Can You Use Arithmetic Operators to Flip Between 0 and 1 - algorithm

Is there a way without using logic and bitwise operators, just arithmetic operators, to flip between integers with the value 0 and 1?
ie.
variable ?= variable will make the variable 1 if it 0 or 0 if it is 1.

x = 1 - x
Will switch between 0 and 1.

Edit: I misread the question, thought the OP could use any operator
A Few more...(ignore these)
x ^= 1 // bitwise operator
x = !x // logical operator
x = (x <= 0) // kinda the same as x != 1
Without using an operator?
int arr[] = {1,0}
x = arr[x]

Yet another way:
x = (x + 1) % 2

Assuming that it is initialized as a 0 or 1:
x = 1 - x

Comedy variation on st0le's second method
x = "\1"[x]

Another way to flip a bit.
x = ABS(x - 1) // the absolute of (x - 1)

int flip(int i){
return 1 - i;
};

Just for a bit of variety:
x = 1 / (x + 1);
x = (x == 0);
x = (x != 1);
Not sure whether you consider == and != to be arithmetic operators. Probably not, and obviously although they work in C, more strongly typed languages wouldn't convert the result to integer.

you can simply try this
+(!0) // output:1
+(!1) // output:0

You can use simple:
abs(x-1)
or just:
int(not x)

Related

Different expressions for different outputs in Halide

I'm new to Halide so also kinda didn't know how to ask the question. Let me explain. Let's assume I have a simple code for Halide's generator like this:
class Blur : public Generator<Blur>{
public:
Input<Buffer<float>> in_func{"in_func", 2};
Output<Buffer<float>> forward{"forward", 2};
Var x, y, n;
void generate(){
Expr m1 = in_func(x+1, y+2)+in_func(x+2, y+1);
Expr m2 = in_func(x+1, y+2)-in_func(x+2, y+1);
Expr m3 = in_func(x+2, y+1)+in_func(x+1, y+1);
Expr m4 = in_func(x+2, y+1)-in_func(x+1, y+1);
Expr w0010_2 = -in_func(x+2, y+2)+in_func(x, y+2);
Expr w0111_2 = -in_func(x+3, y+2)+in_func(x+1, y+2);
forward(0,0) = w0010_2+m4+m3+m2+m1;
forward(1,0) = -w0111_2+m4+m3-m2-m1;
forward(0,1) = w0010_2-m4+m3-m2+m1;
forward(1,1) = w0111_2-m4+m3+m2-m1;
}
};
What I want to achieve is to define that output at index (0,0) should be the result of m1 + m2 but output at index (1,0) should be the result of different expression, for example, m1 - m2. I would be really grateful for help.
What I want to achieve is to define that output at index (0,0) should be the result of m1 + m2 but output at index (1,0) should be the result of different expression, for example, m1 - m2. [...] I want result[0][0] = expression1, result[0][1] = expression2, result[1][0] = expression3 and result[1][1] = expression4. But also result[0][2], result[0][4] and so on = expression1
Compute the values x%2 and y%2 and use their values in a select:
forward(x, y) = select(
x % 2 == 0 && y % 2 == 0, m1 + m2,
x % 2 == 1 && y % 2 == 0, m1 - m2,
x % 2 == 0 && y % 2 == 1, expr3,
/* otherwise, */ expr4
);
Select is a pure if-then-else. It evaluates all of its arguments and then picks the one corresponding to the first true predicate. If the expressions all use nearby points of in_func, this might not be too slow.
If you find that performance suffers, I'd try to create four funcs, one for each of the four expressions, and then select loads from those. If that's still too slow, you might be able to optimize the indexing to not compute any extra points. If you show all four expressions, I might be able to help you do that.

Pattern with simple arithmetic operators

I’m trying to generate a pattern like this given the input
0,1,2,3,4,5....
I want
0,0,1,0,1,0.....
I can generate the pattern by doing X+1 MOD 2 but the input of 0 gives an output of 1 and I need 0
I have to implement this in the form of an equation no if statements but I can use ADD SUB MOD MUL DIV AND OR XOR
This gives the desired output:
for (int i = 0; i < 6; ++i) {
std::cout << (i && ((i + 1) % 2));
}
001010
But this uses implicit conversion to bool. There other ways to get this output if conversions are allowed. Also, you can use sign bit of i-1.

Implementing a FIR filter using Vectors

I have implemented a FIR filter in Haskell. I don't know that much about FIR filters and my code is heavily based on an existing C# implementation. Therefore, I have a feeling that my implementation is has too much of a C# style and is not really Haskell-like. I would like to know if there is a more idiomatic Haskell way of implementing my code. Ideally, I'm lucky for some combination of higher-order functions (map, filter, fold, etc.) that implement the algorithm.
My Haskell code looks like this:
applyFIR :: Vector Double -> Vector Double -> Vector Double
applyFIR b x = generate (U.length x) help
where
help i = if i >= (U.length b - 1) then loop i (U.length b - 1) else 0
loop yi bi = if bi < 0 then 0 else b !! bi * x !! (yi-bi) + loop yi (bi-1)
vec !! i = unsafeIndex vec i -- Shorthand for unsafeIndex
This code is based on the following C# code:
public float[] RunFilter(double[] x)
{
int M = coeff.Length;
int n = x.Length;
//y[n]=b0x[n]+b1x[n-1]+....bmx[n-M]
var y = new float[n];
for (int yi = 0; yi < n; yi++)
{
double t = 0.0f;
for (int bi = M - 1; bi >= 0; bi--)
{
if (yi - bi < 0) continue;
t += coeff[bi] * x[yi - bi];
}
y[yi] = (float) t;
}
return y;
}
As you can see, it's almost a straight copy. How can I turn my implementation into a more Haskell-like one? Do you have any ideas? The only thing I could come up with was using Vector.generate.
I know that the DSP library has an implementation available. But it uses lists and is way too slow for my use case. This Vector implementation is a lot faster than the one in DSP.
I've also tried implementing the algorithm using Repa. It is faster than the Vector implementation. Here is the result:
applyFIR :: V.Vector Float -> Array U DIM1 Float -> Array D DIM1 Float
applyFIR b x = R.traverse x id (\_ (Z :. i) -> if i >= len then loop i (len - 1) else 0)
where
len = V.length b
loop :: Int -> Int -> Float
loop yi bi = if bi < 0 then 0 else (V.unsafeIndex b bi) * x !! (Z :. (yi-bi)) + loop yi (bi-1)
arr !! i = unsafeIndex arr i
First of all, I don't think that your initial vector code is a faithful translation - that is, I think it disagrees with the C# code. For example, suppose that both "x" and "b" ("b" is coeff in C#) have length 3, and have all values of 1.0. Then for y[0] the C# code would produce x[0] * coeff[0], or 1.0. (it would hit continue for all other values of bi)
With your Haskell code, however, help 0 produces 0. Your Repa version seems to suffer from the same problem.
So let's start with a more faithful translation:
applyFIR :: Vector Double -> Vector Double -> Vector Double
applyFIR b x = generate (U.length x) help
where
help i = loop i (min i $ U.length b - 1)
loop yi bi = if bi < 0 then 0 else b !! bi * x !! (yi-bi) + loop yi (bi-1)
vec !! i = unsafeIndex vec i -- Shorthand for unsafeIndex
Now, you're basically doing a calculation like this for computing, say, y[3]:
... b[3] | b[2] | b[1] | b[0]
x[0] | x[1] | x[2] | x[3] | x[4] | x[5] | ....
multiply
b[3]*x[0]|b[2]*x[1] |b[1]*x[2] |b[0]*x[3]
sum
y[3] = b[3]*x[0] + b[2]*x[1] + b[1]*x[2] + b[0]*x[3]
So one way to think of what you're doing is "take the b vector, reverse it, and to compute spot i of the result, line b[0] up with x[i], multiply all the corresponding x and b entries, and compute the sum".
So let's do that:
applyFIR :: Vector Double -> Vector Double -> Vector Double
applyFIR b x = generate (U.length x) help
where
revB = U.reverse b
bLen = U.length b
help i = let sliceLen = min (i+1) bLen
bSlice = U.slice (bLen - sliceLen) sliceLen revB
xSlice = U.slice (i + 1 - sliceLen) sliceLen x
in U.sum $ U.zipWith (*) bSlice xSlice

How to find the number of values in a given range divisible by a given value?

I have three numbers x, y , z.
For a range between numbers x and y.
How can i find the total numbers whose % with z is 0 i.e. how many numbers between x and y are divisible by z ?
It can be done in O(1): find the first one, find the last one, find the count of all other.
I'm assuming the range is inclusive. If your ranges are exclusive, adjust the bounds by one:
find the first value after x that is divisible by z. You can discard x:
x_mod = x % z;
if(x_mod != 0)
x += (z - x_mod);
find the last value before y that is divisible by y. You can discard y:
y -= y % z;
find the size of this range:
if(x > y)
return 0;
else
return (y - x) / z + 1;
If mathematical floor and ceil functions are available, the first two parts can be written more readably. Also the last part can be compressed using math functions:
x = ceil (x, z);
y = floor (y, z);
return max((y - x) / z + 1, 0);
if the input is guaranteed to be a valid range (x >= y), the last test or max is unneccessary:
x = ceil (x, z);
y = floor (y, z);
return (y - x) / z + 1;
(2017, answer rewritten thanks to comments)
The number of multiples of z in a number n is simply n / z
/ being the integer division, meaning decimals that could result from the division are simply ignored (for instance 17/5 => 3 and not 3.4).
Now, in a range from x to y, how many multiples of z are there?
Let see how many multiples m we have up to y
0----------------------------------x------------------------y
-m---m---m---m---m---m---m---m---m---m---m---m---m---m---m---
You see where I'm going... to get the number of multiples in the range [ x, y ], get the number of multiples of y then subtract the number of multiples before x, (x-1) / z
Solution: ( y / z ) - (( x - 1 ) / z )
Programmatically, you could make a function numberOfMultiples
function numberOfMultiples(n, z) {
return n / z;
}
to get the number of multiples in a range [x, y]
numberOfMultiples(y) - numberOfMultiples(x-1)
The function is O(1), there is no need of a loop to get the number of multiples.
Examples of results you should find
[30, 90] ÷ 13 => 4
[1, 1000] ÷ 6 => 166
[100, 1000000] ÷ 7 => 142843
[777, 777777777] ÷ 7 => 111111001
For the first example, 90 / 13 = 6, (30-1) / 13 = 2, and 6-2 = 4
---26---39---52---65---78---91--
^ ^
30<---(4 multiples)-->90
I also encountered this on Codility. It took me much longer than I'd like to admit to come up with a good solution, so I figured I would share what I think is an elegant solution!
Straightforward Approach 1/2:
O(N) time solution with a loop and counter, unrealistic when N = 2 billion.
Awesome Approach 3:
We want the number of digits in some range that are divisible by K.
Simple case: assume range [0 .. n*K], N = n*K
N/K represents the number of digits in [0,N) that are divisible by K, given N%K = 0 (aka. N is divisible by K)
ex. N = 9, K = 3, Num digits = |{0 3 6}| = 3 = 9/3
Similarly,
N/K + 1 represents the number of digits in [0,N] divisible by K
ex. N = 9, K = 3, Num digits = |{0 3 6 9}| = 4 = 9/3 + 1
I think really understanding the above fact is the trickiest part of this question, I cannot explain exactly why it works.
The rest boils down to prefix sums and handling special cases.
Now we don't always have a range that begins with 0, and we cannot assume the two bounds will be divisible by K.
But wait! We can fix this by calculating our own nice upper and lower bounds and using some subtraction magic :)
First find the closest upper and lower in the range [A,B] that are divisible by K.
Upper bound (easier): ex. B = 10, K = 3, new_B = 9... the pattern is B - B%K
Lower bound: ex. A = 10, K = 3, new_A = 12... try a few more and you will see the pattern is A - A%K + K
Then calculate the following using the above technique:
Determine the total number of digits X between [0,B] that are divisible by K
Determine the total number of digits Y between [0,A) that are divisible by K
Calculate the number of digits between [A,B] that are divisible by K in constant time by the expression X - Y
Website: https://codility.com/demo/take-sample-test/count_div/
class CountDiv {
public int solution(int A, int B, int K) {
int firstDivisible = A%K == 0 ? A : A + (K - A%K);
int lastDivisible = B%K == 0 ? B : B - B%K; //B/K behaves this way by default.
return (lastDivisible - firstDivisible)/K + 1;
}
}
This is my first time explaining an approach like this. Feedback is very much appreciated :)
This is one of the Codility Lesson 3 questions. For this question, the input is guaranteed to be in a valid range. I answered it using Javascript:
function solution(x, y, z) {
var totalDivisibles = Math.floor(y / z),
excludeDivisibles = Math.floor((x - 1) / z),
divisiblesInArray = totalDivisibles - excludeDivisibles;
return divisiblesInArray;
}
https://codility.com/demo/results/demoQX3MJC-8AP/
(I actually wanted to ask about some of the other comments on this page but I don't have enough rep points yet).
Divide y-x by z, rounding down. Add one if y%z < x%z or if x%z == 0.
No mathematical proof, unless someone cares to provide one, but test cases, in Perl:
#!perl
use strict;
use warnings;
use Test::More;
sub multiples_in_range {
my ($x, $y, $z) = #_;
return 0 if $x > $y;
my $ret = int( ($y - $x) / $z);
$ret++ if $y%$z < $x%$z or $x%$z == 0;
return $ret;
}
for my $z (2 .. 10) {
for my $x (0 .. 2*$z) {
for my $y (0 .. 4*$z) {
is multiples_in_range($x, $y, $z),
scalar(grep { $_ % $z == 0 } $x..$y),
"[$x..$y] mod $z";
}
}
}
done_testing;
Output:
$ prove divrange.pl
divrange.pl .. ok
All tests successful.
Files=1, Tests=3405, 0 wallclock secs ( 0.20 usr 0.02 sys + 0.26 cusr 0.01 csys = 0.49 CPU)
Result: PASS
Let [A;B] be an interval of positive integers including A and B such that 0 <= A <= B, K be the divisor.
It is easy to see that there are N(A) = ⌊A / K⌋ = floor(A / K) factors of K in interval [0;A]:
1K 2K 3K 4K 5K
●········x········x··●·····x········x········x···>
0 A
Similarly, there are N(B) = ⌊B / K⌋ = floor(B / K) factors of K in interval [0;B]:
1K 2K 3K 4K 5K
●········x········x········x········x···●····x···>
0 B
Then N = N(B) - N(A) equals to the number of K's (the number of integers divisible by K) in range (A;B]. The point A is not included, because the subtracted N(A) includes this point. Therefore, the result should be incremented by one, if A mod K is zero:
N := N(B) - N(A)
if (A mod K = 0)
N := N + 1
Implementation in PHP
function solution($A, $B, $K) {
if ($K < 1)
return 0;
$c = floor($B / $K) - floor($A / $K);
if ($A % $K == 0)
$c++;
return (int)$c;
}
In PHP, the effect of the floor function can be achieved by casting to the integer type:
$c = (int)($B / $K) - (int)($A / $K);
which, I think, is faster.
Here is my short and simple solution in C++ which got 100/100 on codility. :)
Runs in O(1) time. I hope its not difficult to understand.
int solution(int A, int B, int K) {
// write your code in C++11
int cnt=0;
if( A%K==0 or B%K==0)
cnt++;
if(A>=K)
cnt+= (B - A)/K;
else
cnt+=B/K;
return cnt;
}
(floor)(high/d) - (floor)(low/d) - (high%d==0)
Explanation:
There are a/d numbers divisible by d from 0.0 to a. (d!=0)
Therefore (floor)(high/d) - (floor)(low/d) will give numbers divisible in the range (low,high] (Note that low is excluded and high is included in this range)
Now to remove high from the range just subtract (high%d==0)
Works for integers, floats or whatever (Use fmodf function for floats)
Won't strive for an o(1) solution, this leave for more clever person:) Just feel this is a perfect usage scenario for function programming. Simple and straightforward.
> x,y,z=1,1000,6
=> [1, 1000, 6]
> (x..y).select {|n| n%z==0}.size
=> 166
EDIT: after reading other's O(1) solution. I feel shamed. Programming made people lazy to think...
Division (a/b=c) by definition - taking a set of size a and forming groups of size b. The number of groups of this size that can be formed, c, is the quotient of a and b. - is nothing more than the number of integers within range/interval ]0..a] (not including zero, but including a) that are divisible by b.
so by definition:
Y/Z - number of integers within ]0..Y] that are divisible by Z
and
X/Z - number of integers within ]0..X] that are divisible by Z
thus:
result = [Y/Z] - [X/Z] + x (where x = 1 if and only if X is divisible by Y otherwise 0 - assuming the given range [X..Y] includes X)
example :
for (6, 12, 2) we have 12/2 - 6/2 + 1 (as 6%2 == 0) = 6 - 3 + 1 = 4 // {6, 8, 10, 12}
for (5, 12, 2) we have 12/2 - 5/2 + 0 (as 5%2 != 0) = 6 - 2 + 0 = 4 // {6, 8, 10, 12}
The time complexity of the solution will be linear.
Code Snippet :
int countDiv(int a, int b, int m)
{
int mod = (min(a, b)%m==0);
int cnt = abs(floor(b/m) - floor(a/m)) + mod;
return cnt;
}
here n will give you count of number and will print sum of all numbers that are divisible by k
int a = sc.nextInt();
int b = sc.nextInt();
int k = sc.nextInt();
int first = 0;
if (a > k) {
first = a + a/k;
} else {
first = k;
}
int last = b - b%k;
if (first > last) {
System.out.println(0);
} else {
int n = (last - first)/k+1;
System.out.println(n * (first + last)/2);
}
Here is the solution to the problem written in Swift Programming Language.
Step 1: Find the first number in the range divisible by z.
Step 2: Find the last number in the range divisible by z.
Step 3: Use a mathematical formula to find the number of divisible numbers by z in the range.
func solution(_ x : Int, _ y : Int, _ z : Int) -> Int {
var numberOfDivisible = 0
var firstNumber: Int
var lastNumber: Int
if y == x {
return x % z == 0 ? 1 : 0
}
//Find first number divisible by z
let moduloX = x % z
if moduloX == 0 {
firstNumber = x
} else {
firstNumber = x + (z - moduloX)
}
//Fist last number divisible by z
let moduloY = y % z
if moduloY == 0 {
lastNumber = y
} else {
lastNumber = y - moduloY
}
//Math formula
numberOfDivisible = Int(floor(Double((lastNumber - firstNumber) / z))) + 1
return numberOfDivisible
}
public static int Solution(int A, int B, int K)
{
int count = 0;
//If A is divisible by K
if(A % K == 0)
{
count = (B / K) - (A / K) + 1;
}
//If A is not divisible by K
else if(A % K != 0)
{
count = (B / K) - (A / K);
}
return count;
}
This can be done in O(1).
Here you are a solution in C++.
auto first{ x % z == 0 ? x : x + z - x % z };
auto last{ y % z == 0 ? y : y - y % z };
auto ans{ (last - first) / z + 1 };
Where first is the first number that ∈ [x; y] and is divisible by z, last is the last number that ∈ [x; y] and is divisible by z and ans is the answer that you are looking for.

Can I avoid "rightward drift" in Haskell?

When I use an imperative language I often write code like
foo (x) {
if (x < 0) return True;
y = getForX(x);
if (y < 0) return True;
return x < y;
}
That is, I check conditions off one by one, breaking out of the block as soon
as possible.
I like this because it keeps the code "flat" and obeys the principle of "end
weight". I consider it to be more readable.
But in Haskell I would have written that as
foo x = do
if x < 0
then return x
else do
y <- getForX x
if y < 0
then return True
else return $ x < y
Which I don't like as much. I could use a monad that allows breaking out, but
since I'm already using a monad I'd have to lift everything, which adds words
I'd like to avoid if I can.
I suppose there's not really a perfect solution to this but does anyone have
any advice?
For your specific question: How about dangling do notation and the usage of logic?
foo x = do
if x < 0 then return x else do
y <- getForX x
return $ y < 0 || x < y
Edit
Combined with what hammar said, you can even get more beautiful code:
foo x | x < 0 = return x
| otherwise = do y <- getForX x
return $ y < 0 || x < y
Using patterns and guards can help a lot:
foo x | x < 0 = return x
foo x = do
y <- getForX x
if y < 0
then return True
else return $ x < y
You can also introduce small helper functions in a where clause. That tends to help readability as well.
foo x | x < 0 = return x
foo x = do
y <- getForX x
return $ bar y
where
bar y | y < 0 = True
| otherwise = x < y
(Or if the code really is as simple as this example, use logic as FUZxxl suggested).
The best way to do this is using guards, but then you need to have the y value first in order to use it in the guard. That needs to be gotten from getForX wich might be tucked away into some monad that you cannot get the value out from except through getForX (for example the IO monad) and then you have to lift the pure function that uses guards into that monad. One way of doing this is by using liftM.
foo x = liftM go (getForX x)
where
go y | x < 0 = True
| y < 0 = True
| otherwise = x < y
Isn't it just
foo x = x < y || y < 0 where y = getForX x
EDIT: As Owen pointed out - getForX is monadic so my code above would not work. The below version probably should:
foo x = do
y <- getForX x
return (x < y || y < 0)

Resources