ML Expression, help line by line - expression

val y=2;
fun f(x) = x*y;
fun g(h) = let val y=5 in 3+h(y) end;
let val y=3 in g(f) end;
I'm looking for a line by line explanation. I'm new to ML and trying to decipher some online code. Also, a description of the "let/in" commands would be very helpful.

I'm more familiar with ocaml but it all looks the same to me.
val y=2;
fun f(x) = x*y;
The first two lines bind variables y and f. y to an integer 2 and f to a function which takes an integer x and multiplies it by what's bound to y, 2. So you can think of the function f takes some integer and multiplies it by 2. (f(x) = x*2)
fun g(h) = let val y=5
in
3+h(y)
end;
The next line defines a function g which takes some h (which turns out to be a function which takes an integer and returns an integer) and does the following:
Binds the integer 5 to a temporary variable y.
You can think of the let/in/end syntax as a way to declare a temporary variable which could be used in the expression following in. end just ends the expression. (this is in contrast to ocaml where end is omitted)
Returns the sum of 3 plus the function h applying the argument y, or 5.
At a high level, the function g takes some function, applies 5 to that function and adds 3 to the result. (g(h) = 3+h(5))
At this point, three variables are bound in the environment: y = 2, f = function and g = function.
let val y=3
in
g(f)
end;
Now 3 is bound to a temporary variable y and calls function g with the function f as the argument. You need to remember that when a function is defined, it keeps it's environment along with it so the temporary binding of y here has no affect on the functions g and f. Their behavior does not change.
g (g(h) = 3+h(5)), is called with argument f (f(x) = x*2). Performing the substitutions for parameter h, g becomes 3+((5)*2) which evaluates to 13.
I hope this is clear to you.

Related

Sml program -> confusion on "AS syntax error"

so I have to write a small program in SML ->>
a file named ‘p0.sml’ that contains a function named epoly, which accepts as parameters a list of real values a0 through an, and a single real value x. The list contains the coefficients of a polynomial of the form a0 + a1x + a2x 2 + … + anx n, where the real x used is the x parameter passed to your function. Your implementation must accept the list of coefficients as the first parameter and the value of x as the second. Your function must return the value of the polynomial specified by the parameters passed to it.
this is what I have so far but it won't compile because of a syntax error with as. "Error: syntax error found at AS". If you have any pointers that would be greatly appreciated.
fun epoly([], x:real) = 0.0
= epoly(L:real list as h::T, x:real) = h + (x * epoly(T, x));
It looks like you have a typo. Your second = should be a |.
fun epoly([], x:real) = 0.0
| epoly(L:real list as h::T, x:real) =
h + (x * epoly(T, x));
There is, further, no need to specify types. Your SML compiler can infer the types from data presented. Along with removing unnecessary bindings, this can be reduced to:
fun epoly([], _) = 0.0
| epoly(h::T, x) =
h + (x * epoly(T, x));
From fun epoly([], _) = 0.0 we know epoly will take a tuple of a list and some type and return real.
From:
| epoly(h::T, x) =
h + (x * epoly(T, x));
We know that x is being multiplied by a real, so x must be real. And since h is being added to a real, it must be a real, so the entire list is a real list.
Thus the type of epoly can be inferred correctly to be real list * real -> real.

Understanding different types in Fortran

I was reading a Fortran code, came across the following code, couldn't understand what it does.
m%AllOuts( BAzimuth(k) ) = m%BEMT_u(indx)%psi(k)*R2D
I know that % here works like a pipe indicator to access values in a way similar to a dictionary in Python. I have a dictionary m let's say and the first key is AllOuts, but what does anything inside parentheses mean? Is it like another dictionary?
The percent sign is not denoting a dictionary. There are no native dictionaries in Fortran.
The percent sign denotes the component of a type. For example:
! Declare a type
type :: rectangle
integer :: x, y
character(len=8) :: color
end type rectangle
! Declare a variable of this type
type(rectangle) :: my_rect
! Use the type
my_rect % x = 4
my_rect % y = 3
my_rect % color = 'red'
print *, "Area: ", my_rect % x * my_rect % y
The parentheses could either indicate the index of an array, or the arguments of a call.
So, for example:
integer, dimension(10) :: a
a(8) = 16 ! write the number 16 to the 8th element of array a
Or, as a prodedure:
print *, my_pow(2, 3)
...
contains
function my_pow(a, b)
integer, intent(in) :: a, b
my_pow = a ** b
end function my_pow
In order to figure out what m is, you'd need to look at the declaration of m, which would be something like
type(sometype) :: m
or
class(sometype) :: m
Then you'd need to find out the type declaration, which would be something like
type :: sometype
! component declarations in here
end type
Now one of the components, BEMT_u, is almost certainly an array of a different type, which you'd also need to look up.

How can I emulate the results of this if then then statement while using correct syntax?

Working on an exercise for university class and cant seem to represent what I am trying to do with correct syntax in ocaml. I want the function sum_positive to sum all the positive integers in the list into a single int value and return that value.
let int x = 0 in
let rec sum_positive (ls: int list) = function
|h::[] -> x (*sum of positive ints in list*)
|[] -> 0
|h::t -> if (h >= 0) then x + h then sum_positive t else sum_positive t (*trying to ensure that sum_positive t will still run after the addition of x + h*)
On compiling I am met with this error,
File "functions.ml", line 26, characters 34-38:
Error: Syntax error
This points to the then then statement I have in there, I know it cannot work but I cant think of any other representations that would.
You have if ... then ... then which is not syntactically valid.
It seems what you're asking is how to write what you have in mind in a way that is syntactically valid. But it's not clear what you have in mind.
You can evaluate two expressions in OCaml sequentially (one after the other) by separating them with ;. Possibly that is what you have in mind.
However it seems to me your code has bigger problems than just syntax. It appears you're trying to use x as an accumulated sum for the calculation. You should be aware that OCaml variables like x are immutable. Once you say let x = 0, the value can't be changed later. x will always be 0. The expression x + h doesn't change the value of x. It just evaluates to a new value.
The usual way to make this work is to pass x as a function parameter.
I was getting an issue that had involved the parameter of , I believe it was because I was trying to add an int value to function of type int list. This is what I ended up with.
let rec sum_positive = function
|[] -> 0
|h::t -> if h > 0 then h + (sum_positive t) else sum_positive t
a lot simpler than I thought it out to be.

Functional programming with OCAML

I'm new to functional programming and I'm trying to implement a basic algorithm using OCAML for course that I'm following currently.
I'm trying to implement the following algorithm :
Entries :
- E : a non-empty set of integers
- s : an integer
- d : a positive float different of 0
Output :
- T : a set of integers included into E
m <- min(E)
T <- {m}
FOR EACH e ∈ sort_ascending(E \ {m}) DO
IF e > (1+d)m AND e <= s THEN
T <- T U {e}
m <- e
RETURN T
let f = fun (l: int list) (s: int) (d: float) ->
List.fold_left (fun acc x -> if ... then (list_union acc [x]) else acc)
[(list_min l)] (list_sort_ascending l) ;;
So far, this is what I have, but I don't know how to handle the modification of the "m" variable mentioned in the algorithm... So I need help to understand what is the best way to implement the algorithm, maybe I'm not gone in the right direction.
Thanks by advance to anyone who will take time to help me !
The basic trick of functional programming is that although you can't modify the values of any variables, you can call a function with different arguments. In the initial stages of switching away from imperative ways of thinking, you can imagine making every variable you want to modify into the parameters of your function. To modify the variables, you call the function recursively with the desired new values.
This technique will work for "modifying" the variable m. Think of m as a function parameter instead.
You are already using this technique with acc. Each call inside the fold gets the old value of acc and returns the new value, which is then passed to the function again. You might imagine having both acc and m as parameters of this inner function.
Assuming list_min is defined you should think the problem methodically. Let's say you represent a set with a list. Your function takes this set and some arguments and returns a subset of the original set, given the elements meet certain conditions.
Now, when I read this for the first time, List.filter automatically came to my mind.
List.filter : ('a -> bool) -> 'a list -> 'a list
But you wanted to modify the m so this wouldn't be useful. It's important to know when you can use library functions and when you really need to create your own functions from scratch. You could clearly use filter while handling m as a reference but it wouldn't be the functional way.
First let's focus on your predicate:
fun s d m e -> (float e) > (1. +. d)*.(float m) && (e <= s)
Note that +. and *. are the plus and product functions for floats, and float is a function that casts an int to float.
Let's say the function predicate is that predicate I just mentioned.
Now, this is also a matter of opinion. In my experience I wouldn't use fold_left just because it's just complicated and not necessary.
So let's begin with my idea of the code:
let m = list_min l;;
So this is the initial m
Then I will define an auxiliary function that reads the m as an argument, with l as your original set, and s, d and m the variables you used in your original imperative code.
let rec f' l s d m =
match l with
| [] -> []
| x :: xs -> if (predicate s d m x) then begin
x :: (f' xs s d x)
end
else
f' xs s d m in
f' l s d m
Then for each element of your set, you check if it satisfies the predicate, and if it does, you call the function again but you replace the value of m with x.
Finally you could just call f' from a function f:
let f (l: int list) (s: int) (d: float) =
let m = list_min l in
f' l s d m
Be careful when creating a function like your list_min, what would happen if the list was empty? Normally you would use the Option type to handle those cases but you assumed you're dealing with a non-empty set so that's great.
When doing functional programming it's important to think functional. Pattern matching is super recommended, while pointers/references should be minimal. I hope this is useful. Contact me if you any other doubt or recommendation.

What's the formal term for a function that can be written in terms of `fold`?

I use the LINQ Aggregate operator quite often. Essentially, it lets you "accumulate" a function over a sequence by repeatedly applying the function on the last computed value of the function and the next element of the sequence.
For example:
int[] numbers = ...
int result = numbers.Aggregate(0, (result, next) => result + next * next);
will compute the sum of the squares of the elements of an array.
After some googling, I discovered that the general term for this in functional programming is "fold". This got me curious about functions that could be written as folds. In other words, the f in f = fold op.
I think that a function that can be computed with this operator only needs to satisfy (please correct me if I am wrong):
f(x1, x2, ..., xn) = f(f(x1, x2, ..., xn-1), xn)
This property seems common enough to deserve a special name. Is there one?
An Iterated binary operation may be what you are looking for.
You would also need to add some stopping conditions like
f(x) = something
f(x1,x2) = something2
They define a binary operation f and another function F in the link I provided to handle what happens when you get down to f(x1,x2).
To clarify the question: 'sum of squares' is a special function because it has the property that it can be expressed in terms of the fold functional plus a lambda, ie
sumSq = fold ((result, next) => result + next * next) 0
Which functions f have this property, where dom f = { A tuples }, ran f :: B?
Clearly, due to the mechanics of fold, the statement that f is foldable is the assertion that there exists an h :: A * B -> B such that for any n > 0, x1, ..., xn in A, f ((x1,...xn)) = h (xn, f ((x1,...,xn-1))).
The assertion that the h exists says almost the same thing as your condition that
f((x1, x2, ..., xn)) = f((f((x1, x2, ..., xn-1)), xn)) (*)
so you were very nearly correct; the difference is that you are requiring A=B which is a bit more restrictive than being a general fold-expressible function. More problematically though, fold in general also takes a starting value a, which is set to a = f nil. The main reason your formulation (*) is wrong is that it assumes that h is whatever f does on pair lists, but that is only true when h(x, a) = a. That is, in your example of sum of squares, the starting value you gave to Accumulate was 0, which is a does-nothing when you add it, but there are fold-expressible functions where the starting value does something, in which case we have a fold-expressible function which does not satisfy (*).
For example, take this fold-expressible function lengthPlusOne:
lengthPlusOne = fold ((result, next) => result + 1) 1
f (1) = 2, but f(f(), 1) = f(1, 1) = 3.
Finally, let's give an example of a functions on lists not expressible in terms of fold. Suppose we had a black box function and tested it on these inputs:
f (1) = 1
f (1, 1) = 1 (1)
f (2, 1) = 1
f (1, 2, 1) = 2 (2)
Such a function on tuples (=finite lists) obviously exists (we can just define it to have those outputs above and be zero on any other lists). Yet, it is not foldable because (1) implies h(1,1)=1, while (2) implies h(1,1)=2.
I don't know if there is other terminology than just saying 'a function expressible as a fold'. Perhaps a (left/right) context-free list function would be a good way of describing it?
In functional programming, fold is used to aggregate results on collections like list, array, sequence... Your formulation of fold is incorrect, which leads to confusion. A correct formulation could be:
fold f e [x1, x2, x3,..., xn] = f((...f(f(f(e, x1),x2),x3)...), xn)
The requirement for f is actually very loose. Lets say the type of elements is T and type of e is U. So function f indeed takes two arguments, the first one of type U and the second one of type T, and returns a value of type U (because this value will be supplied as the first argument of function f again). In short, we have an "accumulate" function with a signature f: U * T -> U. Due to this reason, I don't think there is a formal term for these kinds of function.
In your example, e = 0, T = int, U = int and your lambda function (result, next) => result + next * next has a signaturef: int * int -> int, which satisfies the condition of "foldable" functions.
In case you want to know, another variant of fold is foldBack, which accumulates results with the reverse order from xn to x1:
foldBack f [x1, x2,..., xn] e = f(x1,f(x2,...,f(n,e)...))
There are interesting cases with commutative functions, which satisfy f(x, y) = f(x, y), when fold and foldBack return the same result. About fold itself, it is a specific instance of catamorphism in category theory. You can read more about catamorphism here.

Resources