Position N circles of different radii inside a larger circle without overlapping - algorithm

Given n circles with radii r1 ... rn, position them in such a way that no circles are overlapping and the bounding circle is of "small" radius.
The program takes a list [r1, r2, ... rn] as input and outputs the centers of the circles.
I ask for "small" because "minimum" radius converts it into a much more difficult problem (minimum version has already been proved to be NP hard/complete - see footnote near end of question). We don't need the minimum. If the shape made by the circles seems to be fairly circular, that is good enough.
You can assume that Rmax/Rmin < 20 if it helps.
A low priority concern - the program should be able to handle 2000+ circles. As a start, even 100-200 circles should be fine.
You might have guessed that the circles need not be packed together tightly or even touching each other.
The aim is to come up with a visually pleasing arrangement of the given circles which can fit inside a larger circle and not leave too much empty space. (like the circles in a color blindness test picture).
You can use the Python code below as a starting point (you would need numpy and matplotlib for this code - "sudo apt-get install numpy matplotlib" on linux)...
import pylab
from matplotlib.patches import Circle
from random import gauss, randint
from colorsys import hsv_to_rgb
def plotCircles(circles):
# input is list of circles
# each circle is a tuple of the form (x, y, r)
ax = pylab.figure()
bx = pylab.gca()
rs = [x[2] for x in circles]
maxr = max(rs)
minr = min(rs)
hue = lambda inc: pow(float(inc - minr)/(1.02*(maxr - minr)), 3)
for circle in circles:
circ = Circle((circle[0], circle[1]), circle[2])
color = hsv_to_rgb(hue(circle[2]), 1, 1)
circ.set_color(color)
circ.set_edgecolor(color)
bx.add_patch(circ)
pylab.axis('scaled')
pylab.show()
def positionCircles(rn):
# You need rewrite this function
# As of now, this is a dummy function
# which positions the circles randomly
maxr = int(max(rn)/2)
numc = len(rn)
scale = int(pow(numc, 0.5))
maxr = scale*maxr
circles = [(randint(-maxr, maxr), randint(-maxr, maxr), r)
for r in rn]
return circles
if __name__ == '__main__':
minrad, maxrad = (3, 5)
numCircles = 400
rn = [((maxrad-minrad)*gauss(0,1) + minrad) for x in range(numCircles)]
circles = positionCircles(rn)
plotCircles(circles)
Added info : The circle packing algorithm commonly referred to in google search results is not applicable to this problem.
The problem statement of the other "Circle packing algorithm" is thus : Given a complex K ( graphs in this context are called simplicial complexes, or complex in short) and appropriate boundary conditions, compute the radii of the corresponding circle packing for K....
It basically starts off from a graph stating which circles are touching each other (vertices of the graph denote circles, and the edges denote touch/tangential relation between circles). One has to find the circle radii and positions so as to satisfy the touching relationship denoted by the graph.
The other problem does have an interesting observation (independent of this problem) :
Circle Packing Theorem - Every circle packing has a corresponding planar graph (this is the easy/obvious part), and every planar graph has a corresponding circle packing (the not so obvious part). The graphs and packings are duals of each other and are unique.
We do not have a planar graph or tangential relationship to start from in our problem.
This paper - Robert J. Fowler, Mike Paterson, Steven L. Tanimoto: Optimal Packing and Covering in the Plane are NP-Complete - proves that the minimum version of this problem is NP-complete. However, the paper is not available online (at least not easily).

Not a solution, just a brainstorming idea: IIRC one common way to get approximate solutions to the TSP is to start with a random configuration, and then applying local operations (e.g. "swapping" two edges in the path) to try and get shorter and shorter paths. (Wikipedia link)
I think something similar would be possible here:
Start with random center positions
"Optimize" these positions, so there are no overlapping circles and so the circles are as close as possible, by increasing the distance between overlapping circles and decreasing the distance between other circles, until they're tightly packed. This could be done by some kind of energy minimization, or there might be a more efficient greedy solution.
Apply an iterative improvement operator to the center positons
Goto 2, break after a maximum number of iterations or if the last iteration didn't find any improvement
The interesting question is: what kind of "iterative improvement operator" could you use in step 3? We can assume that the positions at that stage are locally optimal, but they might be improved by rearranging a large fraction of the circles. My suggestion would be to arbitrarily choose a line through the circles. Then take all the circles "left" of the line and mirror them at some axis perpendicular to that line:
You would probably try multiple lines and pick the one that leads to the most compact solution.
The idea is, if some of the circles are already at or close to their optimal configuration, chances are good this operation won't disturb them.
Other possible operations I could think of:
Take one of the circles with the highest distance from the center (one touching the boundary circle), and randomly move it somewhere else:
Choose a set of cirlces that are close to each other (e.g. if their centers lie in an randomly chosen circle) and rotate them by a random angle.
Another option (although a bit more complex) would be to measure the area between the circles, when they're tightly packed:
Then you could pick one of the circles adjacent to the largest between-circle-area (the red area, in the image) and swap it with another circle, or move it somewhere to the boundary.
(Response to comment:) Note that each of these "improvements" is almost guaranteed to create overlaps and/or unneccessary space between circles. But in the next iteration, step 2 will move the circles so they are tightly packed and non-overlapping again. This way, I can have one step for local optimizations (without caring about global ones), and one for global optimizations (which might create locally suboptimal solutions). This is far easier than having one complex step that does both.

I have a pretty naive one pass (over the radii) solution that produces alright results, although there is definitely room for improvement. I do have some ideas in that direction but figure I might as well share what I have in case anybody else wants to hack on it too.
It looks like they intersect at the center, but they don't. I decorated the placement function with a nested loop that checks every circle against every other circle (twice) and raises an AssertionError if there is an intersection.
Also, I can get the edge close to perfect by simply reverse sorting the list but I don't think the center looks good that way. It's (pretty much the only thing ;) discussed in the comments to the code.
The idea is to only look at discrete points that a circle might live at and iterate over them using the following generator:
def base_points(radial_res, angular_res):
circle_angle = 2 * math.pi
r = 0
while 1:
theta = 0
while theta <= circle_angle:
yield (r * math.cos(theta), r * math.sin(theta))
r_ = math.sqrt(r) if r > 1 else 1
theta += angular_res/r_
r += radial_res
This just starts at the origin and traces out points along concentric circles around it. We process the radii by sorting them according to some parameters to keep the large circles near the center (beginning of list) but enough small ones near the beginning to fill in spaces. We then iterate over the radii. within the main loop, we first loop over points that we have already looked at and saved away. If none of those are suitable, we start pulling new points out of the generator and saving them (in order) until we find a suitable spot. We then place the circle and go through our list of saved points pulling out all of the ones that fall within the new circle. We then repeat. on the next radius.
I'll put some ideas I have into play and make it mo`bettah. This might serve as a good first step for a physics based idea because you get to start with no overlaps. Of course it might already be tight enough so that you wouldn't have much room.
Also, I've never played with numpy or matplotlib so I write just vanilla python. There might be something in there that will make it run much faster, I'll have to look.

Can you treat the circles as charged particles in a charged cavity and look for a stable solution? That is, circles repel one another according to proximity, but are attracted towards the origin. A few steps of simulation might get you a decent answer.

Sounds like a Circle Packing problem, here is some information:
Circle Packing Wolfram MathWorld
Circle Packing Algorithms Google Scholar
CirclePack software

http://en.wikipedia.org/wiki/Apollonian_gasket
This seems somewhat relevant to what you are trying to do, and may provide some potential constraints for you.

Related

Better "centerpoint" than centroid

I'm using the centroid of polygons to attach a marker in a map application. This works definitely fine for convex polygons and quite good for many concave polygons.
However, some polygons (banana, donut) obviously don't produce the desired result: The centroid is in these cases outside the polygons area.
Does anybody know a better approach to find a suitable point within any polygons area (which may contain holes!) to attach a marker?
One approach would be to generate and refine a skeleton of the polygon, then use the midpoint of the skeleton to place your marker (and if it's text, to orient the text correctly). This works well for most shapes, including ones with holes, and banana-shaped or tadpole-shaped crescents.
The CGAL library has a 2D Straight Skeleton and Polygon Offsetting module, or you could use PostGIS, for example.
To rephrase comment of ChristopheRoussy we may look for the largest circle inside of the polygon.
The largest circle is the one which cannot grow anymore because it touches three vertices or edges (if it touches only two, it can become bigger or just moved until it touches third).
So if you have few vertices, you can just enumerate all possible triples of vertices/edges, find for each one a circle and then select the largest one.
But it will require creating four functions:
Circle(vertex,vertex,vertex)
Circle(vertex,vertex,edge)
Circle(vertex,edge,edge)
Circle(edge,edge,edge)
All of them are possible, but may require some effort.
Find the extreme ordinates and draw an horizontal line in the middle. It is guaranteed to cross the polygon.
Find the intersection with the sides and sort them by increasing abscissa. Pick a point in the middle of two intersections.
This is an O(N + K Log K) process where K is the number of intersections (usually a very small even number). Pretty straightforward to write.
To increase the chances of a nice placement, you can try three horizontals instead of one an pick the longest intersection segment.
I have no idea how to solve this for any possible shape (and not doing heavy computation), but maybe for simpler shapes like the ones you have shown:
https://en.wikipedia.org/wiki/Force-directed_graph_drawing
Heuristic: This could converge to a reasonable approximation after a while
transform shape border into many points (more = more precise)
start out with many random points inside the polygon
push them until they are furthest away from border points, or just compute distance ... (can be done in parallel)
take best point
Another way could be to use multiple algorithms depending on the nature of the shape (like another one for donuts ...). Also perhaps relying on measuring 'fattest' sections first ?
IMHO would ask this on a math forum.
Similar: Calculate Centroid WITHIN / INSIDE a SpatialPolygon
Similar: How to find two most distant points?
To get a point for a marker I would use Yves Daoust's method.
To get a point that is reliably "within any polygon with holes" I would split polygon into triangles with a reliable library (e.g. OpenGL's GLUtessellator), and then get centroid of triangle with largest area.
If I had time for developing and testing, and I wanted good performance, then I would use a hybrid method: First use Yves Daoust's method to get some candidate points and then test candidates to see if they are within polygon. If all candidates fail, then fall back to slower reliable method (e.g. GLUtesselator).
for (int i = 0; i < n; /*++i*/) {
p = RandomPointInsideConvexHull();
if (IsInsidePolygon(p)) {
++i;
d = DistanceToClosestEdge(p);
if (d > bestD) {
bestP = p;
}
}
}
After running this loop you will approximate solution by bestP. n is parameter to choose. If you want more accurate result you can restart search, but now instead of picking a point inside polygon's convex hull you can pick one in the neighborhood of bestP, say not farther than bestD / 5 (this time you don't need to check if random point is inside polygon).

Approximate a curve with a limited number of line segments and arcs of circles

Is there any algorithm that would allow to approximate a path on the x-y plane (i.e. an ordered suite of points defined by x and y) with a limited number of line segments and arcs of circles (constant curvature)? The resulting curve needs to be C1 (continuity of slope).
The maximum number or segments and arcs could be a parameter. An additional interesting constraint would be to prevent two consecutive circles of arcs without an intermediate line segment joining them.
I do not see any way to do this, and I do not think that there exists a method for it, but any hint towards this objective is welcome.
Example:
Sample file available here
Consider this path. It looks like a line, but is actually an ordered suite of very close points. There is no noise and the order of the sequence of points is well known.
I would like to approximate this curve with a minimum number of succession of line segments and circular arcs (let's say 10 line segments and 10 circular arcs) and a C1 continuity. The number of segments/arcs is not an objective itself but I need any parameter which would allow to reduce/increase this number to attain a certain simplicity of the parametrization, at the cost of accuracy loss.
Solution:
Here is my solution, based on Spektre's answer. Red curve is original data. Black lines are segments and blue curves are circle arcs. Green crosses are arc centers with radii shown and blue ones are points where segments potentially join.
Detect line segments, based on slope max deviation and segment minimal length as parameters. The slope of the new segment step is compared with the average step of the existing segment. I would prefer an optimization-based method, but I do not think that it exists for disjoint segments with unknown number, position and length.
Join segments with tangent arcs. To close the system, the radius is chosen such that the segments extremities are the least possible moved. A minimum radius constraint has been added for my purposes. I believe that there will be some special cases to treat in the inflexion points are far away when (e.g. lines are nearly parallel) and interact with neigboring segments.
so you got a point cloud ... for such Usually points close together are considered connected so:
you need to add info about what points are close to which ones
points close only to 2 neighbors signaling interior of curve/line. Only one neighbor means endpoint of curve/lines and more then 2 means intersection or too close almost or parallel lines/curves. No neighbors means either noise or just a dot.
group path segments together
This is called connected component analysis. So you need to form polylines from your neighbor info table.
detect linear path chunks
these have the same slope among neighboring segments so you can join them to single line.
fit the rest with curves
Here related QAs:
Finding holes in 2d point sets?
Algorithms: Ellipse matching
How approximation search works see the sublinks there are quite a bit of examples of fitting
Trace a shape into a polygon of max n sides
[Edit1] simple line detection from #3 on your data
I used 5.0 deg angle change as threshold for lines and also minimal size fo detected line as 50 samples (too lazy to compute length assuming constant point density). The result looks like this:
dots are detected line endpoints, green lines are the detected lines and white "lines" are the curves so I do not see any problem with this approach for now.
Now the problem is with the points left (curves) I think there should be also geometric approach for this as it is just circular arcs so something like this
Formula to draw arcs ending in straight lines, Y as a function of X, starting slope, ending slope, starting point and arc radius?
And this might help too:
Circular approximation of polygon (or its part)
the C1 requirement demands the you must have alternating straights and arcs. Also realize if you permit a sufficient number of segments you can trivially fit every pair of points with a straight and use a tiny arc to satisfy slope continuity.
I'd suggest this algorithm,
1 best fit with a set of (specified N) straight segments. (surely there are well developed algorithms for that.)
2 consider the straight segments fixed and at each joint place an arc. Treating each joint individually i think you have a tractable problem to find the optimum arc center/radius to satisfy continuity and improve the fit.
3 now that you are pretty close attempt to consider all arc centers and radii (segments being defined by tangency) as a global optimization problem. This of course blows up if N is large.
A typical constraint when approximating a given curve by some other curve is to bound the approximate curve to an epsilon-hose within the original curve (in terms if Minkowski sum with a disk of fixed radius epsilon).
For G1- or C2-continuous approximation (which people from CNC/CAD like) with biarcs (and a straight-line segment could be seen as an arc with infinite radius) former colleagues of mine developed an algorithm that gives solutions like this [click to enlarge]:
The above picture is taken from the project website: https://www.cosy.sbg.ac.at/~held/projects/apx/apx.html
The algorithm is fast, that is, it runs in O(n log n) time and is based on the generalized Voronoi diagram. However, it does not give an approximation with the exact minimum number of elements. If you look for the theoretical optimum I would refer to a paper by Drysdale et al., Approximation of an Open Polygonal Curve with
a Minimum Number of Circular Arcs and Biarcs, CGTA, 2008.

what algorithm or approach for placing rectangles without overlapp

I have a big rectangle of size 12*12. Now I have 6 rectangles already placed on the floor of that rectangle. I know the center coordinate of that pre-placed module. Now I have few another 14 rectangles to place upon that floor of that rectangle. How to do so?
here all my pre placed block those having center coordinate as say (2,5),(5,7),(9,2),(7,8),(11,9),(3,11).
Now how could I place 14 another rectangle in this floor so that it would not over lap with any preplaced block.
I would like to code in MATLAB..but what approach should I follow?
If a nice even placement is important, I suggest you look up simulated force-based graph layout. In this problem, you'll use simulated forces pushing the rectangles apart and also away from the border rectangle according to Coulomb's law. The initial configuration is randomly selected. You'll want to give the rectangles mass proportional to their area, I think. You don't have any spring forces due to edges, which makes it easier. The iteration to solve the differential equations of motion will be easy in Matlab. Or there may well be a toolkit to do it for you. Animations of these algorithms are fun.
Unfortunately with constrained problems like this, the fixed rectangles can form barriers that prevent the moving rectangles from getting to a non-overlapping solution. (Think of the case where the fixed rectangles are in a line down the middle and all the moving ones get "trapped" on one side or the other. The same thing happens in graph layout if some nodes have fixed locations.) There are various strategies for overcoming these bad cases. One is to start with no fixed objects at all, let the moving rectangles come to an equilibrium, then add the fixed ones one at a time, largest first, allowing the system regain equilibrium each time. Another, simpler one is just to start from different random initial conditions until you find one that works. There are also approaches related to simulated annealing, which is too big a topic to discuss here.
Here is a function to check overlap for two rectangles. you could loop it to check for more number of rectangles based on #Dov's idea.
For two rectangles Ri, i = 1,2, with centers (xi,yi) and half-lengths of their sides ai,bi > 0 (assuming that the sides are aligned with the coordinate axes).
Here is my implementation based on above equation:
In my code i've taken xcPosition and ycPosition as the center position of the rectangle.
Also length and breadth are the magnitude of sides of the rectangle.
function [ overLap, pivalue ] = checkOverlap( xcPosition1,ycPosition1,xcPosition2,ycPosition2,length1,breadth1,length2,breadth2 )
pix = max((xcPosition2 - xcPosition1 -(length1/2)-(length2/2)),(xcPosition1 -xcPosition2 -(length2/2)-(length1/2)));
piy = max((ycPosition2 - ycPosition1 -(breadth1/2)-(breadth2/2)),(ycPosition1 -ycPosition2 -(breadth2/2)-(breadth1/2)));
pivalue = max(pix, piy);
if (pivalue < 0)
overLap = 1; %// Overlap exists
else
overLap = 0; %// No overlap
end
end
You could also use the pivalue to know the degree of overlap or Non-overlap
The Pseudo-code for looping would be something like this:
for i = 1 : 14
for j = 1 : i-1 + 6 already placed parts
%// check for overlap using the above function here
%// place the part if there is no overlap
end
end
With such a small number, put each rectangle in a list. Each time you add a new rectangle, make sure the new one does not overlap with any of the existing ones.
This is O(n^2), so if you plan to increase to 10^3 or more rectangles you will need a better algorithm, but otherwise you're fine.
Now if your problem specifies that you might not be able to fit them all, then you will have to backtrack and keep trying different places. That is an N! problem, but if you have a lot of open space, many solutions will be possible.

How can I pick a set of vertices to subtract from a polygon such that the distortion is minimum?

I'm working with a really slow renderer, and I need to approximate polygons so that they look almost the same when confined to a screen area containing very few pixels. That is, I'd need an algorithm to go through a polygon and subtract/move a bunch of vertices until the end polygon has a good combination of shape preservation and economy of vertice usage.
I don't know if there's a formal name for these kind of problems, but if anyone knows what it is it would help me get started with my research.
My untested plan is to remove the vertices that change the polygon area the least, and protect the vertices that touch the bounding box from removal, until the difference in area from the original polygon to the proposed approximate one exceeds a tolerance I specify.
This would all be done only once, not in real time.
Any other ideas?
Thanks!
You're thinking about the problem in a slightly off way. If your goal is to reduce the number of vertices with a minimum of distortion, you should be defining your distortion in terms of those same vertices, which define the shape. There's a very simple solution here, which I believe would solve your problem:
Calculate distance between adjacent vertices
Choose a tolerance between vertices, below which the vertices are resolved into a single vertex
Replace all pairs of vertices with distances lower than your cutoff with a single vertex halfway between the two.
Repeat until no vertices are removed.
Since your area is ultimately decided by the vertex placement, this method preserves shape and minimizes shape distortion. The one drawback is that distance between vertices might be slightly less intuitive than polygon area, but the two are proportional. If you really wish, you could run through the change in area that would result from vertex removal, but that's a lot more work for questionable benefit imo.
As mentioned by Angus, if you want a direct solution for the change in area, it's not actually super difficult. Was originally going to leave this as an exercise to the reader, but it's totally possible to solve this exactly, though you need to include vertices on either side.
Assume you're looking at a window of vertices [A, B, C, D] that are connected in that order. In this example we're determining the "cost" of combining B and C.
Calculate the angle offset from collinearity from A toward C. Basically you just want to see how far from collinear the two points are. This is |sin(|arctan(B - A)| - |arctan(C - A)|)| Where pipes are absolute value, and differences are the sensical notion of difference.
Calculate the total distance over which the angle change will effectively be applied, this is just the euclidean distance from A to B times the euclidean distance from B to C.
Multiply the terms from 2 and 3 to get your first term
To get your second term, repeat steps 2 - 4 replacing A with D, B with C, and C with B (just going in the opposite direction)
Calculate the geometric mean of the two terms obtained.
The number that results in step 6 presents the full-picture minus a couple constants.
I tried my own plan first: Protect the vertices touching the bounding box, then remove the rest in the order that changes the resultant area the least, until you can't find a vertice to remove that keeps the new polygon area within X% of the original one. This is the result with X = 5%:
When the user zooms out really far these shapes fit the bill well enough for me. I haven't tried any of the other suggestions. The savings are quite astonishing, sometimes from 80-100 vertices down to 4 or 5.

Randomly and efficiently filling space with shapes

What is the most efficient way to randomly fill a space with as many non-overlapping shapes? In my specific case, I'm filling a circle with circles. I'm randomly placing circles until either a certain percentage of the outer circle is filled OR a certain number of placements have failed (i.e. were placed in a position that overlapped an existing circle). This is pretty slow, and often leaves empty spaces unless I allow a huge number of failures.
So, is there some other type of filling algorithm I can use to quickly fill as much space as possible, but still look random?
Issue you are running into
You are running into the Coupon collector's problem because you are using a technique of Rejection sampling.
You are also making strong assumptions about what a "random filling" is. Your algorithm will leave large gaps between circles; is this what you mean by "random"? Nevertheless it is a perfectly valid definition, and I approve of it.
Solution
To adapt your current "random filling" to avoid the rejection sampling coupon-collector's issue, merely divide the space you are filling into a grid. For example if your circles are of radius 1, divide the larger circle into a grid of 1/sqrt(2)-width blocks. When it becomes "impossible" to fill a gridbox, ignore that gridbox when you pick new points. Problem solved!
Possible dangers
You have to be careful how you code this however! Possible dangers:
If you do something like if (random point in invalid grid){ generateAnotherPoint() } then you ignore the benefit / core idea of this optimization.
If you do something like pickARandomValidGridbox() then you will slightly reduce the probability of making circles near the edge of the larger circle (though this may be fine if you're doing this for a graphics art project and not for a scientific or mathematical project); however if you make the grid size 1/sqrt(2) times the radius of the circle, you will not run into this problem because it will be impossible to draw blocks at the edge of the large circle, and thus you can ignore all gridboxes at the edge.
Implementation
Thus the generalization of your method to avoid the coupon-collector's problem is as follows:
Inputs: large circle coordinates/radius(R), small circle radius(r)
Output: set of coordinates of all the small circles
Algorithm:
divide your LargeCircle into a grid of r/sqrt(2)
ValidBoxes = {set of all gridboxes that lie entirely within LargeCircle}
SmallCircles = {empty set}
until ValidBoxes is empty:
pick a random gridbox Box from ValidBoxes
pick a random point inside Box to be center of small circle C
check neighboring gridboxes for other circles which may overlap*
if there is no overlap:
add C to SmallCircles
remove the box from ValidBoxes # possible because grid is small
else if there is an overlap:
increase the Box.failcount
if Box.failcount > MAX_PERGRIDBOX_FAIL_COUNT:
remove the box from ValidBoxes
return SmallCircles
(*) This step is also an important optimization, which I can only assume you do not already have. Without it, your doesThisCircleOverlapAnother(...) function is incredibly inefficient at O(N) per query, which will make filling in circles nearly impossible for large ratios R>>r.
This is the exact generalization of your algorithm to avoid the slowness, while still retaining the elegant randomness of it.
Generalization to larger irregular features
edit: Since you've commented that this is for a game and you are interested in irregular shapes, you can generalize this as follows. For any small irregular shape, enclose it in a circle that represent how far you want it to be from things. Your grid can be the size of the smallest terrain feature. Larger features can encompass 1x2 or 2x2 or 3x2 or 3x3 etc. contiguous blocks. Note that many games with features that span large distances (mountains) and small distances (torches) often require grids which are recursively split (i.e. some blocks are split into further 2x2 or 2x2x2 subblocks), generating a tree structure. This structure with extensive bookkeeping will allow you to randomly place the contiguous blocks, however it requires a lot of coding. What you can do however is use the circle-grid algorithm to place the larger features first (when there's lot of space to work with on the map and you can just check adjacent gridboxes for a collection without running into the coupon-collector's problem), then place the smaller features. If you can place your features in this order, this requires almost no extra coding besides checking neighboring gridboxes for collisions when you place a 1x2/3x3/etc. group.
One way to do this that produces interesting looking results is
create an empty NxM grid
create an empty has-open-neighbors set
for i = 1 to NumberOfRegions
pick a random point in the grid
assign that grid point a (terrain) type
add the point to the has-open-neighbors set
while has-open-neighbors is not empty
foreach point in has-open-neighbors
get neighbor-points as the immediate neighbors of point
that don't have an assigned terrain type in the grid
if none
remove point from has-open-neighbors
else
pick a random neighbor-point from neighbor-points
assign its grid location the same (terrain) type as point
add neighbor-point to the has-open-neighbors set
When done, has-open-neighbors will be empty and the grid will have been populated with at most NumberOfRegions regions (some regions with the same terrain type may be adjacent and so will combine to form a single region).
Sample output using this algorithm with 30 points, 14 terrain types, and a 200x200 pixel world:
Edit: tried to clarify the algorithm.
How about using a 2-step process:
Choose a bunch of n points randomly -- these will become the centres of the circles.
Determine the radii of these circles so that they do not overlap.
For step 2, for each circle centre you need to know the distance to its nearest neighbour. (This can be computed for all points in O(n^2) time using brute force, although it may be that faster algorithms exist for points in the plane.) Then simply divide that distance by 2 to get a safe radius. (You can also shrink it further, either by a fixed amount or by an amount proportional to the radius, to ensure that no circles will be touching.)
To see that this works, consider any point p and its nearest neighbour q, which is some distance d from p. If p is also q's nearest neighbour, then both points will get circles with radius d/2, which will therefore be touching; OTOH, if q has a different nearest neighbour, it must be at distance d' < d, so the circle centred at q will be even smaller. So either way, the 2 circles will not overlap.
My idea would be to start out with a compact grid layout. Then take each circle and perturb it in some random direction. The distance in which you perturb it can also be chosen at random (just make sure that the distance doesn't make it overlap another circle).
This is just an idea and I'm sure there are a number of ways you could modify it and improve upon it.

Resources