wxErlang Method for getting screen dimensions - windows

I am starting to play with wxErlang on XP, and am looking for a method of getting the screens dimension, so that I can cause my app to be drawn on the lower right hand corner of the screen. The wxErlang documentation seems to have an undue number of references to the wxWidgets c++ external documentation.
After Googling for a bit I ended up here, which seems to describe what I am looking for.
void wxClientDisplayRect
(
int * x,
int * y,
int * width,
int * height
);
Returns the dimensions of the work area on the display.
On Windows this means the area not covered by the taskbar, etc. Other platforms are currently defaulting to the whole display until a way is found to provide this info for all window managers, etc.
Include file:
#include <wx/gdicmn.h>
After searching the wxErlang doc, I haven't found anything corresponding to this function, nor recognized any hint of what should be used.
How does one get the screen dimensions, using wxErlang, so the window being drawn, can be set to the lower right hand corner of the screen?

It can't be done, hence it is a good reason to not use it.

Related

AccessibleObjectFromPoint and per-monitor DPI

I'm using accessibility with the AccessibleObjectFromPoint function, and I'd like it to work correctly on a per-monitor DPI environment. Unfortunately, I can't get it to work. I tried many things, and the situation for now is:
My app is marked as per-monitor-DPI-aware in the manifest. (True/PM)
I use GetCursorPos and then AccessibleObjectFromPoint.
How can the problem be reproduced:
Have two monitors, one with 100% DPI, the other with 125%.
Run Chrome on the 125% monitor.
Use AccessibleObjectFromPoint on one of the tab names, it won't work.
It works with some apps (DPI-aware, it seems, like explorer), but doesn't work with others. I tried several relevant functions, such as GetPhysicalCursorPos and PhysicalToLogicalPointForPerMonitorDPI, but nothing works.
It's worth noting that Microsoft's inspect.exe works as expected.
I’ve been struggling with this exact same problem for several weeks and can now tell you my findings. Unfortunately I can’t give you more than a hint of code, because the project I am working on, is proprietary.
The issue started at Windows 8.1. The problem did not exist on Windows 7 or Vista, because AccessibleObjectFromPoint always used raw physical coordinates, as documented here: https://msdn.microsoft.com/en-us/library/windows/desktop/dd317984(v=vs.85).aspx .
“Microsoft Active Accessibility does not use logical coordinates. The following methods and functions either return physical coordinates or take them as parameters.” This has not been true since Windows 8.1.
AccessibleObjectFromPoint now uses a flawed calculation that cannot always find the correct window for reasons similar to my question here: High DPI scaling, mouse hooks and WindowFromPoint .
My findings lead me to one conclusion: The API is broken. This does not mean it is not possible though.
Possible solutions I have partially tested that seem to work follow.
Prerequisites are that you
1/. Make your process per monitor DPI aware, NOT USING THE MANIFEST (more on that later).
2/. Determine the hWnd of the window you want to query (WindowFromPoint() variants)
3/. Determine the monitor DPI of the queried hWnd
4/. Determine the DPI of your process
5/. Determine the DPI of the queried hWnd
6/. Determine the monitor origin and offset for the queried hWnd (MonitorFromWindow() and GetMonitorInfo() )
Next, depends on your platform
Windows 10.0.14393+
Write a function that finds the IAccessible (AccessibleObjectFromWindow() ) from the top level window, and then recursively call IAccessible::accHitTest until you reach the bottom-most IAccessible and perhaps ChildID data. Return that as if you would call AccessibleObjectFromPoint.
To call it successfully, you will need to scale the (x,y) co-ordinates into the scale system of the queried hWnd, using the DPIs and co-ordinates fetched in the list above. Watch out for systems where monitors are not the same size or if monitors are partially offset, or above and below.
And now for the important part for 10.0.14393 – Set your thread to the same DPI_AWARENESS_CONTEXT of the hWnd you are querying. Now call your new function. Now revert your thread to monitor DPI aware, and voila, it works, even if the window is not maximised. This is why you must not use the manifest.
If you are on Windows 8.1 to 10.0.10586 you have a tougher task.
Instead of calling accHitTest, as above, you have to recursively call AccessibleChildren and iterate the call IAccessible::accLocation to determine if your test point is within each child. This is tricky and starts to get really messy when you get to e.g. combo boxes in products like Office, which is only system DPI aware.
That’s all I can give you for now.
To do it successfully on multi-platform (mine has to work from Vista to Windows-Current) the only really safe bet is to write a wrapper DLL in C++ that can determine at runtime which OS it is on and change code path accordingly. The reason you want to do it in C++ is to avoid passing IAccessible objects across the .Net/unmanaged marshalling boundary. You can call IUnknown::Release on objects you don’t need to return n the unmanaged side. You can do it all in .Net, but it will be slow.
P.S. also watch out for Chrome returning infinite trees where parents are children of their parents, some snity checks are required. Also, Chrome does not return accRole correctly, and will give you HTML tags instead of VT_I4.
Good luck
A fairly workable solution is as follows, in your IAccessible recursive function:
Use getwindowrect to capture the physical right on main window
Use accChild.accLocation in loop to capture left and Width on each Object
Add this simple test
If l > rct2r.Right And l > arrIACC.x2 Then
arrIACC.x2 = l + w
End If
if dpi = 100 then no Object is furter out than physical right
if dpi > 100 then closebutton is...x pix offset
Use the difference to rescale all values you are in use of Width
arrIACC.w1 = CInt(((-rct2r.Left + arrIACC.w1) / arrIACC.x2) * rct2r.Right)
This solution is from an Excel plugin I have developed, I was testing the Width of the quick access toolbar qat and my result was +- 5 pixels regardless of any DPI.

Why might the scaling of SetWindowExtEx be just wrong?

I am trying to scale images/text etc using MM_ANISTROPIC and what I've done is the following (by the way if the syntax is a little weird, it's originally from delphi so treat the following as pseudocode)
I would expect the following code to produce a rectangle that is 70% of the width of the PaintBox and 30% of the height, yet it doesn't, instead it it noticeably too small.
SetMapMode(hdc,MM_ANISOTROPIC);
SetWindowExtEx(hdc,100,100,0);
SetViewportExtEx(hdc,70,30,0);
Rectangle(hdc, 0,0,PaintBox.width-1,PaintBox.Height-1);
if, on the other hand I change the code so that the SetWindowExtEx has 91 instead of 100 as its parameters (as shown below) then it works, which makes no sense to me at all...
SetMapMode(hdc,MM_ANISOTROPIC);
SetWindowExtEx(hdc,91,91,0);
SetViewportExtEx(hdc,70,30,0);
Rectangle(hdc, 0,0,PaintBox.width-1,PaintBox.Height-1);
My sanity test case was to add the following pseudocode
SetMapMode(hdc,MM_TEXT);
DrawLine(hdc,Round(PaintBox.width*0.7),0,Round(PaintBox.width*0.7),PaintBox.Height-1);
DrawLine(hdc,0,Round(PaintBox.height*0.3),PaintBox.width-1,Round(PaintBox.height*0.3));
I would have expected this to overwrite the lower / bottom edges of my original Rectangle but it does not unless I uses that 91,91 SetWindowExtEx.
Can anyone duplicate this?
FURTHER EDIT: Here is my exact original code I had given pseudo code before to make the question more accessible to non-delphi users but one of my commenters wanted full code to see if my contention that it was a delphi quirk was true or not.
The entire project consisted of a VCL form with a rectangular paintbox dropped on it centered so there was space all around it, and its onPaint event was set to the code below resulting in this image::
procedure TForm11.PaintBox2Paint(Sender: TObject);
var
hdc:THandle;
res:TPoint;
procedure SetupMapMode;
begin
SetMapMode(hdc,MM_ANISOTROPIC);
SetWindowExtEx(hdc,100,100,0);
SetViewportExtEx(hdc,70,30,0);
// These lines are required when we're painting to a TPaintBox but can't be used
// if we're paiting to a TPanel and they were NOT in my original question but only
// got added as part of the answer
// SetViewportOrgEx(hdc,PaintBox2.Left,PaintBox2.Top,#ZeroPoint);
// SetWindowOrgEx(hdc,0,0,#ZeroPoint);
end;
begin
//draw a rectangle to frame the Paintbox Surface
PaintBox2.Canvas.Pen.Style:=psSolid;
PaintBox2.Canvas.Pen.width:=2;
PaintBox2.Canvas.Pen.Color:=clGreen;
PaintBox2.Canvas.Brush.Style:=bsClear;
PaintBox2.Canvas.Rectangle(0,0,PaintBox2.Width-1,PaintBox2.Height-1);
PaintBox2.Canvas.Brush.Style:=bsSolid;
//initialize convenience variable
hdc:=PaintBox2.Canvas.Handle;
SetTextAlign(hdc,TA_LEFT);
//as doing things to the PaintBox2.Canvas via Delphi's interface tends to reset
//everything, I'm ensuring the map mode gets set **immediately** before
//each drawing call
SetupMapMode;
/// Draw Text at the bottom of the PaintBox2.Canvas (though as it's mapped it
/// SHOULD be 1/3 of the way down and much smaller instead)
TextOut(hdc,200,PaintBox2.Height-PaintBox2.Canvas.TextHeight('Ap'),'Hello, World!',13);
PaintBox2.Canvas.Pen.Color:=clblue;
PaintBox2.Canvas.Brush.Style:=bsClear;
//ensure it's set before doing the rectangle
SetupMapMode;
// Redraw the same rectangle as before but in the mapped mode
Rectangle(hdc, 0,0,PaintBox2.Width-1,PaintBox2.Height-1);
PaintBox2.Canvas.Brush.Style:=bsSolid;
//reset the map mode to normal
SetMapMode(hdc,MM_Text);
//draw text at the "same" position as before but unmapped...
TextOut(hdc,200,PaintBox2.Height-PaintBox2.Canvas.TextHeight('Ap'),'Goodbye, World!',15);
//Draw lines exactly at 70% of the way across and 30% of the way down
//if this works as expected they should overwrite the right and bottom
//borders of the rectangle drawn in the mapped mode
PaintBox2.Canvas.Pen.Color:=RGB(0,255,255);
PaintBox2.Canvas.MoveTo(Round(PaintBox2.Width*0.7),0);
PaintBox2.Canvas.LineTo(Round(PaintBox2.Width*0.7),PaintBox2.Height);
PaintBox2.Canvas.MoveTo(0,Round(PaintBox2.Height*0.3));
PaintBox2.Canvas.LineTo(PaintBox2.Width,Round(PaintBox2.Height*0.3));
end;
Okay, I don't know WHY the following is necessary -- it may be a Delphi quirk, the fact that I'm using a TPaintBox with is a TGraphicControl rather than a Component, or if I'm missing out on some fundamental concept on how this whole mapping mode works, BUT if I add the following code:
ZeroPoint:=TPoint.Zero;
SetViewportOrgEx(hdc,PaintBox1.Left,PaintBox1.Top,#ZeroPoint);
SetWindowOrgEx(hdc,0,0,#ZeroPoint);
Then it all displays as expected. Anyone have any explanations as to why this is necessary?
EDIT: Okay, I've got a PARTIAL explanation. It has to do with the control I was painting on being a TPaintBox, which is a TGraphic control rather than a TWinControl. To wit:
TGraphicControl is the base class for all lightweight controls.
TGraphicControl supports simple lightweight controls that do not need the ability to accept keyboard input or contain other controls. Since lightweight controls do not wrap Windows screen objects, they are faster and user fewer resources than controls based on TWinControl.
As such, although they APPEAR to have a separate canvas, I have this sneaking feeling that they are really sharing the form's canvas which is why, when I switched to a TWinControl descendant, which DOES own its own Windows DC, then the display worked as expected without setting the ViewpointOrg.
So it was a Delphi quirk after all...!

Capturing screenshot of windowed OpenGL window in AutoIt?

For my graphics class, I need to match an OpenGL sample output in a pixel-perfect way.
I figured it would be cool if I could spawn the sample, send it some input, then take a screenshot of the exact OpenGL area, do the same for mine, and then just compare those screenshots. I also figured something like AutoIT would be the easiest way to do something like this.
I know that I can use the screencapture function, but I'm unsure of how to get the exact coordinates and size of the OpenGL area of the window (not the title bar/surrounding window stuff).
If anybody could help me out that would be awesome.
Or if anybody can think of an easier solution than AutoIt, and can point me in the right direction, that'd be great too.
EDIT: I also don't have access to the source code of the sample output program.
AutoIt is a pretty good tool for this job. I think you already found the _ScreenCapture in the help file, it has parameters for: X left, Y top, X right and Y bottom coordinates. However, the _ScreenCapture function stores to a file. I've made a library where you can capture part of the screen, or a window, and save this to memory. Then you can get the pixel colors from the memory and compare them to your existing pixels. You can find it here: http://www.autoitscript.com/forum/topic/63318-get-or-read-pixel-from-memory-udf-pixelgetcolor-au3/
The part of a window which does not include the titlebar and the borders is called the 'client area'. You can get the width and the height of the client area with the WinGetClientSize. Alternatively, you can use ControlGetPos on the OpenGL control to get the X and Y relative to the window, and the width and height of the OpenGL control. Combined with WinGetPos you should be able to calculate the values you need for _ScreenCapture. You should be able to find out a good approach if you use the "AutoIt window info" tool.
Finally, a simple and short solution which gives you little control, but might be just what you need, is the PixelChecksum function. Once you have the coordinates of the OpenGL part, you can use PixelChecksum and get a value corresponding to the pixels of the screen (a checksum of the pixels). You can then compare this value to a pre-recorded value to tell whether the pixels on the screen are exactly the same. Check the Autoit help file of PixelChecksum for an example.
If you want to capture data from an OpenGL buffer, here is how you can do it with legacy OpenGL (version 1.2 or so)
glFinish();
glReadBuffer(GL_FRONT);
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glPixelStorei(GL_PACK_ROW_LENGTH, 0);
glPixelStorei(GL_PACK_SKIP_ROWS, 0);
glPixelStorei(GL_PACK_SKIP_PIXELS, 0);
glReadPixels(ox, oy, w, h, mode, GL_UNSIGNED_BYTE, img);
where:
ox and oy are origin x and y
w and h are width and height
mode is the mode, like GL_BGR if you want to save to BMP
img is a pointer to unsigned int * to copy the image to
You can search for glReadPixels on the internet and see the reference for more information.

Calculate actual size needed for a MATLAB uicontrol

I'm trying to calculate the actual size needed for uicontrols in a GUI so the GUI can resize itself appropriately. My problem is that the Extent property of a uicontrol is only the text area, and I can't find a way to determine the size of the surrounding control (such as the down arrow in a popup or the margin of an edit control). Is there a way to get the size of the decorations on a control?
I saw this related question on MATLAB Answers, which looked like it ended with no solution as well.
Edit:
For example, I want to calculate how big this popup should be to avoid cutting off the contents:
uicontrol('style', 'popup', 'string', {'a long string'})
Extent only tells me how big "a long string" is, and I still don't know how big to make the popup. I want a way to determine how much extra space is needed on the user's display (without assuming which OS or font sizes they use).
You can use get(hObject,'extent') to find out how much space the string contained in the uicontrol takes up. You can see if this is larger than the uicontrol's position.
The uicontrol Position property gives you the height and width of the bounding rectangle for the control. This has always worked for me. Is there a control where this property does not provide enough information?
If the GUI you're building can be assembled exclusively from Java components, you can use MATLAB's Java integration to create and drive a window using Java Swing components (all from M-code). That sidesteps the problem entirely, since the Java layout managers can do UI layout properly.

What is a robust method for capturing screen of child window in Windows 7?

Pardon my frustration. I've asked about this in many places and I seriously don't think that there wouldn't be a way in Windows 7 SDK to accomplish this.
All I want, is to capture part of a 'child window' ( setParent() ) created by a parent. I used to do this with bitblt() but the catch is that the child window can be any type of application, and in my case has OpenGL running in a section of it. If I bitblt() that, then the OGL part comes blank, doesn't get written to the BMP.
DWM, particularly dwmRegisterThumbnail() doesn't allow thumbnail generation of child windows. So please give me a direction.
Thanks.
It's been a while since I did any of this, so my explanation might be a bit vague, but from what I remember, the Windows doesn't "see" the OpenGL rendered inside the window.
What Windows does is create the window at the specified size and then "hands it over" to OpenGL for rendering. This means that you can't get at the pixels as rendered from the Windows side of the code.
When we wanted to capture the 3D we had to re-render the screen to an off screen bitmap which was then saved (or printed).
Obviously a whole screen capture (Print Screen) works because it's reading the final pixels.
I suggest that you:
Forget the Thumbnail part of the task (in terms of capture).
Calculate where your window is.
Capture full screen.
Excise the area you are interested in (using data from step 2).
Rescale to the appropriate thumbnail size.
Sorry, its more work, but it should work, which is better than what you have right now.
This may help:
http://code.google.com/p/telekinesis/source/browse/trunk/Mac/Source/glgrab.c?r=140
http://www.codeproject.com/KB/dialog/screencap.aspx
Also Java's Robot class (http://java.sun.com/javase/6/docs/api/java/awt/Robot.html#createScreenCapture%28java.awt.Rectangle%29)
I don't have access to the source code of any child window that may be open including the one with OpenGL

Resources