Longest palindrome prefix - algorithm

How to find the longest palindrome prefix of a string in O(n)?

Use a rolling hash. If a is your string, let ha[x] be the hash of the first x chars in a computed from left to right and let hr[x] be the hash of the first x characters in s computed from right to left. You're interested in the last position i for which hf[i] = hb[i].
Code in C (use two hashes for each direction to avoid false positives):
int match = n - 1;
int ha1 = 0, ha2 = 0, hr1 = 0, hr2 = 0;
int m1 = 1, m2 = 1;
for ( int i = 0; a[i]; ++i )
{
ha1 = (ha1 + m1*a[i]) % mod1;
ha2 = (ha2 + m2*a[i]) % mod2;
hr1 = (a[i] + base1*hr1) % mod1;
hr2 = (a[i] + base2*hr2) % mod2;
m1 *= base1, m1 %= mod1;
m2 *= base2, m2 %= mod2;
if ( ha1 == hr1 && ha2 == hr2 )
match = i;
}

Solution for a more general problem, not prefix but sub-string, in O(n) :
http://www.akalin.cx/2007/11/28/finding-the-longest-palindromic-substring-in-linear-time/
Second result on google for "longest palindrome prefix"....
Or solution using suffix-trees :
http://www.allisons.org/ll/AlgDS/Tree/Suffix/

Using z-algorithm (https://codeforces.com/blog/entry/3107). Suppose s is the given string of length m. Code:
string rev="",str=s;
int m=s.size(),longestPalindromicPrefix=1;
if(m==0 || m==1) longestPalindromicPrefix=m;
for(int i=m-1;i>=0;i--)
rev+=s[i];
s+='#';
s+=rev;
int n=s.size(),z[n+4],l=0,r=0;
for(int i=1;i<n;i++){
if(i>r){
l=r=i;
while(r<n && s[r-l]==s[r])
r++;
z[i]=r-l,r--;
}
else{
int k=i-l;
if(z[k]<r-i+1)
z[i]=z[k];
else{
l=i;
while(r<n && s[r-l]==s[r])
r++;
z[i]=r-l,r--;
}
}
}
for(int i=m+1;i<n;i++){
if(2*z[i]>=2*m-i && z[i]>longestPalindromicPrefix)
longestPalindromicPrefix=z[i];
}

Related

Time limit exceeded in my code given below

Question:
Lapindrome is defined as a string which when split in the middle, gives two halves having the same characters and same frequency of each character. If there are odd number of characters in the string, we ignore the middle character and check for lapindrome. For example gaga is a lapindrome, since the two halves ga and ga have the same characters with same frequency. Also, abccab, rotor and xyzxy are a few examples of lapindromes. Note that abbaab is NOT a lapindrome. The two halves contain the same characters but their frequencies do not match.
Your task is simple. Given a string, you need to tell if it is a lapindrome.
Input:
First line of input contains a single integer T, the number of test cases.
Each test is a single line containing a string S composed of only lowercase English alphabet.
Output:
For each test case, output on a separate line: "YES" if the string is a lapindrome and "NO" if it is not.
Constraints:
1 ≤ T ≤ 100
2 ≤ |S| ≤ 1000, where |S| denotes the length of S
#include <stdio.h>
#include <string.h>
int found;
int lsearch(char a[], int l, int h, char p) {
int i = l;
for (i = l; i <= h; i++) {
if (a[i] == p) {
found = 0;
return i;
}
}
return -1;
}
int main() {
char s[100];
int q, z, i, T;
scanf("%d", &T);
while (T--) {
q = 0;
scanf("%s", &s);
if (strlen(s) % 2 == 0)
for (i = 0; i < (strlen(s) / 2); i++) {
z = lsearch(s, strlen(s) / 2, strlen(s) - 1, s[i]);
if (found == 0) {
found = -1;
s[z] = -2;
} else
q = 1;
} else
for (i = 0; i < (strlen(s) / 2); i++) {
z = lsearch(s, 1 + (strlen(s) / 2), strlen(s) - 1, s[i]);
if (found == 0) {
found = -1;
s[z] = -2;
} else
q = 1;
}
if (strlen(s) % 2 == 0)
for (i = (strlen(s) / 2); i < strlen(s); i++) {
if (s[i] != -2)
q = 1;
} else
for (i = (strlen(s) / 2) + 1; i < strlen(s); i++) {
if (s[i] != -2)
q = 1;
}
if (q == 1)
printf("NO\n");
else
printf("YES\n");
}
}
I am getting correct output in codeblocks but the codechef compiler says time limit exceeded. Please tell me why it says so
For each of O(n) characters you do a O(n) search leading to a O(n^2) algorithm. Throw a thousand character string at it, and it is too slow.
This is solvable in two standard ways. The first is to sort each half of the string and then compare. The second is to create hash tables for letter frequency and then compare.

Longest slice of a binary array that can be split into two parts

how to find longest slice of a binary array that can be split into two parts: in the left part, 0 should be the leader; in the right part, 1 should be the leader ?
for example :
[1,1,0,1,0,0,1,1] should return 7 so that the first part is [1,0,1,0,0] and the second part is [1,1]
i tried the following soln and it succeeds in some test cases but i think it is not efficient:
public static int solution(int[] A)
{
int length = A.Length;
if (length <2|| length>100000)
return 0;
if (length == 2 && A[0] != A[1])
return 0;
if (length == 2 && A[0] == A[1])
return 2;
int zerosCount = 0;
int OnesCount = 0;
int start = 0;
int end = 0;
int count=0;
//left hand side
for (int i = 0; i < length; i++)
{
end = i;
if (A[i] == 0)
zerosCount++;
if (A[i] == 1)
OnesCount++;
count = i;
if (zerosCount == OnesCount )
{
start++;
break;
}
}
int zeros = 0;
int ones = 0;
//right hand side
for (int j = end+1; j < length; j++)
{
count++;
if (A[j] == 0)
zeros++;
if (A[j] == 1)
ones++;
if (zeros == ones)
{
end--;
break;
}
}
return count;
}
I agree brute force is time complexity: O(n^3).
But this can be solved in linear time. I've implemented it in C, here is the code:
int f4(int* src,int n)
{
int i;
int sum;
int min;
int sta;
int mid;
int end;
// Find middle
sum = 0;
mid = -1;
for (i=0 ; i<n-1 ; i++)
{
if (src[i]) sum++;
else sum--;
if (src[i]==0 && src[i+1]==1)
{
if (mid==-1 || sum<min)
{
min=sum;
mid=i+1;
}
}
}
if (mid==-1) return 0;
// Find start
sum=0;
for (i=mid-1 ; i>=0 ; i--)
{
if (src[i]) sum++;
else sum--;
if (sum<0) sta=i;
}
// Find end
sum=0;
for (i=mid ; i<n ; i++)
{
if (src[i]) sum++;
else sum--;
if (sum>0) end=i+1;
}
return end-sta;
}
This code is tested: brute force results vs. this function. They have same results. I tested all valid arrays of 10 elements (1024 combinations).
If you liked this answer, don't forget to vote up :)
As promissed, heres the update:
I've found a simple algorithm with linear timecomplexity to solve the problem.
The math:
Defining the input as int[] bits, we can define this function:
f(x) = {bits[x] = 0: -1; bits[x] = 1: 1}
Next step would be to create a basic integral of this function for the given input:
F(x) = bits[x] + F(x - 1)
F(-1) = 0
This integral is from 0 to x.
F(x) simply represents the number of count(bits , 1 , 0 , x + 1) - count(bits , 0 , 0 , x + 1). This can be used to define the following function: F(x , y) = F(y) - F(x), which would be the same as count(bits , 1 , x , y + 1) - count(bits , 0 , x , y + 1) (number of 1s minus number of 0s in the range [x , y] - this is just to show how the algorithm basically works).
Since the searched sequence of the field must fulfill the following condition: in the range [start , mid] 0 must be leading, and in the range [mid , end] 1 must be leading and end - start + 1 must be the biggest possible value, the searched mid must fulfill the following condition: F(mid) < F(start) AND F(mid) < F(end). So first step is to search the minimum of 'F(x)', which would be the mid (every other point must be > than the minimum, and thus will result in a smaller / equally big range [end - start + 1]. NOTE: this search can be optimized by taking into the following into account: f(x) is always either 1 or -1. Thus, if f(x) returns 1bits for the next n steps, the next possible index with a minimum would be n * 2 ('n' 1s since the last minimum means, that 'n' -1s are required afterwards to reach a minimum - or atleast 'n' steps).
Given the 'x' for the minimum of F(x), we can simply find start and end (biggest/smallest value b, s ∈ [0 , length(bits) - 1] such that: F(s) > F(mid) and F(b) > F(mid), which can be found in linear time.
Pseudocode:
input: int[] bits
output: int
//input verification left out
//transform the input into F(x)
int temp = 0;
for int i in [0 , length(bits)]
if bits[i] == 0
--temp;
else
++temp;
//search the minimum of F(x)
int midIndex = -1
int mid = length(bits)
for int i in [0 , length(bits - 1)]
if bits[i] > mid
i += bits[i] - mid //leave out next n steps (see above)
else if bits[i - 1] > bits[i] AND bits[i + 1] > bits[i]
midIndex = i
mid = bits[i]
if midIndex == -1
return //only 1s in the array
//search for the endindex
int end
for end in [length(bits - 1) , mid]
if bits[end] > mid
break
else
end -= mid - bits[end] //leave out next n searchsteps
//search for the startindex
int start
for start in [0 , mid]
if bits[start] > mid
break
else
start += mid - bits[start]
return end - start

decomposing positive integer into more integers such that sum same as original

Got an interview question today,which i was unable to solve
Looking for your advice on same
decomposition of a positive integer M is a set of unique positive integers whose sum is M
ex : 7 = 1+6 = 2+5 = 3+4 = 1+2+4
Need to write a function which calculates all such unique combinations
you need to print them? then, something like this:
int a[100]; a[0] = 0; //to store composition
void rec(int x, int p) {
for ( int i = a[p-1]+1; i <= x; i++ )
if (x - i > i ) {
a[p] = i;
rec(x - i, p+1);
} else {
a[p] = x;
//print if needed
for ( int j = 1; j <= p; j++ )
cout << a[j] << ' ';
cout << endl;
return;
}
}
and than call
rec(n, 1);

Find number of bits to be flipped to get maximum 1's in array

We have a bit array like below
{1 0 1 0 0 1 0 1}
Number of bits in above array is 8
If we take range from [1,5] then number of bits in [1,5] range is [0 1 0 0 1].
If we flip this range then after flipping it will be [ 1 0 1 1 0]
So total number of 1's after flipping [1,5] range is [1 1 0 1 1 0 0 1] = 5
If we take range from [1,6] then number of bits in [1,6] range is [0 1 0 0 1 0].
If we flip this range then after flipping it will be [ 1 0 1 1 0 1]
So total number of 1's after flipping [1,5] range is [1 1 0 1 1 0 1 1] = 6
So the answer is range [1,6] and after flipping we can get 6 1's in array
Is there a good algorithm that can solve this problem. I an only think of dynamic programming because this problem can be broken down into sub problems which can be combined.
Inspired by #Nabbs comment, there is an easy way to solve this in linear time: by reducing the problem to maximal segment sum.
Transform all 0s to 1s and all 1s to -1s. The problem is then the same as minimizing the sum of the array after transforming. (the minimal sum contains most -1s in the transformed array, which corresponds to most 1s in the original problem).
We can calculate the sum as
sum(after flipping) = sum(non-flipped) - sum(flipped part before flipping)
because the sum of the flipped part is inverted. If we now express the non-flipped part as follows:
sum(non-flipped) = sum(original array) - sum(flipped part before flipping)
we find that we need to minimize
sum(after flipping) = sum(original array) - 2 sum(flipped part before flipping)
The first part is a constant, so we really need to maximize the sum of the flipped part. This is exactly what the maximum segment sum problem does.
I wrote a lengthy derivation on how to solve that problem in linear time a while ago, so now I'll only share the code. Below I updated the code to also store the boundaries. I chose javascript as the language, because it is so easy to test in the browser and because I don't have to make the types of variables x and y explicit.
var A = Array(1, 0, 1, 0, 0, 1, 0, 1);
var sum = 0;
// count the 1s in the original array and
// do the 0 -> 1 and 1 -> -1 conversion
for(var i = 0; i < A.length; i++) {
sum += A[i];
A[i] = A[i] == 0 ? 1 : -1;
}
// find the maximum subarray
var x = { value: 0, left: 0, right: 0 };
var y = { value: 0, left: 0 };
for (var n = 0; n < A.length; n++) {
// update y
if (y.value + A[n] >= 0) {
y.value += A[n];
} else {
y.left = n+1;
y.value = 0;
}
// update x
if (x.value < y.value) {
x.left = y.left;
x.right = n;
x.value = y.value;
}
}
// convert the result back
alert("result = " + (sum + x.value)
+ " in range [" + x.left + ", " + x.right + "]");
You can easily verify this in your browser. For instance in Chrome, press F12, click Console and paste this code. It should output
result = 6 in range [1, 4]
The solution uses Kadane's Algorithm.
We have to pick that substring where there are maximum number of 0s and minimum number of 1s, i.e., substring with max(count(0)-count(1)). So that after the flip, we can get maximum number of 1s in the final string.
Iterate over the string and keep a count. Increment this count whenever we encounter a 0 and decrement it when we encounter 1. The substring which will have the maximum value of this count will be our answer.
Here's a video by alGOds which explains the approach nicely. Do watch it if you have any doubts.
Link : https://youtu.be/cLVpE5q_-DE
The following code uses the trivial algorithm and runs in O(n²).
#include <iostream>
#include <bitset>
#include <utility>
typedef std::pair<unsigned, unsigned> range_t;
template <std::size_t N>
range_t max_flip(const std::bitset<N>& bs){
int overall_score = 0;
range_t result = range_t{0,0};
for(std::size_t i = 0; i < N; ++i){
int score = bs[i] ? -1 : 1;
auto max = i;
for(std::size_t j = i + 1; j < N; ++j){
auto new_score = score + (bs[j] ? -1 : 1);
if(new_score > score){
score = new_score;
max = j;
}
}
if(score > overall_score){
overall_score = score;
result = {i,max};
}
}
return result;
}
int main(){
std::bitset<8> bitfield(std::string("10100101"));
range_t range = max_flip(bitfield);
std::cout << range.first << " .. " << range.second << std::endl;
}
Attempt 2.0 in O(n)
Start at the beginning of the array. Step through the array. Until you reach a 0. When you reach the first 0, set count to 0, remember the start position and continue stepping while counting: +1 for 0 and -1 for 1. If the count becomes negative, reset the count and continue until you reach the end. If you find another zero set count to 0 and repeat the previous algorithm. At the end you flip the range of the start and end position if there is one.
void Flip( int* arr , int len )
{
int s = -1 , e = -1 , c ;
for( int i = 0 ; i < len ; i++ )
{
if( arr[i] == 0 )
{
c = 0 ;
s = i ;
e = i ;
for( int j = i ; j < len ; j++ , i++ )
{
if( arr[i] == 0 )
c++ ;
else
c-- ;
if( c < 0 )
{
s = -1 ;
e = -1 ;
break ;
}
if( arr[i] == 0 )
e = i ;
}
}
}
if( s > -1 )
for( int i = s ; i <= e ; i++ )
arr[i] ^= 1 ;
for( int i = 0 ; i < len ; i++ )
printf("%d " , arr[i] ) ;
}
int main(void)
{
int a[13] = {1,0,1,1,0,0,1,0,1,1,0,1,0} ;
Flip( a , 13 ) ;
return 0;
}
Not thoroughly tested, there may be bugs( edge cases ) but it works in principle.
void maxones(int n)
{
int table[n+1][n+1], i, j, totalones = 0, max = INT_MIN, start_pos = 0, end_pos =0;
if(n == 0)
{
printf("Max no of ones from 0 to %d \n",sizeof(int) * 8 -1);
return;
}
/* size of (int) * 8 bits, calculate total no of ones in every bit */
for(i=0; i<sizeof(n) * 8; i++)
totalones += n & (1 >> i);
/* Base conditions to be filled */
for(i=0; i<n; i++)
table[i][i] = (n & (1 >> i)) ? totalones - 1 : totalones + 1;
for(i=0; i<n; i++ )
for(j=i+1; j<n; j++)
{
table[i][j] = table[i][j-1] + ( n & (1 >> j)) ? 0 : 1;
if (max < table[i][j])
{
max = table[i][j];
start_pos = i;
end_pos = j;
}
}
printf("Max no of Ones on fliping bits from pos %d to pos %d \n",start_pos, end_pos);
}
int main()
{
int n;
printf("Enter number %d \n", &n);
maxones(n);
return 0;
}
Here is a recursive approach:
https://ideone.com/Su2Mmb
public static void main(String[] args) {
int [] input = {1, 0, 0, 1, 0, 0, 1,1,1,1, 0,1};
System.out.println(findMaxNumberOfOnes(input,0, input.length-1));
}
private static int findMaxNumberOfOnes(int[] input, int i, int j) {
if (i==j)
return 1;
int option1 = input[i] + findMaxNumberOfOnes(input, i+1, j);
int option2 = count(input , i , j, true);
int option3 = count(input, i, j, false);
int option4 =findMaxNumberOfOnes(input, i, j-1) +input[j];
return Math.max(option1, Math.max(option2,Math.max(option3,option4)));
}
private static int count(int[] input, int i, int j, boolean flipped) {
int a = flipped?0:1;
int count = 0;
while (i<=j){
count += (input[i++]==a)?1:0;
}
return count;
}
This problem can be solved using dynamic programming in linear time and space. You can create an array left where left[i] is the number of 1 on subarray 0 to i (inclusive). So for two index i and j:
case 1: i==j, result is array size sz-1 (if no 0 in array) or sz+1 (if there is at least one 0 in array)
case 2: i less than j, result is:
left[i-1] (# of 1 on subarray 0 ~ i-1) +
(j-i+1-(left[j]-left[i-1])) (# of 0 on subarray i ~ j) +
left[sz-1]-left[j] (# of 1 on subarray j+1 ~ sz-1)
this equals to: (j-2*left[j])-(i-2*left[i-1])+left[sz-1]+1
So according to case 2, we need another array temp to store for every j min{i-2*left[i-1] where i<j}
So we can traverse the array, at each index j, we calculate the above case two (in constant time) and update final result if it's larger.
My code in c++:
int func(vector<int>& arr){
int res = 0;
int sz = arr.size();
vector<int> left(sz, 0);
for(int i=0; i<sz; i++){
left[i] = (arr[i]==1?1:0)+(i==0?0:left[i-1]);
}
bool all_1 = true;
for(int i=0; i<sz; i++){
if(arr[i] == 0) all_1=false;
}
if(all_1) return sz-1;
res = left[sz-1]+1;
vector<int> temp(sz, INT_MAX);
for(int i=1; i<sz; i++)
temp[i] = min(temp[i-1], i-2*left[i-1]);
for(int j=1; j<sz; j++){
int val = j+1-left[j]+(left[sz-1]-left[j]);
val = max(val, j-2*left[j]-temp[j]+left[sz-1]+1);
res = max(res, val);
}
return res;
}
I also thought the same way as #this has mentioned. But there are bugs in his solution. My code after fixing the bug(see explanation below):
vector<int> Solution::flip(string arr) {
int s = -1 , e = -1 , c , len = arr.size(), S = -1, E = -1, Max = 0;
for( int i = 0 ; i < len ; i++ )
{
if( arr[i] == '0' )
{
c = 0 ;
s = i ;
e = i ;
for( int j = i ; j < len ; j++, i++ )
{
if( arr[j] == '0' )
c++ ;
else
c-- ;
//cout << c << " ";
if( c < 0 )
{
s = -1 ;
e = -1 ;
break ;
}
if( arr[j] == '0' )
e = i ;
if(c > Max){
S = s;
E = e;
Max = c;
}
}
}
}
vector<int> ans;
if( S > -1 ){
ans.push_back(S);
ans.push_back(E);
return ans;
}
else
return ans;
}
Explanation:
Start at the beginning of the array. Step through the array. Until you reach a 0. When you reach the first 0, set count to 0, remember the start position and continue stepping while counting: +1 for 0 and -1 for 1.Max stores the value of max(#zeros in all set of [s, e]). If c becomes greater than Max then the current set [s, e] contains the maximum number of '0' bits. Hence update Max, S, E,. If the count becomes negative, it means the number of '1' is greater then number of '0' in set [s, e], so reset the count c, local start s, local end e. and continue until you reach the end. If you find another zero set count to 0 and repeat the previous algorithm. The final value of S, E are the index of the range in which bits are to be flipped. If no such range exist(all bits are '1') then S = -1, E = - 1.
This Solution is also inspired by #Nabb's comment. I have created a new array with 0 replaced as 1 and 1 as -1. Then I used maximum subarray sum range problem's concept to solve it. The code is as below:
vector<int> Solution::flip(string A) {
vector<int> vec;
vector<int> res;
for(int i=0;i<A.length();i++){
if(A[i]=='1')
vec.push_back(-1);
else
vec.push_back(1);
}
int l=0,r=0,s=0;
int sum=0;
int sum_prev=INT_MIN;
for(int i=0;i<vec.size();i++){
sum+=vec[i];
if(sum_prev<sum){
sum_prev=sum;
l=s;
r=i;
}
if(sum<0){
sum=0;
s=i+1;
}
}
//cout<<"l: "<<l<<" r: "<<r<<endl;
if((l>=0 && r>0)||((l==0 && r==0) && A[0]=='0')){
res.push_back(l+1);
res.push_back(r+1);
}
return res;
}
Let me provide the solution and it is actually based on the Kadane's Algorithm.
The code is a bit long but most of them are comments written by me to help you understand a bit more.
Space complexity: O(1)
Time complexity: O(n)
# flip to zero to get max one
def flip_zero(nums):
# max number of 0 at index and global
max_nums_at_index, max_nums_global = None, None
start, end = None, None
for i in range(len(nums)):
if i == 0:
if nums[i] == 0:
# In position 0, if the digit is 0, then the count of zero will be 1
max_nums_at_index, max_nums_global = 1, 1
else:
# In position 0, if the digit is 1, then the count of zero will be 0
max_nums_at_index, max_nums_global = 0, 0
# Mark the start and end position of the substring
start, end = i, i
else:
# In other position, we need to consider we are going to added it or not
if nums[i] == 0:
# If the number is 0, then after we included it the count of zero will be increased by 1
# If we don't add it and means we will start a new subarray from current index
# the count of zero at current index will be 1
# So here we need to do comparison and see which one is bigger.
max_nums_at_index = max(max_nums_at_index + 1, 1)
# Check whether we start a new sub array, if yes, update the start index
if max_nums_at_index == 1:
start = i
else:
# If the number is 1, then after we include it the count of zero will remain unchange
# If we don't add it and means we will start a new array from current index
# the count of zero at current index will be 0
# So here we need to do comparison and see which one is bigger.
max_nums_at_index = max(max_nums_at_index, 0)
# Check whether we start a new sub array, if yes, update the start index
if max_nums_at_index == 0:
start = i
temp = max_nums_global
max_nums_global = max(max_nums_global, max_nums_at_index)
# Check whether the global max has been updated, if yes, update the end index
if max_nums_global != temp:
end = i
return [start, end]
And the result return is [1, 6]
It is possible even much more simple. See this python example O (n):
def flipBits_for_maximum_1s (a, n):
countOfOnes = 0
# find contiguous subarray with biggest sum
# of 'count of 0s' - 'count of 1s'
big = cur_big = 0
for x in a:
if x:
countOfOnes += 1
cur_big -= 1
else: cur_big += 1
if cur_big > big: big = cur_big
if (cur_big < 0): cur_big = 0;
return big + countOfOnes

Maximum span in two arrays with equal sum

This is programming puzzle. We have two arrays A and B. Both contains 0's and 1's only.
We have to two indices i, j such that
a[i] + a[i+1] + .... a[j] = b[i] + b[i+1] + ... b[j].
Also we have to maximize this difference between i and j. Looking for O(n) solution.
I found O(n^2) solution but not getting O(n).
Best solution is O(n)
First let c[i] = a[i] - b[i], then question become find i, j, which sum(c[i], c[i+1], ..., c[j]) = 0, and max j - i.
Second let d[0] = 0, d[i + 1] = d[i] + c[i], i >= 0, then question become find i, j, which d[j + 1] == d[i], and max j - i.
The value of d is in range [-n, n], so we can use following code to find the answer
answer = 0, answer_i = 0, answer_j = 0
sumHash[2n + 1] set to -1
for (x <- 0 to n) {
if (sumHash[d[x]] == -1) {
sumHash[d[x]] = x
} else {
y = sumHash[d[x]]
// find one answer (y, x), compare to current best
if (x - y > answer) {
answer = x - y
answer_i = y
answer_j = y
}
}
}
Here is an O(n) solution.
I use the fact that sum[i..j] = sum[j] - sum[i - 1].
I keep the leftmost position of each found sum.
int convertToPositiveIndex(int index) {
return index + N;
}
int mostLeft[2 * N + 1];
memset(mostLeft, -1, sizeof(mostLeft));
int bestLen = 0, bestStart = -1, bestEnd = -1;
int sumA = 0, sumB = 0;
for (int i = 0; i < N; i++) {
sumA += A[i];
sumB += B[i];
int diff = sumA - sumB;
int diffIndex = convertToPositiveIndex(diff);
if (mostLeft[diffIndex] != -1) {
//we have found the sequence mostLeft[diffIndex] + 1 ... i
//now just compare it with the best one found so far
int currentLen = i - mostLeft[diffIndex];
if (currentLen > bestLen) {
bestLen = currentLen;
bestStart = mostLeft[diffIndex] + 1;
bestEnd = i;
}
}
if (mostLeft[diffIndex] == -1) {
mostLeft[diffIndex] = i;
}
}
cout << bestStart << " " << bestEnd << " " << bestLen << endl;
P.S. mostLeft array is 2 * N + 1, because of the negatives.
This is a fairly straightforward O(N) solution:
let sa = [s1, s2, s3.. sn] where si = sum(a[0:i]) and similar for sb
then sum(a[i:j]) = sa[j]-sa[i]
and sum(b[i:j]) = sb[j] - sb[i]
Note that because the sums only increase by 1 each time, we know 0 <= sb[N], sa[N] <=N
difference_array = [d1, d2, .. dn] where di = sb[i] - sa[i] <= N
note if di = dj, then sb[i] - sa[i] = sb[j] - sa[j] which means they have the same sum (rearrange to get sum(b[i:j]) and sum(a[i:j]) from above).
Now for each difference we need its max position occurrence and min position occurrence
Now for each difference di, the difference between max - min, is an i-j section of equal sum. Find the maximum max-min value and you're done.
sample code that should work:
a = []
b = []
sa = [0]
sb = [0]
for i in a:
sa.append(sa[-1] + i)
for i in b:
sb.append(sb[-1] + i)
diff = [sai-sbi for sai, sbi in zip(sa, sb)]
min_diff_pos = {}
max_diff_pos = {}
for pos, d in enumerate(diff):
if d in min_diff_pos:
max_diff_pos[d] = pos
else:
min_diff_pos[d] = pos
ans = min(max_diff_pos[d] - min_diff_pos[d] for d in diff)
Basically, my solution goes like this.
Take a variable to take care of the difference since the beginning.
int current = 0;
for index from 0 to length
if a[i] == 0 && b[i] == 1
current--;
else if a[i] == 1 && b[i] == 0
current++;
else
// nothing;
Find the positions where the variable has the same value, which indicates that there are equal 1s and 0s in between.
Pseudo Code:
Here is my primary solution:
int length = min (a.length, b.length);
int start[] = {-1 ... -1}; // from -length to length
start[0] = -1;
int count[] = {0 ... 0}; // from -length to length
int current = 0;
for (int i = 0; i < length; i++) {
if (a[i] == 0 && b[i] == 1)
current--;
else if (a[i] == 1 && b[i] == 0)
current++;
else
; // nothing
if (start[current] == -1) // index can go negative here, take care
start[current] = current;
else
count[current] = i - start[current];
}
return max_in(count[]);

Resources