How do I make this substitution in Mathematica? - wolfram-mathematica

I'm just getting started with Mathematica, and I've got what must be a pretty basic question about making substitutions but I can't get it to work.
I'd like to find the Euler-Lagrange equations for a functional of the function phi[x,y] and then make a substitution for the function phi[x,y]
If I enter the following:
VariationalD[tau*phi[x, y]^2 - 2*phi[x, y]^4 + phi[x, y]^6 + Dot[D[phi[x, y], {{x, y}}], D[phi[x, y, {{x, y}}]]], phi[x, y], {x, y}]
I get
Plus[Times[2,tau,phi[x,y]],Times[-8,Power[phi[x,y],3]],Times[6,Power[phi[x,y],5]],Times[-2,Plus[Derivative[0,2][phi][x,y],Derivative[2,0][phi][x,y]]]]
Now if I try % /. phi[x,y] -> phi0[x,y] + psi[x,y] it makes the substitution for all the polynomial terms, but not for the Derivative terms.
How do I force the substitution into those functions?

I agree with all of what rcollyer says, but I think his final solution might be a little opaque.
The simplest rule that I could come up with (which is the basically the same as rcollyer's) is
{phi[x__] :> phi0[x] + psi[x], f_[phi][x__] :> f[phi0][x] + f[psi][x]}
or something with less possible side effects is
{phi[x__] :> phi0[x] + psi[x], Derivative[n__][phi][x__] :> Derivative[n][phi0][x] + Derivative[n][psi][x]}
It would be a lot easier if Derivative had a Default property (compare Default[Times] with Default[Derivative]). It should be something like Default[Derivative] := Sequence[] but unfortunately that doesn't play nice with the pattern matching.
Getting back to your question, you probably want to define something like
VariationalD[expr_, sym_, var_] := Module[{
vRule = {sym[x__] :> sym[x] + var[x],
Derivative[n__][sym][x__] :> Derivative[n][sym][x] + Derivative[n][var][x]}},
(expr /. vRule) - expr]
Where the variation var of the symbol sym is assumed to be small. Of course what you then need to do is series expand around var=0 and only keep the linear part. Then use integration by parts on any term which has derivatives of var. All of which should be included in the above module.

First, you misplaced a ] in your second derivative term, it should read D[phi[x, y], {{x, y}}]] not D[phi[x, y, {{x, y}}]]].
That said, replacement in Mathematica can be tricky, as has been pointed out in other questions. That isn't to say it is impossible, just requires some work. In this case, the problem comes in in that phi[x,y] is different from Derivative[2, 0][phi][x, y]. So, your pattern won't match the derivative term. The simplest thing to do is to add the rule
Derivative[a__][phi][x__]:> Derivative[a][phi0][x] + Derivative[a][psi][x]
to your list of replacement rules. Three things to note: 1) I use ReplaceDelayed so that both types of derivatives will match without writing multiple rules, 2) since I can use patterns, I named them so that I can refer to them on the RHS of the rule, and 3) I used a double underscore when defining a and x which will match one or more items in a sequence.
Of course, that isn't the most satisfying way to approach the problem, as it will require you to write two rules every time you wish to this sort of replacement. It turns out a more general approach is surprisingly difficult to accomplish, and I'll have to get back to you on it.
Edit: This requires a double replacement, as follows
<result> /. phi -> phi0 + psi /. a_[b__][c__] :> Through[Distribute[a[b]][c]]
Distribute ensures that the derivative works correctly with Plus, and Through does the same with the function args c. The key is that the Head of Derivative[2, 0][phi][x, y] is Derivative[2, 0][phi], hence the several levels of square brackets in the rule.

Related

How can I get mathematica to use the chain rule?

I want to teach mathematica that Subscript[w, i] differentiated by Subscript[w, j] is KroneckerDelta[i, j].
I tried
Unprotect[D]; D[Subscript[x_, i_], Subscript[x_, j_]] :=
KroneckerDelta[i, j]; Protect[D]
And this works with D[Subscript[w, i], Subscript[w, j]], but not with more complex expressions, e.g. D[Times[k, Subscript[w, i]], Subscript[w, j]]
I understand from the answer to this question: How to define a function that commutes with D in Mathematica that mathematica isn't matching my rule, but I don't understand why. Why does Mathematica not use the product rule, and then invoke my rule?
I think I see now what is happening.
Mathematica does not recursively define the D operator using the chain rule, presumably because this is too slow. It does some pattern matching on subexpressions to see if they contain the variable of differentiation, and subexpressions which don't are treated as constants; so my pattern for D is never applied.
The way around this turns out to be to tell Mathematica explicitly that
Subscript[w, i]
is not a constant.
My pattern now looks like this
Unprotect[D];
D[Subscript[x_, i_], Subscript[x_, j_],
NonConstants -> {___, Subscript[x_, i_], ___} ] := KroneckerDelta[i, j];
Protect[D]
And I have to apply it this way:
D[k * Subscript[w, i], Subscript[w, j], NonConstants -> Subscript[w, i]]
Mathematica does not have "mathematical maturity" which means it is not a competent graduate student who can look at your request, figure out what you actually meant and give you what you should get. In particular, pattern matching is "structural", which means it just literally matches exactly the structure of what the rules say. That means it doesn't realize that you probably meant k to be a constant and thus understand that the derivative of a constant times a function should be the constant times the derivative.
You can add more and more rules to try to simulate mathematical maturity, but many typical users don't have all the skills needed to exactly correctly write all the rules needed. You can include:
Unprotect[D];
D[Times[k_, Subscript[w_, i_]], Subscript[x_, j_]] := k*KroneckerDelta[i, j];
Protect[D];
D[Times[k, Subscript[w, i]], Subscript[x_, j_]]
but that is assuming that k is free of Subscript[w, i]] and you may want to enhance that rule with a condition ensuring that. This still doesn't deal with k+KroneckerDelta[i, j] or k*KroneckerDelta[i, j]+m, etc.
First of all, it's usually a bad idea to Unprotect symbols in Mathematica in order to add DownValues. In addition to the reasons Bill gave, this forces D to check that the arguments you give it doesn't match your patterns, before it can do its normal work. That can slow the system down.
You can often get away with UpValues (via UpSetDelayed) instead of DownValues. That doesn't require that you Unprotect, and it causes your rules to fire only when they apply.
In this case, though, I think you just want a custom differentiator on top of D:
myD[f_, Subscript[x_, i_]] :=
With[{vars = DeleteDuplicates[Cases[f, Subscript[x, _], {0, Infinity}]]},
Sum[D[f, v]*KroneckerDelta[i, v[[2]]], {v, vars}]
]
(if I'm not missing something crucial.)

picking specific symbol definitions in mathematica (not transformation rules)

I have a following problem.
f[1]=1;
f[2]=2;
f[_]:=0;
dvs = DownValues[f];
this gives
dvs =
{
HoldPattern[f[1]] :> 1,
HoldPattern[f[2]] :> 2,
HoldPattern[f[_]] :> 0
}
My problem is that I would like to extract only definitions for f[1] and f[2] etc but not the general definition f[_], and I do not know how to do this.
I tried,
Cases[dvs, HoldPattern[ f[_Integer] :> _ ]] (*)
but it gives me nothing, i.e. the empty list.
Interestingly, changing HoldPattern into temporary^footnote
dvs1 = {temporary[1] :> 1, temporary[2] :> 2, temporary[_] :> 0}
and issuing
Cases[dvs1, HoldPattern[temporary[_Integer] :> _]]
gives
{temporary[1] :> 1, temporary[2] :> 2}
and it works. This means that (*) is almost a solution.
I do not not understand why does it work with temporary and not with HoldPattern? How can I make it work directly with HoldPattern?
Of course, the question is what gets evaluated and what not etc. The ethernal problem when coding in Mathematica. Something for real gurus...
With best regards
Zoran
footnote = I typed it by hand as replacement "/. HoldPattern -> temporary" actually executes the f[_]:=0 rule and gives someting strange, this excecution I certainly would like to avoid.
The reason is that you have to escape the HoldPattern, perhaps with Verbatim:
In[11]:= Cases[dvs,
Verbatim[RuleDelayed][
Verbatim[HoldPattern][HoldPattern[f[_Integer]]], _]]
Out[11]= {HoldPattern[f[1]] :> 1, HoldPattern[f[2]] :> 2}
There are just a few heads for which this is necessary, and HoldPattern is one of them, precisely because it is normally "invisible" to the pattern-matcher. For your temporary, or other heads, this wouldn't be necessary. Note by the way that the pattern f[_Integer] is wrapped in HoldPattern - this time HoldPattern is used for its direct purpose - to protect the pattern from evaluation. Note that RuleDelayed is also wrapped in Verbatim - this is in fact another common case for Verbatim - this is needed because Cases has a syntax involving a rule, and we do not want Cases to use this interpretation here. So, this is IMO an overall very good example to illustrate both HoldPattern and Verbatim.
Note also that it is possible to achieve the goal entirely with HoldPattern, like so:
In[14]:= Cases[dvs,HoldPattern[HoldPattern[HoldPattern][f[_Integer]]:>_]]
Out[14]= {HoldPattern[f[1]]:>1,HoldPattern[f[2]]:>2}
However, using HoldPattern for escaping purposes (in place of Verbatim) is IMO conceptually wrong.
EDIT
To calrify a little the situation with Cases, here is a simple example where we use the syntax of Cases involving transformation rules. This extended syntax instructs Cases to not only find and collect matching pieces, but also transform them according to the rules, right after they were found, so the resulting list contains the transformed pieces.
In[29]:= ClearAll[a, b, c, d, e, f];
Cases[{a, b, c, d, e, f}, s_Symbol :> s^2]
Out[30]= {a^2, b^2, c^2, d^2, e^2, f^2}
But what if we need to find elements that are themselves rules? If we just try this:
In[33]:= Cases[{a:>b,c:>d,e:>f},s_Symbol:>_]
Out[33]= {}
It doesn't work since Cases interprets the rule in the second argument as an instruction to use extended syntax, find a symbol and replace it with _. Since it searches on level 1 by default, and symbols are on level 2 here, it finds nothing. Observe:
In[34]:= Cases[{a:>b,c:>d,e:>f},s_Symbol:>_,{2}]
Out[34]= {_,_,_,_,_,_}
In any case, this is not what we wanted. Therefore, we have to force Cases to consider the second argument as a plain pattern (simple, rather than extended, syntax). There are several ways to do that, but all of them "escape" RuleDelayed (or Rule) in some way:
In[37]:= Cases[{a:>b,c:>d,e:>f},(s_Symbol:>_):>s]
Out[37]= {a,c,e}
In[38]:= Cases[{a:>b,c:>d,e:>f},Verbatim[RuleDelayed][s_Symbol,_]:>s]
Out[38]= {a,c,e}
In[39]:= Cases[{a:>b,c:>d,e:>f},(Rule|RuleDelayed)[s_Symbol,_]:>s]
Out[39]= {a,c,e}
In all cases, we either avoid the extended syntax for Cases (last two examples), or manage to use it to our advantage (first case).
Leonid, of course, completely answered the question about why your temporary solution works but HoldPattern does not. However, as an answer to your original problem of extracting the f[1] and f[2] type terms, his code is a bit ugly. To solve just the problem of extracting these terms, I would just concentrate on the structure of the left-hand-side of the definition and use the fact that FreeQ searches at all levels. So, defining
f[1] = 1; f[2] = 2; f[_] := 0;
dvs = DownValues[f];
All of the following
Select[dvs, FreeQ[#, Verbatim[_]] &]
Select[dvs, FreeQ[#, Verbatim[f[_]]] &]
Select[dvs, ! FreeQ[#, HoldPattern[f[_Integer]]] &]
yield the result
{HoldPattern[f[1]] :> 1, HoldPattern[f[2]] :> 2}
Provided there are no f[...] (or, for the first version, Blank[]) terms on the right-hand-side of the downvalues of f, then one of the above will probably be suitable.
Based on Simon's excellent solution here, I suggest:
Cases[DownValues[f], _?(FreeQ[#[[1]], Pattern | Blank] &)]

How do you interpret negative levels in Mathematica?

I am trying to gain a deeper understanding of how Mathematica expressions are represented internally, and am puzzled by the logic of the Level command in Mathematica. If we have the following input:
In[1]:= a = z*Sin[x + y] + z1*Cos[x1 + y1]
Out[1]= z1 Cos[x1 + y1] + z Sin[x + y]
In[2]:= FullForm[a]
Out[2]= Plus[Times[z1,Cos[Plus[x1,y1]]],Times[z,Sin[Plus[x,y]]]]
In[3]:= TreeForm[a]
We get the following tree:
If we ask Mathematica to return Level 4 only, we get:
In[4]:= Level[a,{4}]
Out[4]= {x1,y1,x,y}
I understand that we are 4 levels down from the "stem" (the Plus operator at Level 0). In fact, I think I understand that positive indexes are always in relation to the stem position of the tree. (I hope I'm correct about that??)
In contrast, when you ask for a negative level, there is no common reference point (like the stem above), because different branches of the tree are of varying lengths. So, if you ask Mathematica to provide only Level -1, we get:
In[6]:= Level[a,{-1}]
Out[6]= {z1,x1,y1,z,x,y}
I was surprised by this output, when I had guessed that I should get back {x1, y1, x, y} (without z1 & z). But ok, if I try to understand this, I take -1 to mean "the end of each branch". If this is so, then I would expect Level[a,{-2}] to return:
{z1*Cos[x1+y1],z*Sin[x+y],x1+y1,x+y}
But, this is not what I get back, Mathematica yields:
In[8]:= Level[a,{-2}]
Out[8]= {x1+y1,x+y}
So, now I am confused, and don't see a consistent way of understanding the output of negative levels.
Is there a consistent, easier way of understanding this topic? Is there a certain "correct" way I should be reading the structure of the tree?
Sorry for the "long-winded question", but I hope you understand what I am asking.
If you look at the docs, they say:
A negative level -n consists of all parts of expr with depth n.
So negative levels are not counted from a reference point, but are defined based on the depth of subexpressions. z1*Cos[x1+y1] is of depth 4, so it's not returned when you ask for Level[..., {-2}].

Problem performing a substitution in a multiple derivative

I have a basic problem in Mathematica which has puzzled me for a while. I want to take the m'th derivative of x*Exp[t*x], then evaluate this at x=0. But the following does not work correct. Please share your thoughts.
D[x*Exp[t*x], {x, m}] /. x -> 0
Also what does the error mean
General::ivar: 0 is not a valid variable.
Edit: my previous example (D[Exp[t*x], {x, m}] /. x -> 0) was trivial. So I made it harder. :)
My question is: how to force it to do the derivative evaluation first, then do substitution.
As pointed out by others, (in general) Mathematica does not know how to take the derivative an arbitrary number of times, even if you specify that number is a positive integer.
This means that the D[expr,{x,m}] command remains unevaluated and then when you set x->0, it's now trying to take the derivative with respect to a constant, which yields the error message.
In general, what you want is the m'th derivative of the function evaluated at zero.
This can be written as
Derivative[m][Function[x,x Exp[t x]]][0]
or
Derivative[m][# Exp[t #]&][0]
You then get the table of coefficients
In[2]:= Table[%, {m, 1, 10}]
Out[2]= {1, 2 t, 3 t^2, 4 t^3, 5 t^4, 6 t^5, 7 t^6, 8 t^7, 9 t^8, 10 t^9}
But a little more thought shows that you really just want the m'th term in the series, so SeriesCoefficient does what you want:
In[3]:= SeriesCoefficient[x*Exp[t*x], {x, 0, m}]
Out[3]= Piecewise[{{t^(-1 + m)/(-1 + m)!, m >= 1}}, 0]
The final output is the general form of the m'th derivative. The PieceWise is not really necessary, since the expression actually holds for all non-negative integers.
Thanks to your update, it's clear what's happening here. Mathematica doesn't actually calculate the derivative; you then replace x with 0, and it ends up looking at this:
D[Exp[t*0],{0,m}]
which obviously is going to run into problems, since 0 isn't a variable.
I'll assume that you want the mth partial derivative of that function w.r.t. x. The t variable suggests that it might be a second independent variable.
It's easy enough to do without Mathematica: D[Exp[t*x], {x, m}] = t^m Exp[t*x]
And if you evaluate the limit as x approaches zero, you get t^m, since lim(Exp[t*x]) = 1. Right?
Update: Let's try it for x*exp(t*x)
the mth partial derivative w.r.t. x is easily had from Wolfram Alpha:
t^(m-1)*exp(t*x)(t*x + m)
So if x = 0 you get m*t^(m-1).
Q.E.D.
Let's see what is happening with a little more detail:
When you write:
D[Sin[x], {x, 1}]
you get an expression in with x in it
Cos[x]
That is because the x in the {x,1} part matches the x in the Sin[x] part, and so Mma understands that you want to make the derivative for that symbol.
But this x, does NOT act as a Block variable for that statement, isolating its meaning from any other x you have in your program, so it enables the chain rule. For example:
In[85]:= z=x^2;
D[Sin[z],{x,1}]
Out[86]= 2 x Cos[x^2]
See? That's perfect! But there is a price.
The price is that the symbols inside the derivative get evaluated as the derivative is taken, and that is spoiling your code.
Of course there are a lot of tricks to get around this. Some have already been mentioned. From my point of view, one clear way to undertand what is happening is:
f[x_] := x*Exp[t*x];
g[y_, m_] := D[f[x], {x, m}] /. x -> y;
{g[p, 2], g[0, 1]}
Out:
{2 E^(p t) t + E^(p t) p t^2, 1}
HTH!

Targeted Simplify in Mathematica

I generate very long and complex analytic expressions of the general form:
(...something not so complex...)(...ditto...)(...ditto...)...lots...
When I try to use Simplify, Mathematica grinds to a halt, I am assuming due to the fact that it tries to expand the brackets and or simplify across different brackets. The brackets, while containing long expressions, are easily simplified by Mathematica on their own. Is there some way I can limit the scope of Simplify to a single bracket at a time?
Edit: Some additional info and progress.
So using the advice from you guys I have now started using something in the vein of
In[1]:= trouble = Log[(x + I y) (x - I y) + Sqrt[(a + I b) (a - I b)]];
In[2]:= Replace[trouble, form_ /; (Head[form] == Times) :> Simplify[form],{3}]
Out[2]= Log[Sqrt[a^2 + b^2] + (x - I y) (x + I y)]
Changing Times to an appropriate head like Plus or Power makes it possible to target the simplification quite accurately. The problem / question that remains, though, is the following: Simplify will still descend deeper than the level specified to Replace, e.g.
In[3]:= Replace[trouble, form_ /; (Head[form] == Plus) :> Simplify[form], {1}]
Out[3]= Log[Sqrt[a^2 + b^2] + x^2 + y^2]
simplifies the square root as well.
My plan was to iteratively use Replace from the bottom up one level at a time, but this clearly will result in vast amount of repeated work by Simplify and ultimately result in the exact same bogging down of Mathematica I experienced in the outset. Is there a way to restrict Simplify to a certain level(s)?
I realize that this sort of restriction may not produce optimal results, but the idea here is getting something that is "good enough".
There are a number of ways you can do this, but it can be a little tricky and depends on the structure of your actual expression. However, usually a product of a number of terms in brackets will have the head Times, and you can use FullForm to verify this:
In[1]:= FullForm[(a+b)(c+d)]
Out[1]= Times[Plus[a, b], Plus[c, d]]
You can use the higher-order function Map with expressions with head Times the same way you use it with expressions with head List, and that may allow you to Simplify the expression one term at a time, like so:
Map[Simplify, yourGinormousExpression]
You can use Expand on the result if you need to subsequently expand out the brackets.
EDIT to add: If you want to specify the forms that you do want to simplify, you can use Replace or ReplaceAll instead of one of the relatives of Map. Replace is particularly useful because it takes a level specification, allowing you to only affect the factors in the topmost product. As a simple example, consider the following:
In[1]:= expr = Sqrt[(a + 1)/a] Sqrt[(b + 1)/b];
In[2]:= Simplify[expr]
Out[2]= Sqrt[1 + 1/a] Sqrt[1 + 1/b]
If you don't want to simplify factors that depend on a. you can do this instead:
In[3]:= Replace[expr, form_ /; FreeQ[form, a] :> Simplify[form], {1}]
Out[3]= Sqrt[(1 + a)/a] Sqrt[1 + 1/b]
Only the second term, which depends on b, has been changed. One thing to bear in mind though is that some transformations are done automatically by Times or Plus; for instance a + a will be turned into 2 a even without use of Simplify.
I beg to differ with my colleagues, in that using Map to apply Simplify to each subexpression may not save any time as it will still be applied to each one. Instead try, MapAt, as follows:
In[1]:= MapAt[f, SomeHead[a,b,c,d], {4}]
Out[1]:= SomeHead[a, b, c, f[d]]
The tricky part is determining the position specification. Although, if the expression you want to simplify is at the first level, it shouldn't be any more difficult then what I've written above.
Now if you would still like to simplify everything, but you wish to preserve some structure, try using the option ExcludedForms. In the past, I've used to prevent this simplification:
In[2]:= Simplify[d Exp[I (a + b)] Cos[c/2]]
Out[2]:= Exp[I(a + b + c)](d + d Exp[c])
which Mathematica seems to like, so I do
In[3]:= Simplify[d Exp[I (a + b)] Cos[c/2], ExcludedForms -> {_Cos,_Sin}]
Out[3]:= d Exp[I (a + b)] Cos[c/2]
Also, don't forget that the second parameter for Simplify is for assumptions, and can greatly ease your struggles in getting your expressions into a useful form.
You should try Map.
In general, Map[foo, G[a, b, c, ...]] gives G[foo[a], foo[b], foo[c], ...] for any head G and any expression foo, so for
Map[Simplify, a b c d e]
it gives
Simplify[a] Simplify[b] Simplify[c] Simplify[d] Simplify[e]
Note you can denote Map[foo, expr] als foo /# expr if you find that more convenient.

Resources