I have to find the lowest possible sum from numbers' difference.
Let's say I have 4 numbers. 1515, 1520, 1500 and 1535. The lowest sum of difference is 30, because 1535 - 1520 = 15 && 1515 - 1500 = 15 and 15 + 15 = 30. If I would do like this: 1520 - 1515 = 5 && 1535 - 1500 = 35 it would be 40 in sum.
Hope you got it, if not, ask me.
Any ideas how to program this? I just found this online, tried to translate from my language to English. It sounds interesting. I can't do bruteforce, because it would take ages to compile. I don't need code, just ideas how to program or little fragment of code.
Thanks.
Edit:
I didn't post everything... One more edition:
I have let's say 8 possible numbers. But I have to take only 6 of them to make the smallest sum. For instance, numbers 1731, 1572, 2041, 1561, 1682, 1572, 1609, 1731, the smallest sum will be 48, but here I have to take only 6 numbers from 8.
Taking the edit into account:
Start by sorting the list. Then use a dynamic programming solution, with state i, n representing the minimum sum of n differences when considering only the first i numbers in the sequence. Initial states: dp[*][0] = 0, everything else = infinity. Use two loops: outer loop looping through i from 1 to N, inner loop looping through n from 0 to R (3 in your example case in your edit - this uses 3 pairs of numbers which means 6 individual numbers). Your recurrence relation is dp[i][n] = min(dp[i-1][n], dp[i-2][n-1] + seq[i] - seq[i-1]).
You have to be aware of handling boundary cases which I've ignored, but the general idea should work and will run in O(N log N + NR) and use O(NR) space.
The solution by marcog is a correct, non-recursive, polynomial-time solution to the problem — it's a pretty standard DP problem — but, just for completeness, here's a proof that it works, and actual code for the problem. [#marcog: Feel free to copy any part of this answer into your own if you wish; I'll then delete this.]
Proof
Let the list be x1, …, xN. Assume wlog that the list is sorted. We're trying to find K (disjoint) pairs of elements from the list, such that the sum of their differences is minimised.
Claim: An optimal solution always consists of the differences of consecutive elements.
Proof: Suppose you fix the subset of elements whose differences are taken. Then by the proof given by Jonas Kölker, the optimal solution for just this subset consists of differences of consecutive elements from the list. Now suppose there is a solution corresponding to a subset that does not comprise pairs of consecutive elements, i.e. the solution involves a difference xj-xi where j>i+1. Then, we can replace xj with xi+1 to get a smaller difference, since
xi ≤ xi+1 ≤ xj ⇒ xi+1-xi ≤ xj-xi.
(Needless to say, if xi+1=xj, then taking xi+1 is indistinguishable from taking xj.) This proves the claim.
The rest is just routine dynamic programming stuff: the optimal solution using k pairs from the first n elements either doesn't use the nth element at all (in which case it's just the optimal solution using k pairs from the first n-1), or it uses the nth element in which case it's the difference xn-xn-1 plus the optimal solution using k-1 pairs from the first n-2.
The whole program runs in time O(N log N + NK), as marcog says. (Sorting + DP.)
Code
Here's a complete program. I was lazy with initializing arrays and wrote Python code using dicts; this is a small log(N) factor over using actual arrays.
'''
The minimum possible sum|x_i - x_j| using K pairs (2K numbers) from N numbers
'''
import sys
def ints(): return [int(s) for s in sys.stdin.readline().split()]
N, K = ints()
num = sorted(ints())
best = {} #best[(k,n)] = minimum sum using k pairs out of 0 to n
def b(k,n):
if best.has_key((k,n)): return best[(k,n)]
if k==0: return 0
return float('inf')
for n in range(1,N):
for k in range(1,K+1):
best[(k,n)] = min([b(k,n-1), #Not using num[n]
b(k-1,n-2) + num[n]-num[n-1]]) #Using num[n]
print best[(K,N-1)]
Test it:
Input
4 2
1515 1520 1500 1535
Output
30
Input
8 3
1731 1572 2041 1561 1682 1572 1609 1731
Output
48
I assume the general problem is this: given a list of 2n integers, output a list of n pairs, such that the sum of |x - y| over all pairs (x, y) is as small as possible.
In that case, the idea would be:
sort the numbers
emit (numbers[2k], numbers[2k+1]) for k = 0, ..., n - 1.
This works. Proof:
Suppose you have x_1 < x_2 < x_3 < x_4 (possibly with other values between them) and output (x_1, x_3) and (x_2, x_4). Then
|x_4 - x_2| + |x_3 - x_1| = |x_4 - x_3| + |x_3 - x_2| + |x_3 - x_2| + |x_2 - x_1| >= |x_4 - x_3| + |x_2 - x_1|.
In other words, it's always better to output (x_1, x_2) and (x_3, x_4) because you don't redundantly cover the space between x_2 and x_3 twice. By induction, the smallest number of the 2n must be paired with the second smallest number; by induction on the rest of the list, pairing up smallest neighbours is always optimal, so the algorithm sketch I proposed is correct.
Order the list, then do the difference calculation.
EDIT: hi #hey
You can solve the problem using dynamic programming.
Say you have a list L of N integers, you must form k pairs (with 2*k <= N)
Build a function that finds the smallest difference within a list (if the list is sorted, it will be faster ;) call it smallest(list l)
Build another one that finds the same for two pairs (can be tricky, but doable) and call it smallest2(list l)
Let's define best(int i, list l) the function that gives you the best result for i pairs within the list l
The algorithm goes as follows:
best(1, L) = smallest(L)
best(2, L) = smallest2(L)
for i from 1 to k:
loop
compute min (
stored_best(i-2) - smallest2( stored_remainder(i-2) ),
stored_best(i-1) - smallest( stored_remainder(i-1)
) and store as best(i)
store the remainder as well for the chosen solution
Now, the problem is once you have chosen a pair, the two ints that form the boundaries are reserved and can't be used to form a better solution. But by looking two levels back you can guaranty you have allowed switching candidates.
(The switching work is done by smallest2)
Step 1: Calculate pair differences
I think it is fairly obvious that the right approach is to sort the numbers and then take differences between each
adjacent pair of numbers. These differences are the "candidate" differences contributing to the
minimal difference sum. Using the numbers from your example would lead to:
Number Diff
====== ====
1561
11
1572
0
1572
37
1609
73
1682
49
1731
0
1731
310
2041
Save the differences into an array or table or some other data structure where you can maintain the
differences and the two numbers that contributed to each difference. Call this the DiffTable. It
should look something like:
Index Diff Number1 Number2
===== ==== ======= =======
1 11 1561 1572
2 0 1572 1572
3 37 1572 1609
4 73 1609 1682
5 49 1682 1731
6 0 1731 1731
7 310 1731 2041
Step 2: Choose minimal Differences
If all numbers had to be chosen, we could have stopped at step 1 by choosing the number pair for odd numbered
indices: 1, 3, 5, 7. This is the correct answer. However,
the problem states that a subset of pairs are chosen and this complicates the problem quite a bit.
In your example 3 differences (6 numbers = 3 pairs = 3 differences) need to be chosen such that:
The sum of the differences is minimal
The numbers participating in any chosen difference are removed from the list.
The second point means that if we chose Diff 11 (Index = 1 above), the numbers 1561 and 1572 are
removed from the list, and consequently, the next Diff of 0 at index 2 cannot be used because only 1 instance
of 1572 is left. Whenever a
Diff is chosen the adjacent Diff values are removed. This is why there is only one way to choose 4 pairs of
numbers from a list containing eight numbers.
About the only method I can think of to minimize the sum of the Diff above is to generate and test.
The following pseudo code outlines a process to generate
all 'legal' sets of index values for a DiffTable of arbitrary size
where an arbitrary number of number pairs are chosen. One (or more) of the
generated index sets will contain the indices into the DiffTable yielding a minimum Diff sum.
/* Global Variables */
M = 7 /* Number of candidate pair differences in DiffTable */
N = 3 /* Number of indices in each candidate pair set (3 pairs of numbers) */
AllSets = [] /* Set of candidate index sets (set of sets) */
call GenIdxSet(1, []) /* Call generator with seed values */
/* AllSets now contains candidate index sets to perform min sum tests on */
end
procedure: GenIdxSet(i, IdxSet)
/* Generate all the valid index values for current level */
/* and subsequent levels until a complete index set is generated */
do while i <= M
if CountMembers(IdxSet) = N - 1 then /* Set is complete */
AllSets = AppendToSet(AllSets, AppendToSet(IdxSet, i))
else /* Add another index */
call GenIdxSet(i + 2, AppendToSet(IdxSet, i))
i = i + 1
end
return
Function CountMembers returns the number of members in the given set, function AppendToSet returns a new set
where the arguments are appended into a single ordered set. For example
AppendToSet([a, b, c], d) returns the set: [a, b, c, d].
For the given parameters, M = 7 and N = 3, AllSets becomes:
[[1 3 5]
[1 3 6] <= Diffs = (11 + 37 + 0) = 48
[1 3 7]
[1 4 6]
[1 4 7]
[1 5 7]
[2 4 6]
[2 4 7]
[2 5 7]
[3 5 7]]
Calculate the sums using each set of indices, the one that is minimum identifies the
required number pairs in DiffTable. Above I show that the second set of indices gives
the minimum you are looking for.
This is a simple brute force technique and it does not scale very well. If you had a list of
50 number pairs and wanted to choose the 5 pairs, AllSets would contain 1,221,759 sets of
number pairs to test.
I know you said you did not need code but it is the best way for me to describe a set based solution. The solution runs under SQL Server 2008. Included in the code is the data for the two examples you give. The sql solution could be done with a single self joining table but I find it easier to explain when there are multiple tables.
--table 1 holds the values
declare #Table1 table (T1_Val int)
Insert #Table1
--this data is test 1
--Select (1515) Union ALL
--Select (1520) Union ALL
--Select (1500) Union ALL
--Select (1535)
--this data is test 2
Select (1731) Union ALL
Select (1572) Union ALL
Select (2041) Union ALL
Select (1561) Union ALL
Select (1682) Union ALL
Select (1572) Union ALL
Select (1609) Union ALL
Select (1731)
--Select * from #Table1
--table 2 holds the sorted numbered list
Declare #Table2 table (T2_id int identity(1,1), T1_Val int)
Insert #Table2 Select T1_Val from #Table1 order by T1_Val
--table 3 will hold the sorted pairs
Declare #Table3 table (T3_id int identity(1,1), T21_id int, T21_Val int, T22_id int, T22_val int)
Insert #Table3
Select T2_1.T2_id, T2_1.T1_Val,T2_2.T2_id, T2_2.T1_Val from #Table2 AS T2_1
LEFT Outer join #Table2 AS T2_2 on T2_1.T2_id = T2_2.T2_id +1
--select * from #Table3
--remove odd numbered rows
delete from #Table3 where T3_id % 2 > 0
--select * from #Table3
--show the diff values
--select *, ABS(T21_Val - T22_val) from #Table3
--show the diff values in order
--select *, ABS(T21_Val - T22_val) from #Table3 order by ABS(T21_Val - T22_val)
--display the two lowest
select TOP 2 CAST(T22_val as varchar(24)) + ' and ' + CAST(T21_val as varchar(24)) as 'The minimum difference pairs are'
, ABS(T21_Val - T22_val) as 'Difference'
from #Table3
ORDER by ABS(T21_Val - T22_val)
I think #marcog's approach can be simplified further.
Take the basic approach that #jonas-kolker proved for finding the smallest differences. Take the resulting list and sort it. Take the R smallest entries from this list and use them as your differences. Proving that this is the smallest sum is trivial.
#marcog's approach is effectively O(N^2) because R == N is a legit option. This approach should be (2*(N log N))+N aka O(N log N).
This requires a small data structure to hold a difference and the values it was derived from. But, that is constant per entry. Thus, space is O(N).
I would go with answer of marcog, you can sort using any of the sorting algoriothms. But there is little thing to analyze now.
If you have to choose R numbers out N numbers so that the sum of their differences is minimum then the numbers be chosen in a sequence without missing any numbers in between.
Hence after sorting the array you should run an outer loop from 0 to N-R and an inner loop from 0 to R-1 times to calculate the sum of differnces.
If needed, you should try with some examples.
I've taken an approach which uses a recursive algorithm, but it does take some of what other people have contributed.
First of all we sort the numbers:
[1561,1572,1572,1609,1682,1731,1731,2041]
Then we compute the differences, keeping track of which the indices of the numbers that contributed to each difference:
[(11,(0,1)),(0,(1,2)),(37,(2,3)),(73,(3,4)),(49,(4,5)),(0,(5,6)),(310,(6,7))]
So we got 11 by getting the difference between number at index 0 and number at index 1, 37 from the numbers at indices 2 & 3.
I then sorted this list, so it tells me which pairs give me the smallest difference:
[(0,(1,2)),(0,(5,6)),(11,(0,1)),(37,(2,3)),(49,(4,5)),(73,(3,4)),(310,(6,7))]
What we can see here is that, given that we want to select n numbers, a naive solution might be to select the first n / 2 items of this list. The trouble is, in this list the third item shares an index with the first, so we'd only actually get 5 numbers, not 6. In this case you need to select the fourth pair as well to get a set of 6 numbers.
From here, I came up with this algorithm. Throughout, there is a set of accepted indices which starts empty, and there's a number of numbers left to select n:
If n is 0, we're done.
if n is 1, and the first item will provide just 1 index which isn't in our set, we taken the first item, and we're done.
if n is 2 or more, and the first item will provide 2 indices which aren't in our set, we taken the first item, and we recurse (e.g. goto 1). This time looking for n - 2 numbers that make the smallest difference in the remainder of the list.
This is the basic routine, but life isn't that simple. There are cases we haven't covered yet, but make sure you get the idea before you move on.
Actually step 3 is wrong (found that just before I posted this :-/), as it may be unnecessary to include an early difference to cover indices which are covered by later, essential differences. The first example ([1515, 1520, 1500, 1535]) falls foul of this. Because of this I've thrown it away in the section below, and expanded step 4 to deal with it.
So, now we get to look at the special cases:
** as above **
** as above **
If n is 1, but the first item will provide two indices, we can't select it. We have to throw that item away and recurse. This time we're still looking for n indices, and there have been no changes to our accepted set.
If n is 2 or more, we have a choice. Either we can a) choose this item, and recurse looking for n - (1 or 2) indices, or b) skip this item, and recurse looking for n indices.
4 is where it gets tricky, and where this routine turns into a search rather than just a sorting exercise. How can we decide which branch (a or b) to take? Well, we're recursive, so let's call both, and see which one is better. How will we judge them?
We'll want to take whichever branch produces the lowest sum.
...but only if it will use up the right number of indices.
So step 4 becomes something like this (pseudocode):
x = numberOfIndicesProvidedBy(currentDifference)
branchA = findSmallestDifference (n-x, remainingDifferences) // recurse looking for **n-(1 or 2)**
branchB = findSmallestDifference (n , remainingDifferences) // recurse looking for **n**
sumA = currentDifference + sumOf(branchA)
sumB = sumOf(branchB)
validA = indicesAddedBy(branchA) == n
validB = indicesAddedBy(branchB) == n
if not validA && not validB then return an empty branch
if validA && not validB then return branchA
if validB && not validA then return branchB
// Here, both must be valid.
if sumA <= sumB then return branchA else return branchB
I coded this up in Haskell (because I'm trying to get good at it). I'm not sure about posting the whole thing, because it might be more confusing than useful, but here's the main part:
findSmallestDifference = findSmallestDifference' Set.empty
findSmallestDifference' _ _ [] = []
findSmallestDifference' taken n (d:ds)
| n == 0 = [] -- Case 1
| n == 1 && provides1 d = [d] -- Case 2
| n == 1 && provides2 d = findSmallestDifference' taken n ds -- Case 3
| provides0 d = findSmallestDifference' taken n ds -- Case 3a (See Edit)
| validA && not validB = branchA -- Case 4
| validB && not validA = branchB -- Case 4
| validA && validB && sumA <= sumB = branchA -- Case 4
| validA && validB && sumB <= sumA = branchB -- Case 4
| otherwise = [] -- Case 4
where branchA = d : findSmallestDifference' (newTaken d) (n - (provides taken d)) ds
branchB = findSmallestDifference' taken n ds
sumA = sumDifferences branchA
sumB = sumDifferences branchB
validA = n == (indicesTaken branchA)
validB = n == (indicesTaken branchA)
newTaken x = insertIndices x taken
Hopefully you can see all the cases there. That code(-ish), plus some wrapper produces this:
*Main> findLeastDiff 6 [1731, 1572, 2041, 1561, 1682, 1572, 1609, 1731]
Smallest Difference found is 48
1572 - 1572 = 0
1731 - 1731 = 0
1572 - 1561 = 11
1609 - 1572 = 37
*Main> findLeastDiff 4 [1515, 1520, 1500,1535]
Smallest Difference found is 30
1515 - 1500 = 15
1535 - 1520 = 15
This has become long, but I've tried to be explicit. Hopefully it was worth while.
Edit : There is a case 3a that can be added to avoid some unnecessary work. If the current difference provides no additional indices, it can be skipped. This is taken care of in step 4 above, but there's no point in evaluating both halves of the tree for no gain. I've added this to the Haskell.
Something like
Sort List
Find Duplicates
Make the duplicates a pair
remove duplicates from list
break rest of list into pairs
calculate differences of each pair
take lowest amounts
In your example you have 8 number and need the best 3 pairs. First sort the list which gives you
1561, 1572, 1572, 1609, 1682, 1731, 1731, 2041
If you have duplicates make them a pair and remove them from the list so you have
[1572, 1572] = 0
[1731, 1731] = 0
L = { 1561, 1609, 1682, 2041 }
Break the remaining list into pairs, giving you the 4 following pairs
[1572, 1572] = 0
[1731, 1731] = 0
[1561, 1609] = 48
[1682, 2041] = 359
Then drop the amount of numbers you need to.
This gives you the following 3 pairs with the lowest pairs
[1572, 1572] = 0
[1731, 1731] = 0
[1561, 1609] = 48
So
0 + 0 + 48 = 48
Related
EDIT: clarified description of problem
Is there a fast algorithm solving following problem?
And, is also for extendend version of this problem
that is replaced natural numbers to Z/(2^n Z)?(This problem was too complex to add more quesion in one place, IMO.)
Problem:
For a given set of natural numbers like {7, 20, 17, 100}, required algorithm
returns the shortest sequence of additions, mutliplications and powers compute
all of given numbers.
Each item of sequence are (correct) equation that matches following pattern:
<number> = <number> <op> <number>
where <number> is a natual number, <op> is one of {+, *, ^}.
In the sequence, each operand of <op> should be one of
1
numbers which are already appeared in the left-hand-side of equal.
Example:
Input: {7, 20, 17, 100}
Output:
2 = 1 + 1
3 = 1 + 2
6 = 2 * 3
7 = 1 + 6
10 = 3 + 7
17 = 7 + 10
20 = 2 * 10
100 = 10 ^ 2
I wrote backtracking algorithm in Haskell.
it works for small input like above, but my real query is
randomly distributed ~30 numbers in [0,255].
for real query, following code takes 2~10 minutes in my PC.
(Actual code,
very simple test)
My current (Pseudo)code:
-- generate set of sets required to compute n.
-- operater (+) on set is set union.
requiredNumbers 0 = { {} }
requiredNumbers 1 = { {} }
requiredNumbers n =
{ {j, k} | j^k == n, j >= 2, k >= 2 }
+ { {j, k} | j*k == n, j >= 2, k >= 2 }
+ { {j, k} | j+k == n, j >= 1, k >= 1 }
-- remember the smallest set of "computed" number
bestSet := {i | 1 <= i <= largeNumber}
-- backtracking algorithm
-- from: input
-- to: accumulator of "already computed" number
closure from to =
if (from is empty)
if (|bestSet| > |to|)
bestSet := to
return
else if (|from| + |to| >= |bestSet|)
-- cut branch
return
else
m := min(from)
from' := deleteMin(from)
foreach (req in (requiredNumbers m))
closure (from' + (req - to)) (to + {m})
-- recoverEquation is a function converts set of number to set of equation.
-- it can be done easily.
output = recoverEquation (closure input {})
Additional Note:
Answers like
There isn't a fast algorithm, because...
There is a heuristic algorithm, it is...
are also welcomed. Now I'm feeling that there is no fast and exact algorithm...
Answer #1 can be used as a heuristic, I think.
What if you worked backwards from the highest number in a sorted input, checking if/how to utilize the smaller numbers (and numbers that are being introduced) in its construction?
For example, although this may not guarantee the shortest sequence...
input: {7, 20, 17, 100}
(100) = (20) * 5 =>
(7) = 5 + 2 =>
(17) = 10 + (7) =>
(20) = 10 * 2 =>
10 = 5 * 2 =>
5 = 3 + 2 =>
3 = 2 + 1 =>
2 = 1 + 1
What I recommend is to transform it into some kind of graph shortest path algorithm.
For each number, you compute (and store) the shortest path of operations. Technically one step is enough: For each number you can store the operation and the two operands (left and right, because power operation is not commutative), and also the weight ("nodes")
Initially you register 1 with the weight of zero
Every time you register a new number, you have to generate all calculations with that number (all additions, multiplications, powers) with all already-registered numbers. ("edges")
Filter for the calculations: it the result of the calculation is already registered, you shouldn't store that, because there is an easier way to get to that number
Store only 1 operation for the commutative ones (1+2=2+1)
Prefilter the power operation because that may even cause overflow
You have to order this list to the shortest sum path (weight of the edge). Weight = (weight of operand1) + (weight of operand2) + (1, which is the weight of the operation)
You can exclude all resulting numbers which are greater than the maximum number that we have to find (e.g. if we found 100 already, anything greater that 20 can be excluded) - this can be refined so that you can check the members of the operations also.
If you hit one of your target numbers, then you found the shortest way of calculating one of your target numbers, you have to restart the generations:
Recalculate the maximum of the target numbers
Go back on the paths of the currently found number, set their weight to 0 (they will be given from now on, because their cost is already paid)
Recalculate the weight for the operations in the generation list, because the source operand weight may have been changed (this results reordering at the end) - here you can exclude those where either operand is greater than the new maximum
If all the numbers are hit, then the search is over
You can build your expression using the "backlinks" (operation, left and right operands) for each of your target numbers.
The main point is that we always keep our eye on the target function, which is that the total number of operation must be the minimum possible. In order to get this, we always calculate the shortest path to a certain number, then considering that number (and all the other numbers on the way) as given numbers, then extending our search to the remaining targets.
Theoretically, this algorithm processes (registers) each numbers only once. Applying the proper filters cuts the unnecessary branches, so nothing is calculated twice (except the weights of the in-queue elements)
Given a fixed number of keys or values(stored either in array or in some data structure) and order of b-tree, can we determine the sequence of inserting keys that would generate a space efficient b-tree.
To illustrate, consider b-tree of order 3. Let the keys be {1,2,3,4,5,6,7}. Inserting elements into tree in the following order
for(int i=1 ;i<8; ++i)
{
tree.push(i);
}
would create a tree like this
4
2 6
1 3 5 7
see http://en.wikipedia.org/wiki/B-tree
But inserting elements in this way
flag = true;
for(int i=1,j=7; i<8; ++i,--j)
{
if(flag)
{
tree.push(i);
flag = false;
}
else
{
tree.push(j);
flag = true;
}
}
creates a tree like this
3 5
1 2 4 6 7
where we can see there is decrease in level.
So is there a particular way to determine sequence of insertion which would reduce space consumption?
The following trick should work for most ordered search trees, assuming the data to insert are the integers 1..n.
Consider the binary representation of your integer keys - for 1..7 (with dots for zeros) that's...
Bit : 210
1 : ..1
2 : .1.
3 : .11
4 : 1..
5 : 1.1
6 : 11.
7 : 111
Bit 2 changes least often, Bit 0 changes most often. That's the opposite of what we want, so what if we reverse the order of those bits, then sort our keys in order of this bit-reversed value...
Bit : 210 Rev
4 : 1.. -> ..1 : 1
------------------
2 : .1. -> .1. : 2
6 : 11. -> .11 : 3
------------------
1 : ..1 -> 1.. : 4
5 : 1.1 -> 1.1 : 5
3 : .11 -> 11. : 6
7 : 111 -> 111 : 7
It's easiest to explain this in terms of an unbalanced binary search tree, growing by adding leaves. The first item is dead centre - it's exactly the item we want for the root. Then we add the keys for the next layer down. Finally, we add the leaf layer. At every step, the tree is as balanced as it can be, so even if you happen to be building an AVL or red-black balanced tree, the rebalancing logic should never be invoked.
[EDIT I just realised you don't need to sort the data based on those bit-reversed values in order to access the keys in that order. The trick to that is to notice that bit-reversing is its own inverse. As well as mapping keys to positions, it maps positions to keys. So if you loop through from 1..n, you can use this bit-reversed value to decide which item to insert next - for the first insert use the 4th item, for the second insert use the second item and so on. One complication - you have to round n upwards to one less than a power of two (7 is OK, but use 15 instead of 8) and you have to bounds-check the bit-reversed values. The reason is that bit-reversing can move some in-bounds positions out-of-bounds and visa versa.]
Actually, for a red-black tree some rebalancing logic will be invoked, but it should just be re-colouring nodes - not rearranging them. However, I haven't double checked, so don't rely on this claim.
For a B tree, the height of the tree grows by adding a new root. Proving this works is, therefore, a little awkward (and it may require a more careful node-splitting than a B tree normally requires) but the basic idea is the same. Although rebalancing occurs, it occurs in a balanced way because of the order of inserts.
This can be generalised for any set of known-in-advance keys because, once the keys are sorted, you can assign suitable indexes based on that sorted order.
WARNING - This isn't an efficient way to construct a perfectly balanced tree from known already-sorted data.
If you have your data already sorted, and know it's size, you can build a perfectly balanced tree in O(n) time. Here's some pseudocode...
if size is zero, return null
from the size, decide which index should be the (subtree) root
recurse for the left subtree, giving that index as the size (assuming 0 is a valid index)
take the next item to build the (subtree) root
recurse for the right subtree, giving (size - (index + 1)) as the size
add the left and right subtree results as the child pointers
return the new (subtree) root
Basically, this decides the structure of the tree based on the size and traverses that structure, building the actual nodes along the way. It shouldn't be too hard to adapt it for B Trees.
This is how I would add elements to b-tree.
Thanks to Steve314, for giving me the start with binary representation,
Given are n elements to add, in order. We have to add it to m-order b-tree. Take their indexes (1...n) and convert it to radix m. The main idea of this insertion is to insert number with highest m-radix bit currently and keep it above the lesser m-radix numbers added in the tree despite splitting of nodes.
1,2,3.. are indexes so you actually insert the numbers they point to.
For example, order-4 tree
4 8 12 highest radix bit numbers
1,2,3 5,6,7 9,10,11 13,14,15
Now depending on order median can be:
order is even -> number of keys are odd -> median is middle (mid median)
order is odd -> number of keys are even -> left median or right median
The choice of median (left/right) to be promoted will decide the order in which I should insert elements. This has to be fixed for the b-tree.
I add elements to trees in buckets. First I add bucket elements then on completion next bucket in order. Buckets can be easily created if median is known, bucket size is order m.
I take left median for promotion. Choosing bucket for insertion.
| 4 | 8 | 12 |
1,2,|3 5,6,|7 9,10,|11 13,14,|15
3 2 1 Order to insert buckets.
For left-median choice I insert buckets to the tree starting from right side, for right median choice I insert buckets from left side. Choosing left-median we insert median first, then elements to left of it first then rest of the numbers in the bucket.
Example
Bucket median first
12,
Add elements to left
11,12,
Then after all elements inserted it looks like,
| 12 |
|11 13,14,|
Then I choose the bucket left to it. And repeat the same process.
Median
12
8,11 13,14,
Add elements to left first
12
7,8,11 13,14,
Adding rest
8 | 12
7 9,10,|11 13,14,
Similarly keep adding all the numbers,
4 | 8 | 12
3 5,6,|7 9,10,|11 13,14,
At the end add numbers left out from buckets.
| 4 | 8 | 12 |
1,2,|3 5,6,|7 9,10,|11 13,14,|15
For mid-median (even order b-trees) you simply insert the median and then all the numbers in the bucket.
For right-median I add buckets from the left. For elements within the bucket I first insert median then right elements and then left elements.
Here we are adding the highest m-radix numbers, and in the process I added numbers with immediate lesser m-radix bit, making sure the highest m-radix numbers stay at top. Here I have only two levels, for more levels I repeat the same process in descending order of radix bits.
Last case is when remaining elements are of same radix-bit and there is no numbers with lesser radix-bit, then simply insert them and finish the procedure.
I would give an example for 3 levels, but it is too long to show. So please try with other parameters and tell if it works.
Unfortunately, all trees exhibit their worst case scenario running times, and require rigid balancing techniques when data is entered in increasing order like that. Binary trees quickly turn into linked lists, etc.
For typical B-Tree use cases (databases, filesystems, etc), you can typically count on your data naturally being more distributed, producing a tree more like your second example.
Though if it is really a concern, you could hash each key, guaranteeing a wider distribution of values.
for( i=1; i<8; ++i )
tree.push(hash(i));
To build a particular B-tree using Insert() as a black box, work backward. Given a nonempty B-tree, find a node with more than the minimum number of children that's as close to the leaves as possible. The root is considered to have minimum 0, so a node with the minimum number of children always exists. Delete a value from this node to be prepended to the list of Insert() calls. Work toward the leaves, merging subtrees.
For example, given the 2-3 tree
8
4 c
2 6 a e
1 3 5 7 9 b d f,
we choose 8 and do merges to obtain the predecessor
4 c
2 6 a e
1 3 5 79 b d f.
Then we choose 9.
4 c
2 6 a e
1 3 5 7 b d f
Then a.
4 c
2 6 e
1 3 5 7b d f
Then b.
4 c
2 6 e
1 3 5 7 d f
Then c.
4
2 6 e
1 3 5 7d f
Et cetera.
So is there a particular way to determine sequence of insertion which would reduce space consumption?
Edit note: since the question was quite interesting, I try to improve my answer with a bit of Haskell.
Let k be the Knuth order of the B-Tree and list a list of keys
The minimization of space consumption has a trivial solution:
-- won't use point free notation to ease haskell newbies
trivial k list = concat $ reverse $ chunksOf (k-1) $ sort list
Such algorithm will efficiently produce a time-inefficient B-Tree, unbalanced on the left but with minimal space consumption.
A lot of non trivial solutions exist that are less efficient to produce but show better lookup performance (lower height/depth). As you know, it's all about trade-offs!
A simple algorithm that minimizes both the B-Tree depth and the space consumption (but it doesn't minimize lookup performance!), is the following
-- Sort the list in increasing order and call sortByBTreeSpaceConsumption
-- with the result
smart k list = sortByBTreeSpaceConsumption k $ sort list
-- Sort list so that inserting in a B-Tree with Knuth order = k
-- will produce a B-Tree with minimal space consumption minimal depth
-- (but not best performance)
sortByBTreeSpaceConsumption :: Ord a => Int -> [a] -> [a]
sortByBTreeSpaceConsumption _ [] = []
sortByBTreeSpaceConsumption k list
| k - 1 >= numOfItems = list -- this will be a leaf
| otherwise = heads ++ tails ++ sortByBTreeSpaceConsumption k remainder
where requiredLayers = minNumberOfLayersToArrange k list
numOfItems = length list
capacityOfInnerLayers = capacityOfBTree k $ requiredLayers - 1
blockSize = capacityOfInnerLayers + 1
blocks = chunksOf blockSize balanced
heads = map last blocks
tails = concat $ map (sortByBTreeSpaceConsumption k . init) blocks
balanced = take (numOfItems - (mod numOfItems blockSize)) list
remainder = drop (numOfItems - (mod numOfItems blockSize)) list
-- Capacity of a layer n in a B-Tree with Knuth order = k
layerCapacity k 0 = k - 1
layerCapacity k n = k * layerCapacity k (n - 1)
-- Infinite list of capacities of layers in a B-Tree with Knuth order = k
capacitiesOfLayers k = map (layerCapacity k) [0..]
-- Capacity of a B-Tree with Knut order = k and l layers
capacityOfBTree k l = sum $ take l $ capacitiesOfLayers k
-- Infinite list of capacities of B-Trees with Knuth order = k
-- as the number of layers increases
capacitiesOfBTree k = map (capacityOfBTree k) [1..]
-- compute the minimum number of layers in a B-Tree of Knuth order k
-- required to store the items in list
minNumberOfLayersToArrange k list = 1 + f k
where numOfItems = length list
f = length . takeWhile (< numOfItems) . capacitiesOfBTree
With this smart function given a list = [21, 18, 16, 9, 12, 7, 6, 5, 1, 2] and a B-Tree with knuth order = 3 we should obtain [18, 5, 9, 1, 2, 6, 7, 12, 16, 21] with a resulting B-Tree like
[18, 21]
/
[5 , 9]
/ | \
[1,2] [6,7] [12, 16]
Obviously this is suboptimal from a performance point of view, but should be acceptable, since obtaining a better one (like the following) would be far more expensive (computationally and economically):
[7 , 16]
/ | \
[5,6] [9,12] [18, 21]
/
[1,2]
If you want to run it, compile the previous code in a Main.hs file and compile it with ghc after prepending
import Data.List (sort)
import Data.List.Split
import System.Environment (getArgs)
main = do
args <- getArgs
let knuthOrder = read $ head args
let keys = (map read $ tail args) :: [Int]
putStr "smart: "
putStrLn $ show $ smart knuthOrder keys
putStr "trivial: "
putStrLn $ show $ trivial knuthOrder keys
I have a sorted array of integers of size n. These values are not unique. What I need to do is
: Given a B, I need to find an i<A[n] such that the sum of |A[j:1 to n]-i| is lesser than B and to that particular sum contribute the biggest number of A[j]s. I have some ideas but I can't seem to find anything better from the naive n*B and n*n algorithm. Any ideas about O(nlogn) or O(n) ?
For example: Imagine
A[n] = 1 2 10 10 12 14 and B<7 then the best i is 12 cause I achieve having 4 A[j]s contribute to my sum. 10 and 11 are also equally good i's cause if i=10 I got 10 - 10 + 10 - 10 +12-10 + 14-10 = 6<7
A solution in O(n) : start from the end and compute a[n]-a[n-1] :
let d=14-12 => d=2 and r=B-d => r=5,
then repeat the operation but multiplying d by 2:
d=12-10 => d=2 and r=r-2*d => r=1,
r=1 end of the algorithm because the sum must be less than B:
with a array indexed 0..n-1
i=1
r=B
while(r>0 && n-i>1) {
d=a[n-i]-a[n-i-1];
r-=i*d;
i++;
}
return a[n-i+1];
maybe a drawing explains better
14 x
13 x -> 2
12 xx
11 xx -> 2*2
10 xxxx -> 3*0
9 xxxx
8 xxxx
7 xxxx
6 xxxx
5 xxxx
4 xxxxx
3 xxxxx
2 xxxxxx
1 xxxxxxx
I think you can do it in O(n) using these three tricks:
CUMULATIVE SUM
Precompute an array C[k] that stores sum(A[0:k]).
This can be done recursively via C[k]=C[k-1]+A[k] in time O(n).
The benefit of this array is that you can then compute sum(A[a:b]) via C[b]-C[a-1].
BEST MIDPOINT
Because your elements are sorted, then it is easy to compute the best i to minimise the sum of absolute values. In fact, the best i will always be given by the middle entry.
If the length of the list is even, then all values of i between the two central elements will always give the minimum absolute value.
e.g. for your list 10,10,12,14 the central elements are 10 and 12, so any value for i between 10 and 12 will minimise the sum.
ITERATIVE SEARCH
You can now scan over the elements a single time to find the best value.
1. Init s=0,e=0
2. if the score for A[s:e] is less than B increase e by 1
3. else increase s by 1
4. if e<n return to step 2
Keep track of the largest value for e-s seen which has a score < B and this is your answer.
This loop can go around at most 2n times so it is O(n).
The score for A[s:e] is given by sum |A[s:e]-A[(s+e)/2]|.
Let m=(s+e)/2.
score = sum |A[s:e]-A[(s+e)/2]|
= sum |A[s:e]-A[m]|
= sum (A[m]-A[s:m]) + sum (A[m+1:e]-A[m])
= (m-s+1)*A[m]-sum(A[s:m]) + sum(A[m+1:e])-(e-m)*A[m]
and we can compute the sums in this expression using the precomputed array C[k].
EDIT
If the endpoint must always be n, then you can use this alternative algorithm:
1. Init s=0,e=n
2. while the score for A[s:e] is greater than B, increase s by 1
PYTHON CODE
Here is a python implementation of the algorithm:
def fast(A,B):
C=[]
t=0
for a in A:
t+=a
C.append(t)
def fastsum(s,e):
if s==0:
return C[e]
else:
return C[e]-C[s-1]
def fastscore(s,e):
m=(s+e)//2
return (m-s+1)*A[m]-fastsum(s,m)+fastsum(m+1,e)-(e-m)*A[m]
s=0
e=0
best=-1
while e<len(A):
if fastscore(s,e)<B:
best=max(best,e-s+1)
e+=1
elif s==e:
e+=1
else:
s+=1
return best
print fast([1,2,10,10,12,14],7)
# this returns 4, as the 4 elements 10,10,12,14 can be chosen
Try it this way for an O(N) with N size of array approach:
minpos = position of closest value to B in array (binary search, O(log(N))
min = array[minpos]
if (min >= B) EXIT, no solution
// now, we just add the smallest elements from the left or the right
// until we are greater than B
leftindex = minpos - 1
rightindex = minpos + 1
while we have a valid leftindex or valid rightindex:
add = min(abs(array[leftindex (if valid)]-B), abs(array[rightindex (if valid)]-B))
if (min + add >= B)
break
min += add
decrease leftindex or increase rightindex according to the usage
min is now our sum, rightindex the requested i (leftindex the start)
(It could happen that some indices are not correct, this is just the idea, not the implementation)
I would guess, the average case for small b is O(log(N)). The linear case only happens if we can use the whole array.
Im not sure, but perhaps this can be done in O(log(N)*k) with N size of array and k < N, too. We have to use the bin search in a clever way to find leftindex and rightindex in every iteration, such that the possible result range gets smaller in every iteration. This could be easily done, but we have to take care of duplicates, because they could destroy our bin search reductions.
This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Finding sorted sub-sequences in a permutation
Given an array A which holds a permutation of 1,2,...,n. A sub-block A[i..j]
of an array A is called a valid block if all the numbers appearing in A[i..j]
are consecutive numbers (may not be in order).
Given an array A= [ 7 3 4 1 2 6 5 8] the valid blocks are [3 4], [1,2], [6,5],
[3 4 1 2], [3 4 1 2 6 5], [7 3 4 1 2 6 5], [7 3 4 1 2 6 5 8]
So the count for above permutation is 7.
Give an O( n log n) algorithm to count the number of valid blocks.
Ok, I am down to 1 rep because I put 200 bounty on a related question: Finding sorted sub-sequences in a permutation
so I cannot leave comments for a while.
I have an idea:
1) Locate all permutation groups. They are: (78), (34), (12), (65). Unlike in group theory, their order and position, and whether they are adjacent matters. So, a group (78) can be represented as a structure (7, 8, false), while (34) would be (3,4,true). I am using Python's notation for tuples, but it is actually might be better to use a whole class for the group. Here true or false means contiguous or not. Two groups are "adjacent" if (max(gp1) == min(gp2) + 1 or max(gp2) == min(gp1) + 1) and contigous(gp1) and contiguos(gp2). This is not the only condition, for union(gp1, gp2) to be contiguous, because (14) and (23) combine into (14) nicely. This is a great question for algo class homework, but a terrible one for interview. I suspect this is homework.
Just some thoughts:
At first sight, this sounds impossible: a fully sorted array would have O(n2) valid sub-blocks.
So, you would need to count more than one valid sub-block at a time. Checking the validity of a sub-block is O(n). Checking whether a sub-block is fully sorted is O(n) as well. A fully sorted sub-block contains n·(n - 1)/2 valid sub-blocks, which you can count without further breaking this sub-block up.
Now, the entire array is obviously always valid. For a divide-and-conquer approach, you would need to break this up. There are two conceivable breaking points: the location of the highest element, and that of the lowest element. If you break the array into two at one of these points, including the extremum in the part that contains the second-to-extreme element, there cannot be a valid sub-block crossing this break-point.
By always choosing the extremum that produces a more even split, this should work quite well (average O(n log n)) for "random" arrays. However, I can see problems when your input is something like (1 5 2 6 3 7 4 8), which seems to produce O(n2) behaviour. (1 4 7 2 5 8 3 6 9) would be similar (I hope you see the pattern). I currently see no trick to catch this kind of worse case, but it seems that it requires other splitting techniques.
This question does involve a bit of a "math trick" but it's fairly straight forward once you get it. However, the rest of my solution won't fit the O(n log n) criteria.
The math portion:
For any two consecutive numbers their sum is 2k+1 where k is the smallest element. For three it is 3k+3, 4 : 4k+6 and for N such numbers it is Nk + sum(1,N-1). Hence, you need two steps which can be done simultaneously:
Create the sum of all the sub-arrays.
Determine the smallest element of a sub-array.
The dynamic programming portion
Build two tables using the results of the previous row's entries to build each successive row's entries. Unfortunately, I'm totally wrong as this would still necessitate n^2 sub-array checks. Ugh!
My proposition
STEP = 2 // amount of examed number
B [0,0,0,0,0,0,0,0]
B [1,1,0,0,0,0,0,0]
VALID(A,B) - if not valid move one
B [0,1,1,0,0,0,0,0]
VALID(A,B) - if valid move one and step
B [0,0,0,1,1,0,0,0]
VALID (A,B)
B [0,0,0,0,0,1,1,0]
STEP = 3
B [1,1,1,0,0,0,0,0] not ok
B [0,1,1,1,0,0,0,0] ok
B [0,0,0,0,1,1,1,0] not ok
STEP = 4
B [1,1,1,1,0,0,0,0] not ok
B [0,1,1,1,1,0,0,0] ok
.....
CON <- 0
STEP <- 2
i <- 0
j <- 0
WHILE(STEP <= LEN(A)) DO
j <- STEP
WHILE(STEP <= LEN(A) - j) DO
IF(VALID(A,i,j)) DO
CON <- CON + 1
i <- j + 1
j <- j + STEP
ELSE
i <- i + 1
j <- j + 1
END
END
STEP <- STEP + 1
END
The valid method check that all elements are consecutive
Never tested but, might be ok
The original array doesn't contain duplicates so must itself be a consecutive block. Lets call this block (1 ~ n). We can test to see whether block (2 ~ n) is consecutive by checking if the first element is 1 or n which is O(1). Likewise we can test block (1 ~ n-1) by checking whether the last element is 1 or n.
I can't quite mould this into a solution that works but maybe it will help someone along...
Like everybody else, I'm just throwing this out ... it works for the single example below, but YMMV!
The idea is to count the number of illegal sub-blocks, and subtract this from the total possible number. We count the illegal ones by examining each array element in turn and ruling out sub-blocks that include the element but not its predecessor or successor.
Foreach i in [1,N], compute B[A[i]] = i.
Let Count = the total number of sub-blocks with length>1, which is N-choose-2 (one for each possible combination of starting and ending index).
Foreach i, consider A[i]. Ignoring edge cases, let x=A[i]-1, and let y=A[i]+1. A[i] cannot participate in any sub-block that does not include x or y. Let iX=B[x] and iY=B[y]. There are several cases to be treated independently here. The general case is that iX<i<iY<i. In this case, we can eliminate the sub-block A[iX+1 .. iY-1] and all intervening blocks containing i. There are (i - iX + 1) * (iY - i + 1) such sub-blocks, so call this number Eliminated. (Other cases left as an exercise for the reader, as are those edge cases.) Set Count = Count - Eliminated.
Return Count.
The total cost appears to be N * (cost of step 2) = O(N).
WRINKLE: In step 2, we must be careful not to eliminate each sub-interval more than once. We can accomplish this by only eliminating sub-intervals that lie fully or partly to the right of position i.
Example:
A = [1, 3, 2, 4]
B = [1, 3, 2, 4]
Initial count = (4*3)/2 = 6
i=1: A[i]=1, so need sub-blocks with 2 in them. We can eliminate [1,3] from consideration. Eliminated = 1, Count -> 5.
i=2: A[i]=3, so need sub-blocks with 2 or 4 in them. This rules out [1,3] but we already accounted for it when looking right from i=1. Eliminated = 0.
i=3: A[i] = 2, so need sub-blocks with [1] or [3] in them. We can eliminate [2,4] from consideration. Eliminated = 1, Count -> 4.
i=4: A[i] = 4, so we need sub-blocks with [3] in them. This rules out [2,4] but we already accounted for it when looking right from i=3. Eliminated = 0.
Final Count = 4, corresponding to the sub-blocks [1,3,2,4], [1,3,2], [3,2,4] and [3,2].
(This is an attempt to do this N.log(N) worst case. Unfortunately it's wrong -- it sometimes undercounts. It incorrectly assumes you can find all the blocks by looking at only adjacent pairs of smaller valid blocks. In fact you have to look at triplets, quadruples, etc, to get all the larger blocks.)
You do it with a struct that represents a subblock and a queue for subblocks.
struct
c_subblock
{
int index ; /* index into original array, head of subblock */
int width ; /* width of subblock > 0 */
int lo_value;
c_subblock * p_above ; /* null or subblock above with same index */
};
Alloc an array of subblocks the same size as the original array, and init each subblock to have exactly one item in it. Add them to the queue as you go. If you start with array [ 7 3 4 1 2 6 5 8 ] you will end up with a queue like this:
queue: ( [7,7] [3,3] [4,4] [1,1] [2,2] [6,6] [5,5] [8,8] )
The { index, width, lo_value, p_above } values for subbblock [7,7] will be { 0, 1, 7, null }.
Now it's easy. Forgive the c-ish pseudo-code.
loop {
c_subblock * const p_left = Pop subblock from queue.
int const right_index = p_left.index + p_left.width;
if ( right_index < length original array ) {
// Find adjacent subblock on the right.
// To do this you'll need the original array of length-1 subblocks.
c_subblock const * p_right = array_basic_subblocks[ right_index ];
do {
Check the left/right subblocks to see if the two merged are also a subblock.
If they are add a new merged subblock to the end of the queue.
p_right = p_right.p_above;
}
while ( p_right );
}
}
This will find them all I think. It's usually O(N log(N)), but it'll be O(N^2) for a fully sorted or anti-sorted list. I think there's an answer to this though -- when you build the original array of subblocks you look for sorted and anti-sorted sequences and add them as the base-level subblocks. If you are keeping a count increment it by (width * (width + 1))/2 for the base-level. That'll give you the count INCLUDING all the 1-length subblocks.
After that just use the loop above, popping and pushing the queue. If you're counting you'll have to have a multiplier on both the left and right subblocks and multiply these together to calculate the increment. The multiplier is the width of the leftmost (for p_left) or rightmost (for p_right) base-level subblock.
Hope this is clear and not too buggy. I'm just banging it out, so it may even be wrong.
[Later note. This doesn't work after all. See note below.]
You have an ascending list of numbers, what is the most efficient algorithm you can think of to get the ascending list of sums of every two numbers in that list. Duplicates in the resulting list are irrelevant, you can remove them or avoid them if you like.
To be clear, I'm interested in the algorithm. Feel free to post code in any language and paradigm that you like.
Edit as of 2018: You should probably stop reading this. (But I can't delete it as it is accepted.)
If you write out the sums like this:
1 4 5 6 8 9
---------------
2 5 6 7 9 10
8 9 10 12 13
10 11 13 14
12 14 15
16 17
18
You'll notice that since M[i,j] <= M[i,j+1] and M[i,j] <= M[i+1,j], then you only need to examine the top left "corners" and choose the lowest one.
e.g.
only 1 top left corner, pick 2
only 1, pick 5
6 or 8, pick 6
7 or 8, pick 7
9 or 8, pick 8
9 or 9, pick both :)
10 or 10 or 10, pick all
12 or 11, pick 11
12 or 12, pick both
13 or 13, pick both
14 or 14, pick both
15 or 16, pick 15
only 1, pick 16
only 1, pick 17
only 1, pick 18
Of course, when you have lots of top left corners then this solution devolves.
I'm pretty sure this problem is Ω(n²), because you have to calculate the sums for each M[i,j] -- unless someone has a better algorithm for the summation :)
Rather than coding this out, I figure I'll pseudo-code it in steps and explain my logic, so that better programmers can poke holes in my logic if necessary.
On the first step we start out with a list of numbers length n. For each number we need to create a list of length n-1 becuase we aren't adding a number to itself. By the end we have a list of about n sorted lists that was generated in O(n^2) time.
step 1 (startinglist)
for each number num1 in startinglist
for each number num2 in startinglist
add num1 plus num2 into templist
add templist to sumlist
return sumlist
In step 2 because the lists were sorted by design (add a number to each element in a sorted list and the list will still be sorted) we can simply do a mergesort by merging each list together rather than mergesorting the whole lot. In the end this should take O(n^2) time.
step 2 (sumlist)
create an empty list mergedlist
for each list templist in sumlist
set mergelist equal to: merge(mergedlist,templist)
return mergedlist
The merge method would be then the normal merge step with a check to make sure that there are no duplicate sums. I won't write this out because anyone can look up mergesort.
So there's my solution. The entire algorithm is O(n^2) time. Feel free to point out any mistakes or improvements.
You can do this in two lines in python with
allSums = set(a+b for a in X for b in X)
allSums = sorted(allSums)
The cost of this is n^2 (maybe an extra log factor for the set?) for the iteration and s * log(s) for the sorting where s is the size of the set.
The size of the set could be as big as n*(n-1)/2 for example if X = [1,2,4,...,2^n]. So if you want to generate this list it will take at least n^2/2 in the worst case since this is the size of the output.
However if you want to select the first k elements of the result you can do this in O(kn) using a selection algorithm for sorted X+Y matrices by Frederickson and Johnson (see here for gory details). Although this can probably be modified to generate them online by reusing computation and get an efficient generator for this set.
#deuseldorf, Peter
There is some confusion about (n!) I seriously doubt deuseldorf meant "n factorial" but simply "n, (very excited)!"
The best I could come up with is to produce a matrix of sums of each pair, and then merge the rows together, a-la merge sort. I feel like I'm missing some simple insight that will reveal a much more efficient solution.
My algorithm, in Haskell:
matrixOfSums list = [[a+b | b <- list, b >= a] | a <- list]
sortedSums = foldl merge [] matrixOfSums
--A normal merge, save that we remove duplicates
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) = case compare x y of
LT -> x:(merge xs (y:ys))
EQ -> x:(merge xs (dropWhile (==x) ys))
GT -> y:(merge (x:xs) ys)
I found a minor improvement, one that's more amenable to lazy stream-based coding. Instead of merging the columns pair-wise, merge all of them at once. The advantage being that you start getting elements of the list immediately.
-- wide-merge does a standard merge (ala merge-sort) across an arbitrary number of lists
-- wideNubMerge does this while eliminating duplicates
wideNubMerge :: Ord a => [[a]] -> [a]
wideNubMerge ls = wideNubMerge1 $ filter (/= []) ls
wideNubMerge1 [] = []
wideNubMerge1 ls = mini:(wideNubMerge rest)
where mini = minimum $ map head ls
rest = map (dropWhile (== mini)) ls
betterSortedSums = wideNubMerge matrixOfSums
However, if you know you're going to use all of the sums, and there's no advantage to getting some of them earlier, go with 'foldl merge []', as it's faster.
In SQL:
create table numbers(n int not null)
insert into numbers(n) values(1),(1), (2), (2), (3), (4)
select distinct num1.n+num2.n sum2n
from numbers num1
inner join numbers num2
on num1.n<>num2.n
order by sum2n
C# LINQ:
List<int> num = new List<int>{ 1, 1, 2, 2, 3, 4};
var uNum = num.Distinct().ToList();
var sums=(from num1 in uNum
from num2 in uNum
where num1!=num2
select num1+num2).Distinct();
foreach (var s in sums)
{
Console.WriteLine(s);
}
No matter what you do, without additional constraints on the input values, you cannot do better than O(n^2), simply because you have to iterate through all pairs of numbers. The iteration will dominate sorting (which you can do in O(n log n) or faster).
This question has been wracking my brain for about a day now. Awesome.
Anyways, you can't get away from the n^2 nature of it easily, but you can do slightly better with the merge since you can bound the range to insert each element in.
If you look at all the lists you generate, they have the following form:
(a[i], a[j]) | j>=i
If you flip it 90 degrees, you get:
(a[i], a[j]) | i<=j
Now, the merge process should be taking two lists i and i+1 (which correspond to lists where the first member is always a[i] and a[i+1]), you can bound the range to insert element (a[i + 1], a[j]) into list i by the location of (a[i], a[j]) and the location of (a[i + 1], a[j + 1]).
This means that you should merge in reverse in terms of j. I don't know (yet) if you can leverage this across j as well, but it seems possible.
If you are looking for a truly language agnostic solution then you will be sorely disappointed in my opinion because you'll be stuck with a for loop and some conditionals. However if you opened it up to functional languages or functional language features (I'm looking at you LINQ) then my colleagues here can fill this page with elegant examples in Ruby, Lisp, Erlang, and others.