and violet pixels indicate low values.
The underlying data structure uses some very clever (if I do say so myself) interpolation algorithms to enable arbitrarily deep zooming into the details of the map.
At this point, I want to draw some topographical contour lines (using quadratic bezier curves), but I haven't been able to find any good literature describing efficient algorithms for finding those curves.
To give you an idea for what I'm thinking about, here's a poor-man's implementation (where the renderer just uses a black RGB value whenever it encounters a pixel that intersects a contour line):
There are several problems with this approach, though:
Areas of the graph with a steeper slope result in thinner (and often broken) topo lines. Ideally, all topo lines should be continuous.
Areas of the graph with a flatter slope result in wider topo lines (and often entire regions of blackness, especially at the outer perimeter of the rendering region).
So I'm looking at a vector-drawing approach for getting those nice, perfect 1-pixel-thick curves. The basic structure of the algorithm will have to include these steps:
At each discrete elevation where I want to draw a topo line, find a set of coordinates where the elevation at that coordinate is extremely close (given an arbitrary epsilon value) to the desired elevation.
Eliminate redundant points. For example, if three points are in a perfectly-straight line, then the center point is redundant, since it can be eliminated without changing the shape of the curve. Likewise, with bezier curves, it is often possible to eliminate cetain anchor points by adjusting the position of adjacent control points.
Assemble the remaining points into a sequence, such that each segment between two points approximates an elevation-neutral trajectory, and such that no two line segments ever cross paths. Each point-sequence must either create a closed polygon, or must intersect the bounding box of the rendering region.
For each vertex, find a pair of control points such that the resultant curve exhibits a minimum error, with respect to the redundant points eliminated in step #2.
Ensure that all features of the topography visible at the current rendering scale are represented by appropriate topo lines. For example, if the data contains a spike with high altitude, but with extremely small diameter, the topo lines should still be drawn. Vertical features should only be ignored if their feature diameter is smaller than the overall rendering granularity of the image.
But even under those constraints, I can still think of several different heuristics for finding the lines:
Find the high-point within the rendering bounding-box. From that high point, travel downhill along several different trajectories. Any time the traversal line crossest an elevation threshold, add that point to an elevation-specific bucket. When the traversal path reaches a local minimum, change course and travel uphill.
Perform a high-resolution traversal along the rectangular bounding-box of the rendering region. At each elevation threshold (and at inflection points, wherever the slope reverses direction), add those points to an elevation-specific bucket. After finishing the boundary traversal, start tracing inward from the boundary points in those buckets.
Scan the entire rendering region, taking an elevation measurement at a sparse regular interval. For each measurement, use it's proximity to an elevation threshold as a mechanism to decide whether or not to take an interpolated measurement of its neighbors. Using this technique would provide better guarantees of coverage across the whole rendering region, but it'd be difficult to assemble the resultant points into a sensible order for constructing paths.
So, those are some of my thoughts...
Before diving deep into an implementation, I wanted to see whether anyone else on StackOverflow has experience with this sort of problem and could provide pointers for an accurate and efficient implementation.
Edit:
I'm especially interested in the "Gradient" suggestion made by ellisbben. And my core data structure (ignoring some of the optimizing interpolation shortcuts) can be represented as the summation of a set of 2D gaussian functions, which is totally differentiable.
I suppose I'll need a data structure to represent a three-dimensional slope, and a function for calculating that slope vector for at arbitrary point. Off the top of my head, I don't know how to do that (though it seems like it ought to be easy), but if you have a link explaining the math, I'd be much obliged!
UPDATE:
Thanks to the excellent contributions by ellisbben and Azim, I can now calculate the contour angle for any arbitrary point in the field. Drawing the real topo lines will follow shortly!
Here are updated renderings, with and without the ghetto raster-based topo-renderer that I've been using. Each image includes a thousand random sample points, represented by red dots. The angle-of-contour at that point is represented by a white line. In certain cases, no slope could be measured at the given point (based on the granularity of interpolation), so the red dot occurs without a corresponding angle-of-contour line.
Enjoy!
(NOTE: These renderings use a different surface topography than the previous renderings -- since I randomly generate the data structures on each iteration, while I'm prototyping -- but the core rendering method is the same, so I'm sure you get the idea.)
Here's a fun fact: over on the right-hand-side of these renderings, you'll see a bunch of weird contour lines at perfect horizontal and vertical angles. These are artifacts of the interpolation process, which uses a grid of interpolators to reduce the number of computations (by about 500%) necessary to perform the core rendering operations. All of those weird contour lines occur on the boundary between two interpolator grid cells.
Luckily, those artifacts don't actually matter. Although the artifacts are detectable during slope calculation, the final renderer won't notice them, since it operates at a different bit depth.
UPDATE AGAIN:
Aaaaaaaand, as one final indulgence before I go to sleep, here's another pair of renderings, one in the old-school "continuous color" style, and one with 20,000 gradient samples. In this set of renderings, I've eliminated the red dot for point-samples, since it unnecessarily clutters the image.
Here, you can really see those interpolation artifacts that I referred to earlier, thanks to the grid-structure of the interpolator collection. I should emphasize that those artifacts will be completely invisible on the final contour rendering (since the difference in magnitude between any two adjacent interpolator cells is less than the bit depth of the rendered image).
Bon appetit!!
The gradient is a mathematical operator that may help you.
If you can turn your interpolation into a differentiable function, the gradient of the height will always point in the direction of steepest ascent. All curves of equal height are perpendicular to the gradient of height evaluated at that point.
Your idea about starting from the highest point is sensible, but might miss features if there is more than one local maximum.
I'd suggest
pick height values at which you will draw lines
create a bunch of points on a fine, regularly spaced grid, then walk each point in small steps in the gradient direction towards the nearest height at which you want to draw a line
create curves by stepping each point perpendicular to the gradient; eliminate excess points by killing a point when another curve comes too close to it-- but to avoid destroying the center of hourglass like figures, you might need to check the angle between the oriented vector perpendicular to the gradient for both of the points. (When I say oriented, I mean make sure that the angle between the gradient and the perpendicular value you calculate is always 90 degrees in the same direction.)
In response to your comment to #erickson and to answer the point about calculating the gradient of your function. Instead of calculating the derivatives of your 300 term function you could do a numeric differentiation as follows.
Given a point [x,y] in your image you could calculate the gradient (direction of steepest decent)
g={ ( f(x+dx,y)-f(x-dx,y) )/(2*dx),
{ ( f(x,y+dy)-f(x,y-dy) )/(2*dy)
where dx and dy could be the spacing in your grid. The contour line will run perpendicular to the gradient. So, to get the contour direction, c, we can multiply g=[v,w] by matrix, A=[0 -1, 1 0] giving
c = [-w,v]
Alternately, there is the marching squares algorithm which seems appropriate to your problem, although you may want to smooth the results if you use a coarse grid.
The topo curves you want to draw are isosurfaces of a scalar field over 2 dimensions. For isosurfaces in 3 dimensions, there is the marching cubes algorithm.
I've wanted something like this myself, but haven't found a vector-based solution.
A raster-based solution isn't that bad, though, especially if your data is raster-based. If your data is vector-based too (in other words, you have a 3D model of your surface), you should be able to do some real math to find the intersection curves with horizontal planes at varying elevations.
For a raster-based approach, I look at each pair of neighboring pixels. If one is above a contour level, and one is below, obviously a contour line runs between them. The trick I used to anti-alias the contour line is to mix the contour line color into both pixels, proportional to their closeness to the idealized contour line.
Maybe some examples will help. Suppose that the current pixel is at an "elevation" of 12 ft, a neighbor is at an elevation of 8 ft, and contour lines are every 10 ft. Then, there is a contour line half way between; paint the current pixel with the contour line color at 50% opacity. Another pixel is at 11 feet and has a neighbor at 6 feet. Color the current pixel at 80% opacity.
alpha = (contour - neighbor) / (current - neighbor)
Unfortunately, I don't have the code handy, and there might have been a bit more to it (I vaguely recall looking at diagonal neighbors too, and adjusting by sqrt(2) / 2). I hope this enough to give you the gist.
It occurred to me that what you're trying to do would be pretty easy to do in MATLAB, using the contour function. Doing things like making low-density approximations to your contours can probably be done with some fairly simple post-processing of the contours.
Fortunately, GNU Octave, a MATLAB clone, has implementations of the various contour plotting functions. You could look at that code for an algorithm and implementation that's almost certainly mathematically sound. Or, you might just be able to offload the processing to Octave. Check out the page on interfacing with other languages to see if that would be easier.
Disclosure: I haven't used Octave very much, and I haven't actually tested it's contour plotting. However, from my experience with MATLAB, I can say that it will give you almost everything you're asking for in just a few lines of code, provided you get your data into MATLAB.
Also, congratulations on making a very VanGough-esque slopefield plot.
I always check places like http://mathworld.wolfram.com before going to deep on my own :)
Maybe their curves section would help? Or maybe the entry on maps.
compare what you have rendered with a real-world topo map - they look identical to me! i wouldn't change a thing...
Write the data out as an HGT file (very simple digital elevation data format used by USGS) and use the free and open-source gdal_contour tool to create contours. That works very well for terrestrial maps, the constraint being that the data points are signed 16-bit numbers, which fits the earthly range of heights in metres very well, but may not be enough for your data, which I assume not to be a map of actual terrain - although you do mention terrain maps.
I recommend the CONREC approach:
Create an empty line segment list
Split your data into regular grid squares
For each grid square, split the square into 4 component triangles:
For each triangle, handle the cases (a through j):
If a line segment crosses one of the cases:
Calculate its endpoints
Store the line segment in the list
Draw each line segment in the line segment list
If the lines are too jagged, use a smaller grid. If the lines are smooth enough and the algorithm is taking too long, use a larger grid.

Resources