Given a sequence of numbers, I want to insert the numbers into a balanced binary tree such that when I do a inorder traversal on the tree, it gives me the sequence back.
How can I construct the insert method corresponding to this requirement?
Remember that the tree must be balanced, so there isn't a completely trivial solution. I was trying to do this with a modified version of an AVL tree, but I'm not sure if this can work out.
I also wish to be able to implement a delete operation. Delete should delete the item at the ith position in the list.
Edit: clarification:
I want to have:
Insert(i, e), which inserts a single element e right before the ith element in the sequence.
Delete(i), which deletes the ith element of the sequence.
If I do insert(0, 5), insert(0, 4), insert(0, 7), then my stored sequence is now 7, 4, 5 and inorder traversal on the binary tree should give me 7, 4, 5.
If I do delete(1), then inorder traversal on the binary tree should give me 7, 5. As you can see, the sequence order is maintained after deleting the ith sequence element with i = 1 in this case (as I've indexed my sequence from 0).
Keep a linked list in the tree. You already have pointers/references to the nodes thanks to the tree. When you insert into the tree, also insert at the end of the linked list. When you remove from the tree, remove from the linked list. Because you have the references, they're all O(1) operations, and you can iterate through in insertion order if you so choose.
Edit:
to clarify Bart's concern, here's a Java implementation
class LinkedTreeNode<E> {
E data;
LinkedTreeNode<E> parent;
LinkedTreeNode<E> left;
LinkedTreeNode<E> right;
LinkedTreeNode<E> insertNext;
LinkedTreeNode<E> insertPrev;
}
class LinkedTree<E> {
LinkedTreeNode<E> root;
LinkedTreeNode<E> insertHead;
LinkedTreeNode<E> insertTail;
// skip some stuff
void add(E e) {
LinkedTreeNode<E> node = new LinkedTreeNode<E>(e);
// perform the tree insert using whatever method you like
// update the list
node.insertNext = insertTail;
node.insertPrev = insertTail.insertPrev.insertPrev;
node.insertPrev.insertNext = node;
insertTail.insertPrev = node;
}
E remove(E e) {
LinkedTreeNode<E> rem = // whatever method to remove the node
rem.insertNext.insertPrev = rem.insertPrev;
rem.insertPrev.insertNext = rem.insertNext;
return rem.data;
}
}
If you have random access to the contents of the sequence (e.g. you have an array), then you can simply build the tree directly, so that pre-order traversal provides the sequence you want. It can actually be done without random access, but less efficiently, since linear scans may be required to find the midpoint of the sequence.
The key observation here is that the first value in the sequence goes in the root of the tree, then the remainder of the sequence can be divided into halves. The first half will go into the subtree rooted at the left child and the second half will go into the subtree rooted at the right child. Because you are dividing the remaining list in half at each step, the resulting tree will have log_2 n levels and will be balanced.
Here's some C++ code. Note that "end" refers to the index of the element just past the end of the current array segment.
struct Node {
Node(int v) : value(v), l(0), r(0) {}
int value;
Node* l;
Node* r;
};
Node* vector_to_tree(int begin, int end, int array[]) {
if (begin == end)
return NULL;
Node* root = new Node(array[begin++]);
int mid = (begin + end) / 2;
root->l = vector_to_tree(begin, mid, array);
root->r = vector_to_tree(mid, end, array);
return root;
}
void preorder_traverse(Node* root) {
if (!root)
return;
std::cout << root->value << std::endl;
traverse(root->l);
traverse(root->r);
}
This can be done with an AVL tree.
Add items to the AVL tree by adding to the rightmost node of the tree.
AVL balancing does not affect the inorder traversal property due to the nature of rotations.
Storing the size of the tree at each node, and maintaining these values for each node affected during inserts/deletes/balances can be done in O(log n) time. Storing the size of the tree at each node permits searching for an item by rank in the sequence, since the rank of an item in a tree is known by a node's left child's size + 1.
Deletion from the AVL tree can be accomplished by replacing a removed node with the leftmost node of the node's right subtree.
Insert and delete operations are then done in O(log n) time, since the tree is always balanced, and size updates on the nodes are done along a path from inserted/deleted node to root.
Since there is no backing data structure other than a binary tree, other operations that benefit from a tree can be done, such as finding the sum of an [m, n] range of elements in the sequence in O(log n) time.
Related
Given a binary tree, I have to return a tree containing all elements that smaller than k, greater than k and a tree containing only one element - k.
Allowed methods to use:
remove node - O(n)
insert - O(n)
find - O(n)
find min - O(n)
I'm assuming these methods complexity, because in the exercise it's not written that tree is balanced.
Required complexity - O(n)
Original tree have to maintain its structure.
I'm completely stuck. Any help is much appreciated!
Given tree is Binary search tree as well as outputs should be binary search trees.
I see no way to design a O(n) algorithm with the given blackbox functions and their time complexities, given that they could only be called a (maximum) constant number of times (like 3 times) to stay within the O(n) constraint.
But if it is allowed to access and create BSTs with basic, standard node manipulations (traversing via left or right child, setting the left or right child to a given subtree), then you could do the following:
Create three new empty BSTs that will be populated and returned. Name them left, mid, and right, where the first one will have all values less than k, the second one will have at the most one node (with value k), and the final one will have all the rest.
While populating left and right, maintain references to the nodes that are closest to value k: in left that will be the node with the greatest value, and in right the node with the least value.
Follow these steps:
Apply the usual binary search to walk from the root towards the node with value k
While doing this: whenever you choose the left child of a node, the node itself and its right subtree then belong in right. However, the left child should at this moment not be included, so create a new node that copies the current node, but without its left child. Maintain a reference to the node with the least value in right, as that is the node that may get a left new subtree when this step occurs more than once.
Do the similar thing for when you choose the right child of a node.
When the node with k is found, the algorithm can add its left subtree to left and the right subtree to right, and create the single-node tree with value k.
Time complexity
The search towards the node with value k could take O(n) in the worst case, as the BST is not given to be balanced. All the other actions (adding a subtree to a specific node in one of the new BSTs) run in constant time, so in total they are executed O(n) times in the worst case.
If the given BST is balanced (not necessarily perfectly, but like with AVL rules), then the algorithm runs in O(logn) time. However, the output BSTs may not be as balanced, and may violate AVL rules so that rotations would be needed.
Example Implementation
Here is an implementation in JavaScript. When you run this snippet, a test case will run one a BST that has nodes with values 0..19 (inserted in random order) and k=10. The output will iterate the three created BSTs in in-order, so to verify that they output 0..9, 10, and 11..19 respectively:
class Node {
constructor(value, left=null, right=null) {
this.value = value;
this.left = left;
this.right = right;
}
insert(value) { // Insert as a leaf, maintaining the BST property
if (value < this.value) {
if (this.left !== null) {
return this.left.insert(value);
}
this.left = new Node(value);
return this.left;
} else {
if (this.right !== null) {
return this.right.insert(value);
}
this.right = new Node(value);
return this.right;
}
}
// Utility function to iterate the BST values in in-order sequence
* [Symbol.iterator]() {
if (this.left !== null) yield * this.left;
yield this.value;
if (this.right !== null) yield * this.right;
}
}
// The main algorithm
function splitInThree(root, k) {
let node = root;
// Variables for the roots of the trees to return:
let left = null;
let mid = null;
let right = null;
// Reference to the nodes that are lexically closest to k:
let next = null;
let prev = null;
while (node !== null) {
// Create a copy of the current node
newNode = new Node(node.value);
if (k < node.value) {
// All nodes at the right go with it, but it gets no left child at this stage
newNode.right = node.right;
// Merge this with the tree we are creating for nodes with value > k
if (right === null) {
right = newNode;
} else {
next.left = newNode;
}
next = newNode;
node = node.left;
} else if (k > node.value) {
// All nodes at the left go with it, but it gets no right child at this stage
newNode.left = node.left;
// Merge this with the tree we are creating for nodes with value < k
if (left === null) {
left = newNode;
} else {
prev.right = newNode;
}
prev = newNode;
node = node.right;
} else {
// Create the root-only tree for k
mid = newNode;
// The left subtree belongs in the left tree
if (left === null) {
left = node.left;
} else {
prev.right = node.left;
}
// ...and the right subtree in the right tree
if (right === null) {
right = node.right;
} else {
next.left = node.right;
}
// All nodes have been allocated to a target tree
break;
}
}
// return the three new trees:
return [left, mid, right];
}
// === Test code for the algorithm ===
// Utility function
function shuffled(a) {
for (let i = a.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[a[i], a[j]] = [a[j], a[i]];
}
return a;
}
// Create a shuffled array of the integers 0...19
let arr = shuffled([...Array(20).keys()]);
// Insert these values into a new BST:
let root = new Node(arr.pop());
for (let val of arr) root.insert(val);
// Apply the algorithm with k=10
let [left, mid, right] = splitInThree(root, 10);
// Print out the values from the three BSTs:
console.log(...left); // 0..9
console.log(...mid); // 10
console.log(...right); // 11..19
Essentially, your goal is to create a valid BST where k is the root node; in this case, the left subtree is a BST containing all elements less than k, and the right subtree is a BST containing all elements greater than k.
This can be achieved by a series of tree rotations:
First, do an O(n) search for the node of value k, building a stack of its ancestors up to the root node.
While there are any remaining ancestors, pop one from the stack, and perform a tree rotation making k the parent of this ancestor.
Each rotation takes O(1) time, so this algorithm terminates in O(n) time, because there are at most O(n) ancestors. In a balanced tree, the algorithm takes O(log n) time, although the result is not a balanced tree.
In your question you write that "insert" and "remove" operations take O(n) time, but that this is your assumption, i.e. it is not stated in the question that these operations take O(n) time. If you are operating only nodes you already have pointers to, then basic operations take O(1) time.
If it is required not to destroy the original tree, then you can begin by making a copy of it in O(n) time.
I really don't see a simple and efficient way to split with the operations that you mention. But I think that achieving a very efficient split is relatively easy.
If the tree were balanced, then you can perform your split in O(log n) if you define a special operation called join exclusive. Let me first define join_ex() as the operation in question:
Node * join_exclusive(Node *& ts, Node *& tg)
{
if (ts == NULL)
return tg;
if (tg == NULL)
return ts;
tg=.llink) = join_exclusive(ts->rlink, tg->llink);
ts->rlink = tg;
Node * ret_val = ts;
ts = tg = NULL; // empty the trees
return ret_val;
}
join_ex() assumes that you want to build a new tree from two BST ts and tr such that every key in ts is less than everyone in tr.
If you have two exclusive trees T< and T>:
Then join_ex() can be seen as follows:
Note that if you take any node for any BST, then its subtrees meet this condition; every key in the left subtree is less than everyone in the right one. You can design a nice deletion algorithm based on join_ex().
Now we are ready for the split operation:
void split_key_rec(Node * root, const key_type & key, Node *& ts, Node *& tg)
{
if (root == NULL)
{
ts = tg = NULL;
return;
}
if (key < root->key)
{
split_key_rec(root->llink, key, ts, root->llink);
tg = root;
}
else
{
split_key_rec(root->rlink, key, root->rlink, tg)
ts = root;
}
}
If you set root as T in this figure
Then a pictorial representation of split can be seen thus:
split_key_rec() splits the tree into two trees ts and tg according to a key k. At the end of the operation, ts contains a BST with keys less than k and tg is a BST with keys greater or equal than k.
Now, to complete your requirement, you call split_key_rec(t, k, ts, tg) and you get in ts a BST with all the keys less than k. Almost symmetrically, you get in tg a BST with all the keys greater or equal than k. So, the last thing is to verify if the root of tg is k and, if this is the case, you unlink, and you get your result in ts, k, and tg' (tg' is the tree without k).
If k is in the original tree, then the root of tg will be k, and tg won't have left subtree.
The numbers 1 to n are inserted in a binary search tree in a specified order p_1, p_2,..., p_n. Describe an O(nlog n) time algorithm to construct the resulting final binary search tree.
Note that :-
I don't need average time n log n, but the worst time.
I need the the exact tree that results when insertion takes place with the usual rules. AVL or red black trees not allowed.
This is an assignment question. It is very very non trivial. In fact it seemed impossible at first glance. I have thought on it much. My observations:-
The argument that we use to prove that sorting takes atleast n log n time does not eliminate the existence of such an algorithm here.
If it is always possible to find a subtree in O(n) time whose size is between two fractions of the size of tree, the problem can be easily solved.
Choosing median or left child of root as root of subtree doesn't work.
The trick is not to use the constructed BST for lookups. Instead, keep an additional, balanced BST for lookups. Link the leaves.
For example, we might have
Constructed Balanced
3 2
/ \ / \
2 D 1 3
/ \ / | | \
1 C a b c d
/ \
A B
where a, b, c, d are pointers to A, B, C, D respectively, and A, B, C, D are what would normally be null pointers.
To insert, insert into the balanced BST first (O(log n)), follow the pointer to the constructed tree (O(1)), do the constructed insert (O(1)), and relink the new leaves (O(1)).
As David Eisenstat doesn't have time to extend his answer, I'll try to put more details into a similar algorithm.
Intuition
The main intuition behind the algorithm is based on the following statements:
statement #1: if a BST contains values a and b (a < b) AND there are no values between them, then either A (node for value a) is a (possibly indirect) parent of B (node for value b) or B is a (possibly indirect) parent of A.
This statement is obviously true because if their lowest common ancestor C is some other node than A and B, its value c must be between a and b. Note that statement #1 is true for any BST (balanced or unbalanced).
statement #2: if a simple (unbalanced) BST contains values a and b (a < b) AND there are no values between them AND we are trying to add value x such that a < x < b, then X (node for value x) will be either direct right (greater) child of A or direct left (less) child of B whichever node is lower in the tree.
Let's assume that the lower of two nodes is a (the other case is symmetrical). During insertion phase value x will travel the same path as a during its insertion because tree doesn't contain any values between a and x i.e. at any comparison values a and x are indistinguishable. It means that value x will navigate tree till node A and will pass node B at some earlier step (see statement #1). As x > a it should become a right child of A. Direct right child of A must be empty at this point because A is in B's subtree i.e. all values in that subtree are less than b and since there are no values between a and b in the tree, no value can be right child of node A.
Note that statement #2 might potentially be not true for some balanced BST after re-balancing was performed although this should be a strange case.
statement #3: in a balanced BST for any value x not in the tree yet, you can find closest greater and closest less values in O(log(N)) time.
This follows directly from statements #1 and #2: all you need is find the potential insertion point for the value x in the BST (takes O(log(N))), one of the two values will be direct parent of the insertion point and to find the other you need to travel the tree back to the root (again takes O(log(N))).
So now the idea behind the algorithm becomes clear: for fast insertion into an unbalanced BST we need to find nodes with closest less and greater values. We can easily do it if we additionally maintain a balanced BST with the same keys as our target (unbalanced) BST and with corresponding nodes from that BST as values. Using that additional data structure we can find insertion point for each new value in O(log(N)) time and update this data structure with new value in O(log(N)) time as well.
Algorithm
Init "main" root and balancedRoot with null.
for each value x in the list do:
if this is the first value just add it as the root nodes to both trees and go to #2
in the tree specified by balancedRoot find nodes that correspond to the closest less (BalancedA, points to node A in the main BST) and closest greater (BalancedB, points to node B in the main BST) values.
If there is no closest lower value i.e. we are adding minimum element, add it as the left child to the node B
If there is no closest greater value i.e. we are adding maximum element, add it as the right child to the node A
Find whichever of nodes A or B is lower in the tree. You can use explicit level stored in the node. If the lower node is A (less node), add x as the direct right child of A else add x as the direct left child of B (greater node). Alternatively (and more cleverly) you may notice that from the statements #1 and #2 follows that exactly one of the two candidate insert positions (A's right child or B's left child) will be empty and this is where you want to insert your value x.
Add value x to the balanced tree (might re-use from step #4).
Go to step #2
As no inner step of the loop takes more than O(log(N)), total complexity is O(N*log(N))
Java implementation
I'm too lazy to implement balanced BST myself so I used standard Java TreeMap that implements Red-Black tree and has useful lowerEntry and higherEntry methods that correspond to step #4 of the algorithm (you may look at the source code to ensure that both are actually O(log(N))).
import java.util.Map;
import java.util.TreeMap;
public class BSTTest {
static class Node {
public final int value;
public Node left;
public Node right;
public Node(int value) {
this.value = value;
}
public boolean compareTree(Node other) {
return compareTrees(this, other);
}
public static boolean compareTrees(Node n1, Node n2) {
if ((n1 == null) && (n2 == null))
return true;
if ((n1 == null) || (n2 == null))
return false;
if (n1.value != n2.value)
return false;
return compareTrees(n1.left, n2.left) &&
compareTrees(n1.right, n2.right);
}
public void assignLeftSafe(Node child) {
if (this.left != null)
throw new IllegalStateException("left child is already set");
this.left = child;
}
public void assignRightSafe(Node child) {
if (this.right != null)
throw new IllegalStateException("right child is already set");
this.right = child;
}
#Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
}
static Node insertToBst(Node root, int value) {
if (root == null)
root = new Node(value);
else if (value < root.value)
root.left = insertToBst(root.left, value);
else
root.right = insertToBst(root.right, value);
return root;
}
static Node buildBstDirect(int[] values) {
Node root = null;
for (int v : values) {
root = insertToBst(root, v);
}
return root;
}
static Node buildBstSmart(int[] values) {
Node root = null;
TreeMap<Integer, Node> balancedTree = new TreeMap<Integer, Node>();
for (int v : values) {
Node node = new Node(v);
if (balancedTree.isEmpty()) {
root = node;
} else {
Map.Entry<Integer, Node> lowerEntry = balancedTree.lowerEntry(v);
Map.Entry<Integer, Node> higherEntry = balancedTree.higherEntry(v);
if (lowerEntry == null) {
// adding minimum value
higherEntry.getValue().assignLeftSafe(node);
} else if (higherEntry == null) {
// adding max value
lowerEntry.getValue().assignRightSafe(node);
} else {
// adding some middle value
Node lowerNode = lowerEntry.getValue();
Node higherNode = higherEntry.getValue();
if (lowerNode.right == null)
lowerNode.assignRightSafe(node);
else
higherNode.assignLeftSafe(node);
}
}
// update balancedTree
balancedTree.put(v, node);
}
return root;
}
public static void main(String[] args) {
int[] input = new int[]{7, 6, 9, 4, 1, 8, 2, 5, 3};
Node directRoot = buildBstDirect(input);
Node smartRoot = buildBstSmart(input);
System.out.println(directRoot.compareTree(smartRoot));
}
}
Here's a linear-time algorithm. (I said that I wasn't going to work on this question, so if you like this answer, please award the bounty to SergGr.)
Create a doubly linked list with nodes 1..n and compute the inverse of p. For i from n down to 1, let q be the left neighbor of p_i in the list, and let r be the right neighbor. If p^-1(q) > p^-1(r), then make p_i the right child of q. If p^-1(q) < p^-1(r), then make p_i the left child of r. Delete p_i from the list.
In Python:
class Node(object):
__slots__ = ('left', 'key', 'right')
def __init__(self, key):
self.left = None
self.key = key
self.right = None
def construct(p):
# Validate the input.
p = list(p)
n = len(p)
assert set(p) == set(range(n)) # 0 .. n-1
# Compute p^-1.
p_inv = [None] * n
for i in range(n):
p_inv[p[i]] = i
# Set up the list.
nodes = [Node(i) for i in range(n)]
for i in range(n):
if i >= 1:
nodes[i].left = nodes[i - 1]
if i < n - 1:
nodes[i].right = nodes[i + 1]
# Process p.
for i in range(n - 1, 0, -1): # n-1, n-2 .. 1
q = nodes[p[i]].left
r = nodes[p[i]].right
if r is None or (q is not None and p_inv[q.key] > p_inv[r.key]):
print(p[i], 'is the right child of', q.key)
else:
print(p[i], 'is the left child of', r.key)
if q is not None:
q.right = r
if r is not None:
r.left = q
construct([1, 3, 2, 0])
Here's my O(n log^2 n) attempt that doesn't require building a balanced tree.
Put nodes in an array in their natural order (1 to n). Also link them into a linked list in the order of insertion. Each node stores its order of insertion along with the key.
The algorithm goes like this.
The input is a node in the linked list, and a range (low, high) of indices in the node array
Call the input node root, Its key is rootkey. Unlink it from the list.
Determine which subtree of the input node is smaller.
Traverse the corresponding array range, unlink each node from the linked list, then link them in a separate linked list and sort the list again in the insertion order.
Heads of the two resulting lists are children of the input node.
Perform the algorithm recursively on children of the input node, passing ranges (low, rootkey-1) and (rootkey+1, high) as index ranges.
The sorting operation at each level gives the algorithm the extra log n complexity factor.
Here's an O(n log n) algorithm that can also be adapted to O(n log log m) time, where m is the range, by using a Y-fast trie rather than a balanced binary tree.
In a binary search tree, lower values are left of higher values. The order of insertion corresponds with the right-or-left node choices when traveling along the final tree. The parent of any node, x, is either the least higher number previously inserted or the greatest lower number previously inserted, whichever was inserted later.
We can identify and connect the listed nodes with their correct parents using the logic above in O(n log n) worst-time by maintaining a balanced binary tree with the nodes visited so far as we traverse the order of insertion.
Explanation:
Let's imagine a proposed lower parent, p. Now imagine there's a number, l > p but still lower than x, inserted before p. Either (1) p passed l during insertion, in which case x would have had to pass l to get to p but that contradicts that x must have gone right if it reached l; or (2) p did not pass l, in which case p is in a subtree left of l but that would mean a number was inserted that's smaller than l but greater than x, a contradiction.
Clearly, a number, l < x, greater than p that was inserted after p would also contradict p as x's parent since either (1) l passed p during insertion, which means p's right child would have already been assigned when x was inserted; or (2) l is in a subtree to the right of p, which again would mean a number was inserted that's smaller than l but greater than x, a contradiction.
Therefore, for any node, x, with a lower parent, that parent must be the greatest number lower than and inserted before x. Similar logic covers the scenario of a higher proposed parent.
Now let's imagine x's parent, p < x, was inserted before h, the lowest number greater than and inserted before x. Then either (1) h passed p, in which case p's right node would have been already assigned when x was inserted; or (2) h is in a subtree right of p, which means a number lower than h and greater than x was previously inserted but that would contradict our assertion that h is the lowest number inserted so far that's greater than x.
Since this is an assignment, I'm posting a hint instead of an answer.
Sort the numbers, while keeping the insertion order. Say you have input: [1,7,3,5,8,2,4]. Then after sorting you will have [[1,0], [2,5], [3,2], [4, 6], [5,3], [7,1], [8,4]] . This is actually the in-order traversal of the resulting tree. Think hard about how to reconstruct the tree given the in-order traversal and the insertion order (this part will be linear time).
More hints coming if you really need them.
Can we find the kth largest element using inorder traversal without knowing the height of the binary search tree?
Or is there a way where we make a new pattern of traversal like "RIGHT ROOT LEFT"
Can we find the kth largest element using inorder traversal without knowing the height of the binary search tree?
Yes we can.
We can do that using some extra space.
We do not necessarily need to do RIGHT-ROOT-LEFT to find out kth largest element (Although doing so would avoid usage of extra space).
There are several approaches.
The most basic one is to have a queue.
Whenever you are traversing inorder-ly, keep inserting the values in the queue.
Needless to say, as it is a binary search tree, the queue will be sorted.
Thus the kth largest element is at queue.size() - 1 - k index. (Assuming that 0th largrst is the maximum element, 1st largest is 2nd maximum and so on)
This approach would require O(n) extra space regardless of k
To optimize the space used, we can use the information about k
Note that we only need element at (queue.size() - 1 - k)th index. Thus
we can have a queue of size (k+1). Before inserting an element, we will check if the queue has more than k element, if it has, we would remove one element from front as we do not require it.
After the traversal is done, the kth largest element would be at the front of the queue.
Here is the java implementation of both the approaches :
import java.util.LinkedList;
import java.util.Queue;
class Node {
int data;
Node left;
Node right;
static Queue<Integer> efficient = new LinkedList<>();
static Queue<Integer> complete = new LinkedList<>();
Node(int n) {
this.data = n;
this.left = null;
this.right = null;
}
public static void inorder(Node node, int k) {
if (node == null) {
return;
}
inorder(node.left, k);
if (efficient.size() > k) {
efficient.poll();
}
efficient.add(node.data);
complete.add(node.data);
System.out.println(efficient.toString());
inorder(node.right, k);
}
public static void main(String[] args) {
Node root = new Node(7);
root.left = new Node(4);
root.left.left = new Node(1);
root.left.right = new Node(5);
root.left.right.right = new Node(6);
root.right = new Node(9);
int k = 2;
inorder(root, k);
System.out.println("Efficient queue size : " + efficient.size() + " " + efficient.peek());
System.out.println("Full queue size : " + complete.size() + " " + complete.toArray()[complete.size() - 1 - k]);
}
}
Run this and you will know how efficient queue grows.
Please note that here, k should be less than the number of nodes in the tree. If it is not, then the answer would be the smallest element.
Other approaches uses a heap for more general solution. In such cases the tree is not required to be a binary search tree.
What about this:
let x be the node corresponding to the minimum element of the tree (e.g. x = T.root; while (x->right != NULL) { x = x->right; })
Now repeat x = x.predecessor() k-1 times (obviously, take care of edge case)
return x (you've found the k-th largest element in the tree)
Implementing predecessor and successor methods on a BST isn't hard, and it's easy when nodes have an additional pointer to parent node.
Are you talking about a simple binary tree or any tree like AVL tree?
If I understand correctly, you don't need to know the height at all...
Inorder traversal - RIGHT ROOT LEFT - is supposed to go from the highest value to the lowest.
Each time you enter the function, you may increase a static variable(or send another argument to the function) - until you get to K.
You may also maintain a degree tree, and know directly where to go through that tree.
Given a binary search tree, in which any two nodes are swapped. So we need to find those two nodes and swap them back(we need to swap the nodes, not the data)
I tried to do this by making an additional array which has the inorder traversal of the tree and also saves the pointer to each node.
Then we just traverse the array and find the two nodes that are not in the sorted order, now these two nodes are searched in the tree and then swapped
So my question is how to solve this problem in O(1) space ?
In order traversal on a BST gives you a traversal on the elements, ordered.
You can use an in-order traversal, find the two out of place elements (store them in two pointers) and swap them back.
This method is actually creating the array you described on the fly, without actually creating it.
Note that however, space consumption is not O(1), it is O(h) where h is the height of the tree, due to the stack trace. If the tree is balanced, it will be O(logn)
Depending on the BST this can be done in O(1).
For instance, if the nodes of the tree have a pointer back to their parents you can use the implementation described in the nonRecrusiveInOrderTraversal section of the Wikipedia page for Tree_traversal.
As another possibility, if the BST is stored as a 1-dimensional array, instead of with pointers between nodes, you can simply walk over the array (and do the math to determine each node's parent and children).
While doing the traversal/walk, check to see if the current element is in the correct place.
If it isn't, then you can just see where in the tree it should be, and swap with the element in that location. (take some care for if the root is in the wrong place).
We can modified the isBST() method as below to swap those 2 randomly swapped nodes and correct it.
/* Returns true if the given tree is a binary search tree
(efficient version). */
int isBST(struct node* node)
{
struct node *x = NULL;
return(isBSTUtil(node, INT_MIN, INT_MAX,&x));
}
/* Returns true if the given tree is a BST and its
values are >= min and <= max. */
int isBSTUtil(struct node* node, int min, int max, struct node **x)
{
/* an empty tree is BST */
if (node==NULL)
return 1;
/* false if this node violates the min/max constraint */
if (node->data < min || node->data > max) {
if (*x == NULL) {
*x = node;//same the first incident where BST property is not followed.
}
else {
//here we second node, so swap it with *x.
int tmp = node->data;
node->data = (*x)->data;
(*x)->data = tmp;
}
//return 0;
return 1;//have to return 1; as we are not checking here if tree is BST, as we know it is not BST, and we are correcting it.
}
/* otherwise check the subtrees recursively,
tightening the min or max constraint */
return
isBSTUtil(node->left, min, node->data-1, x) && // Allow only distinct values
isBSTUtil(node->right, node->data+1, max, x); // Allow only distinct values
}
Looking for an in-place O(N) algorithm which prints the node pair(while traversing the tree) like below for a given balanced binary tree:
a
b c
d e f g
Output: bc, de, ef, fg
Where 'a' is the root node, 'b' the left child, 'c' the right, etc.
Please note the pair 'ef' in the output.
Additional info based on comments below:
'node pair' is each adjacent pair at each level
each node can have 'parent' pointer/reference in addition to 'left' and 'right'
If we were to relax O(N) and in-place, are there more simple solutions (both recursive and iterative)?
If this tree is stored in an array, it can be rearranged to be "level continuous" (the first element is the root, the next two its children, the next four their children, etc), and the problem is trivial.
If it is stored in another way, it becomes problematic. You could try a breadth-first traversal, but that can consume O(n) memory.
Well I guess you can create an O(n log n) time algorithm by storing the current level and the path to the current element (represented as a binary number), and only storing the last visited element to be able to create pairs. Only O(1 + log n) memory. -> This might actually be an O(n) algorithm with backtracking (see below).
I know there is an easy algorithm that visits all nodes in order in O(n), so there might be a trick to visit "sister" nodes in order in O(n) time. O(n log n) time is guaranteed tho, you could just stop at a given level.
There is a trivial O(n log n) algorithm as well, you just have to filter the nodes for a given level, increasing the level for the next loop.
Edit:
Okay, I created a solution that runs in O(n) with O(1) memory (two machine word sized variables to keep track of the current and maximal level /which is technically O(log log n) memory, but let's gloss over that/ and a few Nodes), but it requires that all Nodes contain a pointer to their parent. With this special structure it is possible to do an inorder traversal without an O(n log n) stack, only using two Nodes for stepping either left, up or right. You stop at a particular maximum level and never go below it. You keep track of the actual and the maximum level, and the last Node you encountered on the maximum level. Obviously you can print out such pairs if you encounter the next at the max level. You increase the maximum level each time you realize there is no more on that level.
Starting from the root Node in an n-1 node binary tree, this amounts to 1 + 3 + 7 + 15 + ... + n - 1 operations. This is 2 + 4 + 8 + 16 + ... + n - log2n = 2n - log2n = O(n) operations.
Without the special Node* parent members, this algorithm is only possible with O(log n) memory due to the stack needed for the in-order traversal.
Assuming you have the following structure as your tree:
struct Node
{
Node *left;
Node *right;
int value;
};
You can print out all pairs in three passes modifying the tree in place. The idea is to link nodes at the same depth together with their right pointer. You traverse down by following left pointers. We also maintain a count of expected nodes for each depth since we don't null terminate the list for each depth. Then, we unzip to restore the tree to its original configuration.
The beauty of this is the zip_down function; it "zips" together two subtrees such that the right branch of the left subtree points to the left branch of the right subtree. If you do this for every subtree, you can iterate over each depth by following the right pointer.
struct Node
{
Node *left;
Node *right;
int value;
};
void zip_down(Node *left, Node *right)
{
if (left && right)
{
zip_down(left->right, right->left);
left->right= right;
}
}
void zip(Node *left, Node *right)
{
if (left && right)
{
zip(left->left, left->right);
zip_down(left, right);
zip(right->left, right->right);
}
}
void print_pairs(const Node * const node, int depth)
{
int count= 1 << depth;
for (const Node *node_iter= node; count > 1; node_iter= node_iter->right, --count)
{
printf("(%c, %c) ", node_iter->value, node_iter->right->value);
}
if (node->left)
{
print_pairs(node->left, depth + 1);
}
}
void generate_tree(int depth, Node *node, char *next)
{
if (depth>0)
{
(node->left= new Node)->value= (*next)++;
(node->right= new Node)->value= (*next)++;
generate_tree(depth - 1, node->left, next);
generate_tree(depth - 1, node->right, next);
}
else
{
node->left= NULL;
node->right= NULL;
}
}
void print_tree(const Node * const node)
{
if (node)
{
printf("%c", node->value);
print_tree(node->left);
print_tree(node->right);
}
}
void unzip(Node * const node)
{
if (node->left && node->right)
{
node->right= node->left->right;
assert(node->right->value - node->left->value == 1);
unzip(node->left);
unzip(node->right);
}
else
{
assert(node->left==NULL);
node->right= NULL;
}
}
int _tmain(int argc, _TCHAR* argv[])
{
char value_generator= 'a';
Node root;
root.value= value_generator++;
generate_tree(2, &root, &value_generator);
print_tree(&root);
printf("\n");
zip(root.left, root.right);
print_pairs(&root, 0);
printf("\n");
unzip(&root);
print_tree(&root);
printf("\n");
return 0;
}
EDIT4: in-place, O(n) time, O(log n) stack space.