How do I display the red channel of an image in Matlab? - image

I have a 3D matrix im which represents an RGB image. I can do
imshow(im)
to display the image.
I want to display only one of the RGB channels at a time: I want to display the red channel and I want it to appear red.
I've tried
imshow(im(:,:,1))
but it displays the grayscale image (which is not what I want).
How do I display the red channel and make it appear red?

I have three proposals for you.
1.
Use the imagesc function and choose a red color palette.
2.
Clear the other color channels: im(:,:,2:3) = 0; imshow(im);
3. Use the ind2rgb function with a color map you build accordingly.

Try this:
% display one channel only
clear all;
im=imread('images/DSC1228L_512.jpg');
im_red = im;
im_green = im;
im_blue = im;
% Red channel only
im_red(:,:,2) = 0;
im_red(:,:,3) = 0;
figure, imshow(im_red);
% Green channel only
im_green(:,:,1) = 0;
im_green(:,:,3) = 0;
figure, imshow(im_green);
% Blue channel only
im_blue(:,:,1) = 0;
im_blue(:,:,2) = 0;
figure, imshow(im_blue);

Try this
I = imread('exemple.jpg');
%Red component
R = I(:,:,1);
image(R), colormap([[0:1/255:1]', zeros(256,1), zeros(256,1)]), colorbar;
%Green Component
G = I(:,:,2);
figure;
image(G), colormap([zeros(256,1),[0:1/255:1]', zeros(256,1)]), colorbar;
%Blue component
B = I(:,:,3);
figure;
image(B), colormap([zeros(256,1), zeros(256,1), [0:1/255:1]']), colorbar;

You mean you want to extract red color only?
using im(:,:,1) only seperate the red channel from the 3D image and convert it to a 2D image.
Try this simple code:
im=imread('example.jpg');
im_red=im(:,:,1);
im_gray=rgb2gray(im);
im_diff=imsubtract(im_red,im_gray);
imshow(im_diff);

For a better view, you could calculate and display the pure color. The formula Rp = Rc / (Rc + Gc + Bc). And a code example for the color red:
imagesc(im(:,:,1) ./ (im(:,:,1) + im(:,:,2) + im(:,:,3)))
This will make the color display more clearly, since the other colors have been filtered out.
I will try to illustrate it with an example:
Original image:
Red channel of image (im(:,:,1)):
Pure red:

Related

Add overlay image on top of other image

Suppose that I have an RGB image RGB and a binary image binary that contains the result of segmentation of image RGB. How to draw the image binary on top of image 'RGB` and show the segmentation as a red transparent area? I tried the following but I got an error. Please help me to figure out the best way in MATLAB
I=imread('RGB.png');
[M,N,C] = size(I);
h=imshow(I);
alpha= imread('binary.png');
alpha = cat(3,alpha,zeros(M,N), zeros(M,N));
set(h, 'AlphaData', alpha);
Here are the input images:
Here is a method to add red overlays in select regions of the mask. Modifications to these scripts can be made to fill in the remaining regions with the colours white or black. The regions of interest on the mask are selected using a logical array.
Overlay Red Over White Region of Mask
Overlay_Opacity = 0.5;
Image =imread('RGB.png');
imshow(Image);
Red_Channel = imread('binary.png');
White_Mask_Region = Overlay_Opacity*(Red_Channel ~= 0);
Overlay_Image(:,:,1) = White_Mask_Region;
Overlay_Image(:,:,2) = 0;
Overlay_Image(:,:,3) = 0;
hold on
Overlay = image(Overlay_Image);
Overlay.AlphaData = White_Mask_Region;
saveas(gcf,'Overlay_1.png');
Overlay Red Over Black Region of Mask
Overlay_Opacity = 0.5;
Image =imread('RGB.png');
imshow(Image);
Red_Channel = imread('binary.png');
Black_Mask_Region = Overlay_Opacity*(Red_Channel == 0);
Overlay_Image(:,:,1) = Black_Mask_Region;
Overlay_Image(:,:,2) = 0;
Overlay_Image(:,:,3) = 0;
hold on
Overlay = image(Overlay_Image);
Overlay.AlphaData = Black_Mask_Region;
saveas(gcf,'Overlay_2.png');
You simply use your binary alpha (one layer only) as AlphaData.
If you have the Image Processing Toolbox, this function will do what you want:
https://www.mathworks.com/help/images/ref/labeloverlay.html

Overlapping grayscale and RGB Images

I would like to overlap two images, one grayscale and one RGB image. I would like to impose the RGB image on top of the grayscale image, but ONLY for pixels greater than a certain value. I tried using the double function in MATLAB, but this seems to change the color scheme and I cannot recover the original RGB colors. What should I do in order to retain the original RGB image instead of mapping it to one of the MATLAB colormaps? Below is my attempt at superimposing:
pixelvalues = double(imread('hello.png'));
PixelInt = mean(pixelvalues,3);
I1 = ind2rgb(Brightfield(:,:,1), gray(256)); %Brightfield
I2 = ind2rgb(PixelInt, jet(256)); %RGB Image
imshow(I2,[])
[r,c,d] = size(I2);
I1 = I1(1:r,1:c,1:d);
% Replacing those pixels below threshold with Brightfield Image
threshold = 70;
I2R = I2(:,:,1); I2G = I2(:,:,2); I2B = I2(:,:,3);
I1R = I1(:,:,1); I1G = I1(:,:,2); I1B = I1(:,:,3);
I2R(PixelInt<threshold) = I1R(PixelInt<threshold);
I2G(PixelInt<threshold) = I1G(PixelInt<threshold);
I2B(PixelInt<threshold) = I1B(PixelInt<threshold);
I2(:,:,1) = I2R; I2(:,:,2) = I2G; I2(:,:,3) = I2B;
h = figure;
imshow(I2,[])
Original RGB Image:
Brightfield:
Overlay:
Is the content of pixelvalues what you show in your first image? If so, that image does not use a jet colormap. It has pink and white values above the red values, whereas jet stops at dark red at the upper limits. When you take the mean of those values and then generate a new RGB image with ind2rgb using the jet colormap, you're creating an inherently different image. You probably want to use pixelvalues directly in generating your overlay, like so:
% Load/create your starting images:
pixelvalues = imread('hello.png'); % Color overlay
I1 = repmat(Brightfield(:, :, 1), [1 1 3]); % Grayscale underlay
[r, c, d] = size(pixelvalues);
I1 = I1(1:r, 1:c, 1:d);
% Create image mask:
PixelInt = mean(double(pixelvalues), 3);
threshold = 70;
mask = repmat((PixelInt > threshold), [1 1 3]);
% Combine images:
I1(mask) = pixelvalues(mask);
imshow(I1);
Note that you may need to do some type conversions when loading/creating the starting images. I'm assuming 'hello.png' is a uint8 RGB image and Brightfield is of type uint8. If I load your first image as pixelvalues and your second image as I1, I get the following when running the above code:
Create a mask and use it to combine the images:
onionOrig = imread('onion.png');
onionGray = rgb2gray(onionOrig);
onionMask = ~(onionOrig(:,:,1)<100 & onionOrig(:,:,2)<100 & onionOrig(:,:,3)<100);
onionMasked(:,:,1) = double(onionOrig(:,:,1)) .* onionMask + double(onionGray) .* ~onionMask;
onionMasked(:,:,2) = double(onionOrig(:,:,2)) .* onionMask + double(onionGray) .* ~onionMask;
onionMasked(:,:,3) = double(onionOrig(:,:,3)) .* onionMask + double(onionGray) .* ~onionMask;
onionFinal = uint8(onionMasked);
imshow(onionFinal)

Color only a segment of an image in Matlab

I'm trying to color only a segment of an image in Matlab. For example, I load an RGB image, then I obtain a mask with Otsu's method (graythresh). I want to keep the color only in the pixels that have value of 1 after applying im2bw with graythresh as the threshold. For example:
image = imread('peppers.png');
thr = graythresh(image);
bw = im2bw(image, thr);
With this code I obtain the following binary image:
My goal is to keep the color in the white pixels.
Thanks!
I have another suggestion on how to replace the pixels we don't care about. This works by creating linear indices for each of the slices where black pixels exist in the bw image. The summation with the result of find is done because bw is the size of just one "slice" of image and this is how we get the indices for the other 2 slices.
Starting MATLAB 2016b:
image(find(~bw)+[0 numel(bw)*[1 2]]) = NaN;
In older versions:
image(bsxfun(#plus,find(~bw),[0 numel(bw)*[1 2]])) = NaN;
Then imshow(image) gives:
Note that NaN gets converted to 0 for integer classes.
Following the clarification that the other pixels should be kept in their gray version, see the below code:
% Load image:
img = imread('peppers.png');
% Create a grayscale version:
grayimg = rgb2gray(img);
% Segment image:
if ~verLessThan('matlab','9.0') && exist('imbinarize.m','file') == 2
% R2016a onward:
bw = imbinarize(grayimg);
% Alternatively, work on just one of the color channels, e.g. red:
% bw = imbinarize(img(:,:,1));
else
% Before R2016a:
thr = graythresh(grayimg);
bw = im2bw(grayimg, thr);
end
output_img = repmat(grayimg,[1 1 3]);
colorpix = bsxfun(#plus,find(bw),[0 numel(bw)*[1 2]]);
output_img(colorpix) = img(colorpix);
figure; imshow(output_img);
The result when binarizing using only the red channel:
Your question misses "and replace the rest with black". here are two ways:
A compact solution: use bsxfun:
newImage = bsxfun(#times, Image, cast(bw, 'like', Image));
Although I am glad with the previous one, you can also take a look at this step-by-step approach:
% separate the RGB layers:
R = image(:,:,1);
G = image(:,:,2);
B = image(:,:,3);
% change the values to zero or your desired color wherever bw is false:
R(~bw) = 0;
G(~bw) = 0;
B(~bw) = 0;
% concatenate the results:
newImage = cat(3, R, G, B);
Which can give you different replacements for the black region:
UPDATE:
According to the comments, the false area of bw should be replaced with grayscale image of the same input. This is how to achieve it:
image = imread('peppers.png');
thr = graythresh(image);
bw = im2bw(image, thr);
gr = rgb2gray(image); % generate grayscale image from RGB
newImage(repmat(~bw, 1, 1, 3)) = repmat(gr(~bw), 1, 1, 3); % substitude values
% figure; imshow(newImage)
With this result:

Overlaying MATLAB Scaled Image to Grayscale Image for selected pixels

I am new to MATLAB Image Processing and currently I have two images - one is a grayscale image of my object and the second is the scaled image generated from MATLAB using imagesc function. I am trying to overlay this scaled image on top of my grayscale image to get a spatial resolution for easier observation. Attached are the two images:
A) Grayscale Image:
B) Scaled Image:
There were a few difficulties that I encountered. Firstly, the scaled image is not saved in the same pixel dimensions, but I can get around that using the imwrite function:
im = imagesc(ScaledDiff);
imwrite(get(im,'cdata'),'scaleddiff.tif')
However, doing so will result in a loss of colorbar and the colormap. Secondly, even if I manage to shrink the scaled image to the size of the grayscale image, overlaying it is still a challenge. Ideally, I would like to set the transparency (or 'alpha') to 0 for those pixels with < 0.02 in scaled image value.
Any idea on how to do this will be greatly appreciated! Sorry if I was unclear!
UPDATE:
Thanks to Rotem, I have managed to overlay the grayscale image and a particular region of my heatmap:
However, I need to display the colorbar corresponding to the heatmap values, because otherwise the information is lost and the overlay will be useless. How should I do this? Below is a snippet of my code, where ScaledIntDiff contains the values from 0 to 0.25 that is displayed on the heatmap:
Brightfield = imread('gray.jpg'); % read background image
I1 = ind2rgb(gray2ind(Brightfield), gray); % convert indices into RGB scale
scale = 1000;
ScaledIntDiff2 = round(ScaledIntDiff.*scale);
I2 = ind2rgb(ScaledIntDiff2, jet(256)); % this is for the heatmap
threshold = 0.02;
I2R = I2(:,:,1); I2G = I2(:,:,2); I2B = I2(:,:,3);
I1R = I1(:,:,1); I1G = I1(:,:,2); I1B = I1(:,:,3);
% Replace pixels in I2 with pixels in I1 if the value of ScaledIntDiff of those pixels is below the threshold
I2R(ScaledIntDiff<threshold) = I1R([ScaledIntDiff<threshold]);
I2G(ScaledIntDiff<threshold) = I1G([ScaledIntDiff<threshold]);
I2B(ScaledIntDiff<threshold) = I1B([ScaledIntDiff<threshold]);
I2(:,:,1) = I2R; I2(:,:,2) = I2G; I2(:,:,3) = I2B;
figure
imshow(I2)
I know that the code above is highly inefficient, so suggestions on how to improve it will be very welcomed. Thank you!
Check the following:
I = imread('CKbi2Ll.jpg'); %Load input.
%Convert I to true color RGB image (all pixels R=G=B are gray color).
I1 = ind2rgb(I, gray(256));
%Convert I to true color RGB image with color map parula (instead of using imagesc)
I2 = ind2rgb(I, parula(256));
%Set the transparency (or 'alpha') to 0 for those pixels with < 0.02 in scaled image value.
%Instead of setting transparency, replace pixels with values from I1.
threshold = 0.02; %Set threshold to 0.02
I2(I1 < threshold) = I1(I1 < threshold);
%Blend I1 and I2 into J.
alpha = 0.3; %Take 0.3 from I2 and 0.7 from I1.
J = I2*alpha + I1*(1-alpha);
%Display output
imshow(J);
Adding a colorbar with ticks labels from 0 to 0.25:
Set color map to parula - it doesn't affect the displayed image, because image format is true color RGB.
Crate array of add 6 ticks from 0 to 250.
Create cell array of 6 TickLabels from 0 to 0.25.
Add colorbar with Ticks and TickLabels properties created earlier.
Add the following code after imshow(J);:
colormap(parula(256));
TLabels = cellstr(num2str((linspace(0, 0.25, 6))'));
T = linspace(1, 250, 6);
colorbar('Ticks', T', 'TickLabels', TLabels);
imshow('ClmypzU.jpg');
colormap(jet(256));
TLabels = cellstr(num2str((linspace(0, 0.25, 6))'));
T = linspace(1, 250, 6);
colorbar('Ticks', T', 'TickLabels', TLabels);

Separating Background and Foreground

I am new to Matlab and to Image Processing as well. I am working on separating background and foreground in images like this
I have hundreds of images like this, found here. By trial and error I found out a threshold (in RGB space): the red layer is always less than 150 and the green and blue layers are greater than 150 where the background is.
so if my RGB image is I and my r,g and b layers are
redMatrix = I(:,:,1);
greenMatrix = I(:,:,2);
blueMatrix = I(:,:,3);
by finding coordinates where in red, green and blue the values are greater or less than 150 I can get the coordinates of the background like
[r1 c1] = find(redMatrix < 150);
[r2 c2] = find(greenMatrix > 150);
[r3 c3] = find(blueMatrix > 150);
now I get coordinates of thousands of pixels in r1,c1,r2,c2,r3 and c3.
My questions:
How to find common values, like the coordinates of the pixels where red is less than 150 and green and blue are greater than 150?
I have to iterate every coordinate of r1 and c1 and check if they occur in r2 c2 and r3 c3 to check it is a common point. but that would be very expensive.
Can this be achieved without a loop ?
If somehow I came up with common points like [commonR commonC] and commonR and commonC are both of order 5000 X 1, so to access this background pixel of Image I, I have to access first commonR then commonC and then access image I like
I(commonR(i,1),commonC(i,1))
that is expensive too. So again my question is can this be done without loop.
Any help would be appreciated.
I got solution with #Science_Fiction answer's
Just elaborating his/her answer
I used
mask = I(:,:,1) < 150 & I(:,:,2) > 150 & I(:,:,3) > 150;
No loop is needed. You could do it like this:
I = imread('image.jpg');
redMatrix = I(:,:,1);
greenMatrix = I(:,:,2);
blueMatrix = I(:,:,3);
J(:,:,1) = redMatrix < 150;
J(:,:,2) = greenMatrix > 150;
J(:,:,3) = blueMatrix > 150;
J = 255 * uint8(J);
imshow(J);
A greyscale image would also suffice to separate the background.
K = ((redMatrix < 150) + (greenMatrix > 150) + (blueMatrix > 150))/3;
imshow(K);
EDIT
I had another look, also using the other images you linked to.
Given the variance in background colors, I thought you would get better results deriving a threshold value from the image histogram instead of hardcoding it.
Occasionally, this algorithm is a little to rigorous, e.g. erasing part of the clothes together with the background. But I think over 90% of the images are separated pretty well, which is more robust than what you could hope to achieve with a fixed threshold.
close all;
path = 'C:\path\to\CUHK_training_cropped_photos\photos';
files = dir(path);
bins = 16;
for f = 3:numel(files)
fprintf('%i/%i\n', f, numel(files));
file = files(f);
if isempty(strfind(file.name, 'jpg'))
continue
end
I = imread([path filesep file.name]);
% Take the histogram of the blue channel
B = I(:,:,3);
h = imhist(B, bins);
h2 = h(bins/2:end);
% Find the most common bin in the *upper half*
% of the histogram
m = bins/2 + find(h2 == max(h2));
% Set the threshold value somewhat below
% the value corresponding to that bin
thr = m/bins - .25;
BW = im2bw(B, thr);
% Pad with ones to ensure background connectivity
BW = padarray(BW, [1 1], 1);
% Find connected regions in BW image
CC = bwconncomp(BW);
L = labelmatrix(CC);
% Crop back again
L = L(2:end-1,2:end-1);
% Set the largest region in the orignal image to white
for c = 1:3
channel = I(:,:,c);
channel(L==1) = 255;
I(:,:,c) = channel;
end
% Show the results with a pause every 16 images
subplot(4,4,mod(f-3,16)+1);
imshow(I);
title(sprintf('Img %i, thr %.3f', f, thr));
if mod(f-3,16)+1 == 16
pause
clf
end
end
pause
close all;
Results:
Your approach seems basic but decent. Since for this particular image the background is composed of mainly blue so you be crude and do:
mask = img(:,:,3) > 150;
This will set those pixels which evaluate to true for > 150 to 0 and false to 1. You will have a black and white image though.
imshow(mask);
To add colour back
mask3d(:,:,1) = mask;
mask3d(:,:,2) = mask;
mask3d(:,:,3) = mask;
img(mask3d) = 255;
imshow(img);
Should give you the colour image of face hopefully, with a pure white background. All this requires some trial and error.

Resources