Algorithm needed to generate combinations of shifted characters - algorithm

I know the exact sequence and length of my TrueCrypt partition's password, but I can't recall which characters are up-shifted via the Shift key. I wrote a perl script (like CrackTC) that simply tries all passwords from a file but I'm seeking an algorithm to generate the password file quickly. The password is 42 characters so any advice will be helpful.
I realized that I would only have shifted numbers and punctuation, so only 17 of the characters need to be changed.
Note this is not a homework question.

Since each character can be upper or lower that's equivalent to one bit. You have 42 bits. Count in binary and set the character to upper or lower case according to the pattern of the binary bits. 2 to the power 42 is a very large number!! Too large to find by brute force! Good luck!

Assuming that you have to try all combinations, and that each password attempt is separated by a single character, the password file for all possible capitalizations of a 42 character password would be 189 terabytes in length. You probably don't want to work directly from a file.
The algorithm I would choose is a binary counting algorithm, but instead of toggling a single bit, toggle the capitalization of a single character. I would strongly suggest narrowing the pool with rules of thumb that you remember (like: Definitely had more than 5 uppercase, and fewer than 40 uppercase).

Quick python script:
def isShiftable(c):
return not c in "123456789"
def generate(str, i=0):
if len(str) <= i:
print "".join(str)
else:
if isShiftable(str[i]):
str[i]=str[i].upper()
generate(str, i+1)
str[i]=str[i].lower()
generate(str, i+1)
else:
generate(str, i+1)
generate(list("testit123"))
I'm sure it can be cleaned up, and made less bad, but it should suffice.
For 17 shiftable characters, there should be 131072 possibilities. Also, you will need to define your own 'upper'/'lower' function for shifting punctuation.

Not really an answer but it might reduce your search space:
Minimum and maximum of uppercase (could be 4 and 10)
Minimum and maximum sequence of uppercase (could as well be 1 and 1)
Minimum and maximum sequence of lowercase (could be 2 and 15)
Some combinations are more probable than the others, and should be checked first. For instance group combinations by maximum sequence of uppercase and first check those with minimal such value.

42 letter password, and you know the letters, then there are 2^41 (that is: 2 199 023 255 552) unique combinations. If you could check 10m of them in 1 second, then you could brute force it - and it would take at least: 61 hours 5 minutes 2 seconds.
You most likely wont have to do that much work. Let x be the number of uppercase letters:
If you had 7 > x uppercase letters: (42!)/(6! 36!)+(42!)/(5! 37!)+(42!)/(4! 38!)+(42!)/(3! 39!)+(42!)/(2! 40!)+(42!)/(1! 41!) = 6 220 767 combinations.
If you had 6 < x < 9 uppercase letters: (42!)/(8! 34!)+(42!)/(7! 35!) = 145 008 513 combinations.
If you can automate checking process and check 2000 elements in a second, then on worst case:
If you had 7 > x uppercase letters, it would take: 51.84 minutes
If you had 6 < x < 9 uppercase letters, it would take: 20.14 hours
Most likely you need some special case permutation algorithm to efficiently find the unique elements. This is quite complex problem, but I don't see any other way, as iterating over 2^41 elements is nuts.

Related

Find numbers that differ by 1 digit from a set of 15,000 12-digit numbers

I have a list of ~15,000 12-digit barcoded tickets. Most of the time they are scanned off paper or phone screens, but sometimes they are typed in (cracked screens, etc.) How would I go about finding if we have any sets of codes that differ by 1 digit, so typing the first one with a mis-typed digit might end up with another valid code?
The code numbers are 12-digit integers that are fairly random in the range 100000000000 to 999999999999 (we don't want leading zeroes to give problems with other systems)
e.g. given the three code numbers
123456789012
123456789013
223456789012
The first and second differ by only one digit and the second and third also. the first and third differ by 2 digits, so is ignored.
Use a hash set. Go through each of your 15,000 numbers in turn, and for each one, generate the 108 different numbers that differ from it in one place (12 digits times 9 possible alternate digits in each place). Check if each of those 108 numbers exists in the hash set (without inserting them). If any one of them does then you have a hit. If not then add the unmodified number to the hash set and move onto the next one.
You could also try with transpositions of adjacent numbers, which would give you another 11 digits on top of the 108 to try.

Convert string to perfect number

Given a string, we need to find the largest square which can be obtained by replace its characters by digits (leading zeros are not allowed) where same characters always map to the same digits and different characters always map to different digits. If no solution, return -1.
Consider the string "ab" If we replace character a with 8 and b with 1, we get 81, which is a square.
How to find it for given string ? It is given that string length can be at max 11.
Please help me find a suitable and efficient way
Sorry can't comment, not enough reputation for it so I'll answer here.
#mat7 about what you said in your question comments, no you don't have to do it for every letter from a to z. You only have to do it for the letters present in your string (so at max 12 letters, not 26).
The first thing I would even check is how much different letter you have, if it's 11 or 12 different letters you can directly return -1 since you can't have different letters having the same number.
Now, supposing the input string being "fdsadrtas", you take a new array with only each different letter => "fdsadrt"
And with this array you try all possibilities (exclude the obvious mismatching options, if you set 'f' to 4 and 'd' to 5, 's' can only be 12367890 (and f can never be 0)), this way you will exclude lots of possibilities, having as worst case 10! instead of 12^10. (actually 9*9! with the test of the first one never beeing 0 but it's close enough)
EDIT 2 : +1 samgak nice idea !
The last digit can only be 0,1,4,5,6,9 so the worst number of tests drop even to 9*6*8!
10! is by far small enough to be brute tested, keep the higher square value you found and you are done.
EDIT :
Actually It would work (in a finite reasonable amount of time) but it is the wrong approach now that I have thought about it.
You will use less time in looking all the squares numbers that could be a solution for your string, using the exemple I gave above it's a string of length 9, and checking each square who is length 9 if he could be successfully mapped into the string.
For a string of length 12 (the worst case) you will have to check the square values of 316'228 to 999'999, who is way less than the >2 millions check of the previous proposition. The other proposition might become faster if you start accepting long strings but with only 12 you are faster this way.

How to determine maximal error correction/detection method for 6 + 1 digits?

I have the following constraints for a number that will be recognized from an image:
6 digits data
1 digit error correction
The first 6 digits cannot be changed (they must be human readable)
The check digit must remain a numeral
The error correction scheme currently is based on a checksum, such that the 7th digit is the last digit of the sum of the first 6 digits.
E.g.
123456 => 1234561
999999 => 9999994
472912 => 4729125
219274 => 2192745
How can I determine the number and types of errors this scheme can detect/correct, and is there a scheme that will provide better error detection? (Error detection is more important than error correction for my use case).
You can try Luhn, it's a little more complex that what you describe but it will meet your requirements.
A copy paste from wikipedia:
The Luhn algorithm will detect any single-digit error, as well as
almost all transpositions of adjacent digits. It will not, however,
detect transposition of the two-digit sequence 09 to 90 (or vice
versa). It will detect 7 of the 10 possible twin errors (it will not
detect 22 ↔ 55, 33 ↔ 66 or 44 ↔ 77).
Other, more complex check-digit
algorithms (such as the Verhoeff algorithm and the Damm algorithm) can
detect more transcription errors. The Luhn mod N algorithm is an
extension that supports non-numerical strings.
Because the algorithm
operates on the digits in a right-to-left manner and zero digits
affect the result only if they cause shift in position, zero-padding
the beginning of a string of numbers does not affect the calculation.
Therefore, systems that pad to a specific number of digits (by
converting 1234 to 0001234 for instance) can perform Luhn validation
before or after the padding and achieve the same result.
Prepending a
0 to odd-length numbers enables you to process the number from left to
right rather than right to left, doubling the odd-place digits.
The
algorithm appeared in a US Patent for a hand-held, mechanical device
for computing the checksum. It was therefore required to be rather
simple. The device took the mod 10 sum by mechanical means. The
substitution digits, that is, the results of the double and reduce
procedure, were not produced mechanically. Rather, the digits were
marked in their permuted order on the body of the machine.

Algorithm:how to find the minimum number of combined number from a Char array so the number exceeds the target number?

We have a char array. All chars in the array are from 0 to 9. For example : 1,9,2,3.
We need to find out the the minimum number of combined chars which is greater than the target value(for example :92), then the 93 is the value what I want.
one example : 1,9,2,3
target : 192
The minimum number which is greater than 192 : 193(i.e.:'1'+'9'+'3').
one more example:2,1,3
target :99
The minimum number which is greater than 99: 123
one more example:2,1,4
target :12
The minimum number which is greater than 12: 14
Please advice &help.
This is not home work, for sure. and there is no order in the char array.
for example:
target:23
the one i want:31
My question:do you need to find all possible combinations(two digit integer/three digit inters/four digit integer) and then find the closest integer to target number.
and length of char array could be 10. the target number could be greater than one million...
No repeat characters are allowed For instance for target 10 will the answer be 12 instead of 11
Any ideas?
Since no repeated digits are allowed, the very first thing to do is to remove repeated digits from the array. Also, sorting the array is a good idea.
If the target has d digits, the solution is either also a d-digit number or a d+1-digit number. If it's a d+1 digit number, it is the smallest you can construct from the array values. That part is very easy:
digit[1] = minimum of nonzero array elements
for p = 2 to d+1:
digit[p] = minimum of array elements not yet taken
If the solution is a d-digit number, its first digit is either equal to the first digit of the target, or it's larger. If it's larger, the constructed number will be larger than the target no matter what the following digits are, so for the remaining digits, you can copy part of the above case. If the first digit of the solution is equal to the first digit of the target, you have reduced the problem to that of finding a solution for a d-1-digit target with a smaller array of eligible digits. You can then recur.
For a dynamic programming approach, preserving the order in the original array, you could work out, after the first N characters, the maximum number possible using only 1,2,3...N characters. Then for the N+1th position the maximum number possible with i characters is either as before, or the previous answer with i-1 characters extended with the current character.
A hack, if you don't have to preserve the order, is to sort the original array.
Example given 1923
At position 1 you care about 1.
At position 2 you care about 19 and 9.
At position 3 you care about 192, 92, and 9.
A the end you care about 1923, 923, and 93.
Further comments:
There is an article on dynamic programming at http://en.wikipedia.org/wiki/Dynamic_programming. The main idea is to solve small problems, and then use those solutions to solve slightly larger problems, and then use those... and so on until you have worked your way up to the problem you actually want to solve.
In your case, you want to find how to take a small number of characters from 1923 so as to make a large number. Suppose you know how to take a small number of characters from 192 to make a large number. In that case, the best solution for 1923 will either be a best solution for 192 or that solution with the 3 that ends 1923 added on. This is because if you had a solution for 1923 that was better than any of the ones you could get as I described, you could get a better solution for 192 by taking it, and perhaps deleting its final character.
Of course, at the beginning you don't know the solution for 192 either, so you have to start at the very beginning, with the solution for 1, and from that work out the best solutions for 19, and then 192, and finally for 1923 - which is what I have shown in the example above.
Finally, I couldn't work out from your question whether e.g. 9321 or 932 are possible solutions. If they are, the problem is easier, but if you really want to you can solve it with much the same method. Just sort 1923 to give 9321 and then solve that as you solved for 1923.

Most efficient way to store thousand telephone numbers

This is a google interview question:
There are around thousand phone numbers to be stored each having 10 digits. You can assume first 5 digits of each to be same across thousand numbers. You have to perform the following operations:
a. Search if a given number exists.
b. Print all the number
What is the most efficient space saving way to do this ?
I answered hash table and later huffman coding but my interviewer said I was not going in right direction. Please help me here.
Could using a suffix trie help?
Ideally 1000 numbers storing takes 4 bytes per number so in all it would take 4000 bytes to store 1000 number. Quantitatively, I wish to reduce the storage to < 4000 bytes, this is what my interviewer explained to me.
In what follows, I treat the numbers as integer variables (as opposed to strings):
Sort the numbers.
Split each number into the first five digits and the last five digits.
The first five digits are the same across numbers, so store them just once. This will require 17 bits of storage.
Store the final five digits of each number individually. This will require 17 bits per number.
To recap: the first 17 bits are the common prefix, the subsequent 1000 groups of 17 bits are the last five digits of each number stored in ascending order.
In total we're looking at 2128 bytes for the 1000 numbers, or 17.017 bits per 10-digit telephone number.
Search is O(log n) (binary search) and full enumeration is O(n).
Here's an improvement to aix's answer. Consider using three "layers" for the data structure: the first is a constant for the first five digits (17 bits); so from here on, each phone number has only the remaining five digits left. We view these remaining five digits as 17-bit binary integers and store k of those bits using one method and 17 - k = m with a different method, determining k at the end to minimize the required space.
We first sort the phone numbers (all reduced to 5 decimal digits). Then we count how many phone numbers there are for which the binary number consisting of the first m bits is all 0, for how many phone numbers the first m bits are at most 0...01, for how many phone numbers the first m bits are at most 0...10, etcetera, up to the count of phone numbers for which the first m bits are 1...11 - this last count is 1000(decimal). There are 2^m such counts and each count is at most 1000. If we omit the last one (because we know it is 1000 anyway), we can store all of these numbers in a contiguous block of (2^m - 1) * 10 bits. (10 bits is enough for storing a number less than 1024.)
The last k bits of all (reduced) phone numbers are stored contiguously in memory; so if k is, say, 7, then the first 7 bits of this block of memory (bits 0 thru 6) correspond to the last 7 bits of the first (reduced) phone number, bits 7 thru 13 correspond to the last 7 bits of the second (reduced) phone number, etcetera. This requires 1000 * k bits for a total of 17 + (2^(17 - k) - 1) * 10 + 1000 * k, which attains its minimum 11287 for k = 10. So we can store all phone numbers in ceil(11287/8)=1411 bytes.
Additional space can be saved by observing that none of our numbers can start with e.g. 1111111(binary), because the lowest number that starts with that is 130048 and we have only five decimal digits. This allows us to shave a few entries off the first block of memory: instead of 2^m - 1 counts, we need only ceil(99999/2^k). That means the formula becomes
17 + ceil(99999/2^k) * 10 + 1000 * k
which amazingly enough attains its minimum 10997 for both k = 9 and k = 10, or ceil(10997/8) = 1375 bytes.
If we want to know whether a certain phone number is in our set, we first check if the first five binary digits match the five digits we have stored. Then we split the remaining five digits into its top m=7 bits (which is, say, the m-bit number M) and its lower k=10 bits (the number K). We now find the number a[M-1] of reduced phone numbers for which the first m digits are at most M - 1, and the number a[M] of reduced phone numbers for which the first m digits are at most M, both from the first block of bits. We now check between the a[M-1]th and a[M]th sequence of k bits in the second block of memory to see if we find K; in the worst case there are 1000 such sequences, so if we use binary search we can finish in O(log 1000) operations.
Pseudocode for printing all 1000 numbers follows, where I access the K'th k-bit entry of the first block of memory as a[K] and the M'th m-bit entry of the second block of memory as b[M] (both of these would require a few bit operations that are tedious to write out). The first five digits are in the number c.
i := 0;
for K from 0 to ceil(99999 / 2^k) do
while i < a[K] do
print(c * 10^5 + K * 2^k + b[i]);
i := i + 1;
end do;
end do;
Maybe something goes wrong with the boundary case for K = ceil(99999/2^k), but that's easy enough to fix.
Finally, from an entropy point of view, it is not possible to store a subset of 10^3 positive integers all less than 10^5 in fewer than ceil(log[2](binomial(10^5, 10^3))) = 8073. Including the 17 we need for the first 5 digits, there is still a gap of 10997 - 8090 = 2907 bits. It's an interesting challenge to see if there are better solutions where you can still access the numbers relatively efficiently!
http://en.wikipedia.org/wiki/Acyclic_deterministic_finite_automaton
I once had an interview where they asked about data structures. I forgot "Array".
I'd probably consider using some compressed version of a Trie (possibly a DAWG as suggested by #Misha).
That would automagically take advantage of the fact that they all have a common prefix.
Searching will be performed in constant time, and printing will be performed in linear time.
I've heard of this problem before (but without first-5-digits-are-same assumption), and the simplest way to do it was Rice Coding:
1) Since the order does not matter we can sort them, and save just differences between consecutive values. In our case the average differences would be 100.000 / 1000 = 100
2) Encode the differences using Rice codes (base 128 or 64) or even Golomb codes (base 100).
EDIT : An estimation for Rice coding with base 128 (not because it would give best results, but because it's easier to compute):
We'll save first value as-is (32 bits).
The rest of 999 values are differences (we expect them to be small, 100 on average) will contain:
unary value value / 128 (variable number of bits + 1 bit as terminator)
binary value for value % 128 (7 bits)
We have to estimate somehow the limits (let's call it VBL) for number of variable bits:
lower limit: consider we are lucky, and no difference is larger than our base (128 in this case). this would mean give 0 additional bits.
high limit: since all differences smaller than base will be encoded in binary part of number, the maximum number we would need to encode in unary is 100000/128 = 781.25 (even less, because we don't expect most of differences to be zero).
So, the result is 32 + 999 * (1 + 7) + variable(0..782) bits = 1003 + variable(0..98) bytes.
This is a well-know problem from Bentley's Programming Pearls.
Solution:
Strip the first five digits from the numbers as they are the same for every
number. Then use bitwise-operations to represent the remaining 9999 possible
value. You will only need 2^17 Bits to represent the numbers. Each Bit
represents a number. If the bit is set, the number is in the telephon book.
To print all numbers, simply print all the numbers where the bit is set
concatened with the prefix. To search for a given number do the necessary bit
arithmetic to check for bitwise representation of the number.
You can search for a number in O(1) and the space efficiency is maximal due to the bit represenatation.
HTH Chris.
Fixed storage of 1073 bytes for 1,000 numbers:
The basic format of this storage method is to store the first 5 digits, a count for each group, and the offset for each number in each group.
Prefix:
Our 5-digit prefix takes up the first 17 bits.
Grouping:
Next, we need to figure out a good sized grouping for numbers. Let's try have about 1 number per group. Since we know there are about 1000 numbers to store, we divide 99,999 into about 1000 parts. If we chose the group size as 100, there would be wasted bits, so let's try a group size of 128, which can be represented with 7 bits. This gives us 782 groups to work with.
Counts:
Next, for each of the 782 groups, we need to store the count of entries in each group. A 7-bit count for each group would yield 7*782=5,474 bits, which is very inefficient because the average number represented is about 1 because of how we chose our groups.
Thus, instead we have variable sized counts with leading 1's for each number in a group followed by a 0. Thus, if we had x numbers in a group, we'd have x 1's followed by a 0 to represent the count. For example, if we had 5 numbers in a group the count would be represented by 111110. With this method, if there are 1,000 numbers we end up with 1000 1's and 782 0's for a total of 1000 + 782 = 1,782 bits for the counts.
Offset:
Last, the format of each number will just be the 7-bit offset for each group. For example, if 00000 and 00001 are the only numbers in the 0-127 group, the bits for that group would be 110 0000000 0000001. Assuming 1,000 numbers, there will be 7,000 bits for the offsets.
Thus our final count assuming 1,000 numbers is as follows:
17 (prefix) + 1,782 (counts) + 7,000 (offsets) = 8,799 bits = 1100 bytes
Now, let's check if our group-size selection by rounding up to 128 bits was the best choice for group size. Choosing x as the number of bits to represent each group, the formula for the size is:
Size in bits = 17 (prefix) + 1,000 + 99,999/2^x + x * 1,000
Minimizing this equation for integer values of x gives x=6, which yields 8,580 bits = 1,073 bytes. Thus, our ideal storage is as follows:
Group size: 2^6 = 64
Number of groups: 1,562
Total storage:
1017 (prefix plus 1's) + 1563 (0's in count) + 6*1000 (offsets) = 8,580 bits = 1,073 bytes
Taking this as a purely theoretical problem and leaving implementation asside, the single most efficient way is to just index all possible sets of 10000 last digits in a gigantic indexing table. Assuming you have exactely 1000 numbers, you would need a little more than 8000 bits to uniquely identify the current set. There is no bigger compression possible, because then you would have two sets which are identified with the same state.
Problems with this is, that you would have to represent each of the 2^8000 sets in your program as a lut, and not even google would be remotely capable of this.
Lookup would be O(1), printing all number O(n). Insertion would be O(2^8000) which in theory is O(1), but in practice is unusable.
In an interview I would only give this answer, if I were sure, that the company is looking for someone who is able to think out of the box a lot. Otherwise this might make you look like a theorist with no real world concerns.
EDIT: Ok, here is one "implementation".
Steps to constructe the implementation:
Take a constant array of size 100 000*(1000 choose 100 000) bits. Yes, I am aware of the fact that this array will need more space than atoms in the universe by several magnitudes.
Seperate this large array into chunks of 100 000 each.
In each chunk store a bit array for one specific combination of last five digits.
This is not the program, but a kind of meta programm, that will construct a gigantic LUT that can now be used in a programm. Constant stuff of the programm is normally not counted when calculating space efficiency, so we do not care about this array, when doing our final calculations.
Here is how to use this LUT:
When someone gives you 1000 numbers, you store the first five digits seperately.
Find out which of the chunks of your array matches this set.
Store the number of the set in a single 8074 bit number (call this c).
This means for storage we only need 8091 bits, which we have proven here to be the optimal encoding. Finding the correct chunk however takes O(100 000*(100 000 choose 1000)), which according to math rules is O(1), but in practice will always take longer than the time of the universe.
Lookup is simple though:
strip of first five digits (remaining number will be called n').
test if they match
Calculate i=c*100000+n'
Check if the bit at i in the LUT is set to one
Printing all numbers is simple also (and takes O(100000)=O(1) actually, because you always have to check all bits of the current chunk, so I miscalculated this above).
I would not call this a "implementation", because of the blatant disregard of the limitations (size of the universe and time this universe has lived or this earth will exist). However in theory this is the optimal solution. For smaller problems, this actually can be done, and sometimes will be done. For example sorting networks are a example for this way of coding, and can be used as a final step in recursive sorting algorithms, to get a big speedup.
This is equivalent to storing one thousand non-negative integers each less than 100,000. We can use something like arithmetic encoding to do this.
Ultimately, the numbers will be stored in a sorted list. I note that the expected difference between adjacent numbers in the list is 100,000/1000 = 100, which can be represented in 7 bits. There will also be many cases where more than 7 bits are necessary. A simple way to represent these less common cases is to adopt the utf-8 scheme where one byte represents a 7-bit integer unless the first bit is set, in which case the next byte is read to produce a 14-bit integer, unless its first bit is set, in which case the next byte is read to represent a 21-bit integer.
So at least half of the differences between consecutive integers may be represented with one byte, and almost all the rest require two bytes. A few numbers, separated by bigger differences than 16,384, will require three bytes, but there cannot be more than 61 of these. The average storage then will be about 12 bits per number, or a bit less, or at most 1500 bytes.
The downside to this approach is that checking the existence of a number is now O(n). However, no time complexity requirement was specified.
After writing, I noticed ruslik already suggested the difference method above, the only difference is the encoding scheme. Mine is likely simpler but less efficient.
Just to ask quickly any reason that we would not want to change the numbers into a base 36. It may not save as much space but it would for sure save time on the search since u will be looking at a lot less then 10digts. Or I would split them into files depending on each group. so i would name a file (111)-222.txt and then i would only store numbers that fit in to that group in there and then have them seearchable in numeric order this way i can always chack to see if the file exits. before i run a biger search. or to be correct i would run to binary searchs one for the file to see if it exits. and another bonary search on the contents of the file
Why not keep it simple? Use an array of structs.
So we can save the first 5 digits as a constant, so forget those for now.
65535 is the most that can be stored in a 16-bit number, and the max number we can have is 99999, which fits withing the 17th bit number with a max of 131071.
Using 32-bit data types is a wast because we only need 1 bit of that extra 16-bits...therefore, we can define a structure that has a boolean (or character) and a 16-bit number..
Assuming C/C++
typedef struct _number {
uint16_t number;
bool overflow;
}Number;
This struct only takes up 3-bytes, and we need an array of 1000, so 3000 bytes total. We have reduced the total space by 25%!
As far as storing the numbers, we can do simple bitwise math
overflow = (number5digits & 0x10000) >> 4;
number = number5digits & 0x1111;
And the inverse
//Something like this should work
number5digits = number | (overflow << 4);
To print all of them, we can use a simple loop over the array. Retrieving a specific number happens in constant time of course, since it is an array.
for(int i=0;i<1000;i++) cout << const5digits << number5digits << endl;
To search for a number, we would want a sorted array. So when the numbers are saved, sort the array (I would choose a merge sort personally, O(nlogn)). Now to search, I would go a merge sort approach. Split the array, and see which one our number falls between. Then call the function on only that array. Recursively do this until you have a match and return the index, otherwise, it does not exist and print an error code. This search would be quite quick, and worst case is still better than O(nlogn) since it will absolutely execute in less time than the merge sort (only recursing 1 side of the split each time, instead of both sides :)), which is O(nlogn).
My solution: best case 7.025 bits/number, worst case 14.193 bits/number, rough average 8.551 bits/number. Stream-encoded, no random access.
Even before reading ruslik’s answer, I immediately thought of encoding the difference between each number, since it will be small and should be relatively consistent, but the solution must also be able to accommodate the worst case scenario. We have a space of 100000 numbers that contain only 1000 numbers. In a perfectly uniform phone book, each number would be greater than the previous number by 100:
55555-12345
55555-12445
55555-12545
If that was the case, it would require zero storage to encode the differences between numbers, since it’s a known constant. Unfortunately, numbers may vary from the ideal steps of 100. I would encode the difference from the ideal increment of 100, so that if two adjacent numbers differ by 103, I would encode the number 3 and if two adjacent numbers differ by 92, I would encode -8. I call the delta from an ideal increment of 100 the “variance”.
The variance can range from -99 (i.e. two consecutive numbers) to 99000 (the entire phonebook consists of numbers 00000…00999 and an additional furthest-away number 99999), which is a range of 99100 possible values.
I’d aim to allocate a minimal storage to encode the most common differences and expand the storage if I encounter bigger differences (like ProtoBuf’s varint). I’ll use chunks of seven bits, six for storage and an additional flag bit at the end to indicate that this variance is stored with an additional chunk after the current one, up to a maximum of three chunks (which will provide a maximum of 3 * 6 = 18 bits of storage, which are 262144 possible value, more than the number of possible variances (99100). Each additional chunk that follows a raised flag has bits of a higher significance, so the first chunk always has bits 0-5, the optional second chunks has bits 6-11, and the optional third chunk has bits 12-17.
A single chunk provides six bits of storage which can accommodate 64 values. I’d like to map the 64 smallest variances to fit in that single chunk (i.e. variances of -32 to +31) so I’ll use ProtoBuf ZigZag encoding, up to the variances of -99 to +98 (since there’s no need for a negative variance beyond -99), at which point I’ll switch to regular encoding, offset by 98:
 
Variance | Encoded Value
-----------+----------------
0 | 0
-1 | 1
1 | 2
-2 | 3
2 | 4
-3 | 5
3 | 6
... | ...
-31 | 61
31 | 62
-32 | 63
-----------|--------------- 6 bits
32 | 64
-33 | 65
33 | 66
... | ...
-98 | 195
98 | 196
-99 | 197
-----------|--------------- End of ZigZag
100 | 198
101 | 199
... | ...
3996 | 4094
3997 | 4095
-----------|--------------- 12 bits
3998 | 4096
3999 | 4097
... | ...
262045 | 262143
-----------|--------------- 18 bits
 
Some examples of how variances would be encoded as bits, including the flag to indicate an additional chunk:
Variance | Encoded Bits
-----------+----------------
0 | 000000 0
5 | 001010 0
-8 | 001111 0
-32 | 111111 0
32 | 000000 1 000001 0
-99 | 000101 1 000011 0
177 | 010011 1 000100 0
14444 | 001110 1 100011 1 000011 0
So the first three numbers of a sample phone book would be encoded as a stream of bits as follows:
BIN 000101001011001000100110010000011001 000110 1 010110 1 00001 0
PH# 55555-12345 55555-12448 55555-12491
POS 1 2 3
Best case scenario, the phone book is somewhat uniformly distributed and there are no two phone numbers that have a variance greater than 32, so it would use 7 bits per number plus 32 bits for the starting number for a total of 32 + 7*999 = 7025 bits.
A mixed scenario, where 800 phone numbers' variance fits within one chunk (800 * 7 = 5600), 180 numbers fit in two chunks each (180 * 2 * 7 = 2520) and 19 numbers fit in three chunks each (20 * 3 * 7 = 399), plus the initial 32 bits, totals 8551 bits.
Worst case scenario, 25 numbers fit in three chunks (25 * 3 * 7 = 525 bits) and the remaining 974 numbers fit in two chunks (974 * 2 * 7 = 13636 bits), plus 32 bits for the first number for a grand total of 14193 bits.
Amount of encoded numbers |
1-chunk | 2-chunks | 3-chunks | Total bits
---------+----------+----------+------------
999 | 0 | 0 | 7025
800 | 180 | 19 | 8551
0 | 974 | 25 | 14193
I can see four additional optimizations that can be performed to further reduce the space required:
The third chunk doesn’t need the full seven bits, it can be just five bits and without a flag bit.
There can be an initial pass of the numbers to calculate the best sizes for each chunk. Maybe for a certain phonebook, it would be optimal to have the first chunk have 5+1 bits, the second 7+1 and the third 5+1. That would further reduce the size to a minimum of 6*999 + 32 = 6026 bits, plus two sets of three bits to store the sizes of chunks 1 and 2 (chunk 3’s size is the remainder of the required 16 bits) for a total of 6032 bits!
The same initial pass can calculate a better expected increment than the default 100. Maybe there's a phone book that starts from 55555-50000, and so it has half the number range so the expected increment should be 50. Or maybe there's a non-linear distribution (standard deviation perhaps) and some other optimal expected increment can be used. This would reduce the typical variance and might allow an even smaller first chunk to be used.
Further analysis can be done in the first pass to allow the phone book to be partitioned, with each partition having its own expected increment and chunk size optimizations. This would allow for a smaller first chunk size for certain highly uniform parts of the phone book (reducing the number of bits consumed) and larger chunks sizes for non-uniform parts (reducing the number of bits wasted on continuation flags).
The real question is one of storing five-digit phone numbers.
The trick is that you'd need 17 bits to store the range of numbers from 0..99,999. But storing 17-bits on conventional 8-byte word boundaries is a hassle. That's why they are asking if you can do in less than 4k by not using 32-bit integers.
Question: are all number combinations possible?
Because of the nature of the telephone system, there may be fewer than 65k possible combinations. I will assume that yes because we are talking about the latter five positions in the phone number, as opposed to the area code or exchange prefixes.
Question: will this list be static or will it need to support updates?
If it is static, then when it comes time to populate the database, count the number of digits < 50,000 and the number of digits >= 50,000. Allocate two arrays of uint16 of appropriate length: one for the integers below 50,000 and one for the higher set. When storing integers in the higher array, subtract 50,000 and when reading integers from that array, add 50,000. Now you've stored your 1,000 integers in 2,000 8-byte words.
Building the phonebook will require two input traversals, but lookups should happen in half the time, on average, than they would with a single array. If lookup time were very important you could use more arrays for smaller ranges but I think at these sizes your performance bound would be pulling the arrays from memory and 2k will probably stash into CPU cache if not register space on anything you'd be using these days.
If it is dynamic, allocate one array of 1000 or so uint16, and add the numbers in sorted order. Set the first byte to 50,001, and set the second byte to an appropriate null value, like NULL or 65,000. When you store the numbers, store them in sorted order. If a number is below 50,001 then store it before the 50,001 marker. If a number is 50,001 or greater, store it after the 50,001 marker, but subtract 50,000 from the stored value.
Your array will look something like:
00001 = 00001
12345 = 12345
50001 = reserved
00001 = 50001
12345 = 62345
65000 = end-of-list
So, when you look up a number in the phonebook, you'll traverse the array and if you've hit the 50,001 value you start adding 50,000 to your array values.
This makes inserts very expensive, but lookups are easy, and you're not going to spend much more than 2k on storage.

Resources