Related
I'm trying to create a predicate that receives a list of lists and returns a list of lists containing all the unitary lists (lists whose length is 1) from the first list, however it is not working. This is what I created:
elimina_listas_nao_unitarias_lista_de_listas([[A]|T],N_List):-
length([A], 1),
N_List is [H|N_List_T],
elimina_listas_nao_unitarias_lista_de_listas(T, N_List_T).
elimina_listas_nao_unitarias_lista_de_listas([[A]|T], N_List):-
length([A], X),
X > 1,
elimina_listas_nao_unitarias_lista_de_listas(T, N_List2).
Thi is what it should do:
elimina_listas_nao_unitarias_lista_de_listas([[1,2],[1,2,3],[3]], [3])
elimina_listas_nao_unitarias_lista_de_listas([[1,2],[1,2,3],[3,4,5]], [])
It is retuning false currently everytime
Let's take a look at your first rule. The first goal always succeeds, since you are asking if a list with a single element is of length 1. Just try it at the prompt:
?- length([A], 1).
true
Instead, you probably want to have a variable without the brackets in the head of the first list (e.g. [L|Ls]) and ensure that it is a list of length 1:
?- length(L,1).
L = [_A]
The same goes for the first list in the head of your second rule and its first goal. In your second goal you are trying to evaluate [H|N_List_T] as an arithmetic expression with is/2 such that N_List holds the value. Besides the fact that this doesn't make sense, you can try that at the prompt and see how this goal can't succeed:
?- N_List is [H|N_List_T].
ERROR!!
TYPE ERROR- string must contain a single character to be evaluated as an arithmetic expression: expected evaluable term, got [_131245|_131246]
Instead, you want to unify the two terms:
?- N_List = [H|N_List_T].
N_List = [H|N_List_T]
However, you can get rid of this goal entirely if you write [H|N_List_T] as the second argument in the head of the rule. Additionally, you might want the unitary list L in the head of the second list instead of the variable H. Furthermore you are missing a case, namely the first list being []. In that case the second list is empty as well, since the empty list clearly does not contain any unitary lists. Finally, I would note that it might enhance the readability of your code if you picked a somewhat simpler and more declarative name, say listas_unitarias/2. Putting all this together, you might end up with a predicate like this:
listas_unitarias([],[]).
listas_unitarias([L|Ls],[L|Ss]) :-
length(L,1),
listas_unitarias(Ls,Ss).
listas_unitarias([L|Ls],Ss) :-
length(L,X),
dif(X,1),
listas_unitarias(Ls,Ss).
Your second example query yields the desired result
?- listas_unitarias([[1,2],[1,2,3],[3,4,5]],U).
U = []
For your first example query the result is slightly different:
?- listas_unitarias([[1,2],[1,2,3],[3]], U).
U = [[3]] ? ;
no
The only unitary list is in a list itself. That would make more sense, since the first argument might contain more than one such list. Consider the following case:
?- listas_unitarias([[1],[2,3],[4],[]],U).
U = [[1],[4]] ? ;
no
However, if you meant to get the unitary lists one at a time, the predicate would look slightly different:
listas_unitarias2([L|_Ls],L) :-
length(L,1).
listas_unitarias2([_L|Ls],U) :-
listas_unitarias2(Ls,U).
As would the results of the queries:
?- listas_unitarias2([[1,2],[1,2,3],[3]], U).
U = [3] ? ;
no
?- listas_unitarias2([[1],[2,3],[4],[]],U).
U = [1] ? ;
U = [4] ? ;
no
Especially your second example query: It would fail instead of producing the empty list as a solution:
?- listas_unitarias2([[1,2],[1,2,3],[3,4,5]],U).
no
?- listas_unitarias2([[1,2],[1,2,3],[3,4,5]],[]).
no
EDIT: As pointed out by #false in the comments the combined use of length/2 and dif/2 in the third rule doesn't terminate for [_,_|_] so the query
?- listas_unitarias([[1],[_,_|_],[2],[3,4]],U).
U = [[1],[2]] ? ;
U = [[1],[2]] ? ;
...
does not terminate as well. However, it is reasonable to expect termination in this case, since a list headed by two elements certainly can't be unitary. So, instead of using length/2 you might consider describing the four cases that cover all possibilities. 1) If the first list is empty so is the second list. 2) If the head of the first list is [] it's not in the second list. 3) If the head of the first list is [A] it is in the second list. 4) If the head of the first list has at least two elements it's not in the second list.
listas_unitarias([],[]). % case 1)
listas_unitarias([[]|Ls],Ss) :- % case 2)
listas_unitarias(Ls,Ss).
listas_unitarias([[A]|Ls],[[A]|Ss]) :- % case 3)
listas_unitarias(Ls,Ss).
listas_unitarias([[_,_|_]|Ls],Ss) :- % case 4)
listas_unitarias(Ls,Ss).
With this version the above query terminates after finding the only solution:
?- listas_unitarias([[1],[_,_|_],[2],[3,4]],U).
U = [[1],[2]]
The other queries from above yield the same results:
?- listas_unitarias([[1,2],[1,2,3],[3,4,5]],U).
U = []
?- listas_unitarias([[1,2],[1,2,3],[3]], U).
U = [[3]]
?- listas_unitarias([[1],[2,3],[4],[]],S).
S = [[1],[4]]
I am new to prolog, I am just learning about lists and I came across this question. The answer works perfect for a list of integers.
minimo([X], X) :- !.
minimo([X,Y|Tail], N):-
( X > Y ->
minimo([Y|Tail], N)
;
minimo([X|Tail], N)
).
How can I change this code to get the smallest int from a mixed list?
This
sint([a,b,3,2,1],S)
should give an answer:
S=1
you could just ignore the problem, changing the comparison operator (>)/2 (a binary builtin predicate, actually) to the more general (#>)/2:
minimo([X], X) :- !.
minimo([X,Y|Tail], N):-
( X #> Y ->
minimo([Y|Tail], N)
;
minimo([X|Tail], N)
).
?- minimo([a,b,3,2,1],S).
S = 1.
First of all, I don't think the proposed implementation is very elegant: here they pass the minimum found element thus far by constructing a new list each time. Using an additional parameter (we call an accumulator) is usually the way to go (and is probably more efficient as well).
In order to solve the problem, we first have to find an integer. We can do this like:
sint([H|T],R) :-
integer(H),
!,
sint(T,H,R).
sint([_|T],R) :-
sint(T,R).
So here we check if the head H is an integer/1. If that is the case, we call a predicate sint/3 (not to be confused with sint/2). Otherwise we call recursively sint/2 with the tail T of the list.
Now we still need to define sint/3. In case we have reached the end of the list [], we simply return the minum found thus far:
sint([],R,R).
Otherwise there are two cases:
the head H is an integer and smaller than the element found thus far, in that case we perform recursion with the head as new current minimum:
sint([H|T],M,R):
integer(H),
H < M,
!,
sint(T,H,R).
otherwise, we simply ignore the head, and perform recursion with the tail T.
sint([_|T],M,R) :-
sint(T,M,R).
We can put the recursive clauses in an if-then-else structure. Together with the earlier defined predicate, the full program then is:
sint([H|T],R) :-
integer(H),
!,
sint(T,H,R).
sint([_|T],R) :-
sint(T,R).
sint([],R,R).
sint([H|T],M,R):
(
(integer(H),H < M)
-> sint(T,H,R)
; sint(T,M,R)
).
The advantage of this approach is that filtering and comparing (to obtain the minimum) is done at the same time, so we only iterate once over the list. This will usually result in a performance boost since the "control structures" are only executed once: more is done in an iteration, but we only iterate once.
We can generalize the approach by making the filter generic:
filter_minimum(Filter,[H|T],R) :-
Goal =.. [Filter,H],
call(Goal),
!,
filter_minimum(Filter,T,H,R).
filter_minimum(Filter,[_|T],R) :-
filter_minimum(Filter,T,R).
filter_minimum(_,[],R,R).
filter_minimum(Filter,[H|T],M,R) :-
Goal =.. [Filter,H],
(
(call(Goal),H < M)
-> filter_minimum(Filter,T,H,R)
; filter_minimum(Filter,T,M,R)
).
You can then call it with:
filter_minimum(integer,[a,b,3,2,1],R).
to filter with integer/1 and calculate the minimum.
You could just write a predicate that returns a list with the numbers and the use the above minimo/2 predicate:
only_numbers([],[]).
only_numbers([H|T],[H|T1]):-integer(H),only_numbers(T,T1).
only_numbers([H|T],L):- \+integer(H),only_numbers(T,L).
sint(L,S):-only_numbers(L,L1),minimo(L1,S).
I'm generating random coordinates and adding on my list, but first I need verify if that coordinate already exists. I'm trying to use member but when I was debugging I saw that isn't working:
My code is basically this:
% L is a list and Q is a count that define the number of coordinate
% X and Y are the coordinate members
% check if the coordniate already exists
% if exists, R is 0 and if not, R is 1
createCoordinates(L,Q) :-
random(1,10,X),
random(1,10,Y),
convertNumber(X,Z),
checkCoordinate([Z,Y],L,R),
(R is 0 -> print('member'), createCoordinates(L,Q); print('not member'),createCoordinates(L,Q-1).
checkCoordinate(C,L,R) :-
(member(C,L) -> R is 0; R is 1).
% transforms the number N in a letter L
convertNumber(N,L) :-
N is 1, L = 'A';
N is 2, L = 'B';
...
N is 10, L = 'J'.
%call createCoordinates
createCoordinates(L,20).
When I was debugging this was the output:
In this picture I'm in the firts interation and L is empty, so R should be 1 but always is 0, the coordinate always is part of the list.
I have the impression that the member clause is adding the coordinate at my list and does'nt make sense
First off, I would recommend breaking your problem down into smaller pieces. You should have a procedure for making a random coordinate:
random_coordinate([X,Y]) :-
random(1, 10, XN), convertNumber(XN, X),
random(1, 10, Y).
Second, your checkCoordinate/3 is converting Prolog's success/failure into an integer, which is just busy work for Prolog and not really improving life for you. memberchk/2 is completely sufficient to your task (member/2 would work too but is more powerful than necessary). The real problem here is not that member/2 didn't work, it's that you are trying to build up this list parameter on the way out, but you need it to exist on the way in to examine it.
We usually solve this kind of problem in Prolog by adding a third parameter and prepending values to the list on the way through. The base case then equates that list with the outbound list and we protect the whole thing with a lower-arity procedure. In other words, we do this:
random_coordinates(N, Coordinates) :- random_coordinates(N, [], Coordinates).
random_coordinates(0, Result, Result).
random_coordinates(N, CoordinatesSoFar, FinalResult) :- ...
Now that we have two things, memberchk/2 should work the way we need it to:
random_coordinates(N, CoordinatesSoFar, FinalResult) :-
N > 0, succ(N0, N), % count down, will need for recursive call
random_coordinate(Coord),
(memberchk(Coord, CoordinatesSoFar) ->
random_coordinates(N, CoordinatesSoFar, FinalResult)
;
random_coordinates(N0, [Coord|CoordinatesSoFar], FinalResult)
).
And this seems to do what we want:
?- random_coordinates(10, L), write(L), nl.
[[G,7],[G,3],[H,9],[H,8],[A,4],[G,1],[I,9],[H,6],[E,5],[G,8]]
?- random_coordinates(10, L), write(L), nl.
[[F,1],[I,8],[H,4],[I,1],[D,3],[I,6],[E,9],[D,1],[C,5],[F,8]]
Finally, I note you continue to use this syntax: N is 1, .... I caution you that this looks like an error to me because there is no distinction between this and N = 1, and your predicate could be stated somewhat tiresomely just with this:
convertNumber(1, 'A').
convertNumber(2, 'B').
...
My inclination would be to do it computationally with char_code/2 but this construction is actually probably better.
Another hint that you are doing something wrong is that the parameter L to createCoordinates/2 gets passed along in all cases and is not examined in any of them. In Prolog, we often have variables that appear to just be passed around meaninglessly, but they usually change positions or are used multiple times, as in random_coordinates(0, Result, Result); while nothing appears to be happening there, what's actually happening is plumbing: the built-up parameter becomes the result value. Nothing interesting is happening to the variable directly there, but it is being plumbed around. But nothing is happening at all to L in your code, except it is supposedly being checked for a new coordinate. But you're never actually appending anything to it, so there's no reason to expect that anything would wind up in L.
Edit Notice that #lambda.xy.x solves the problem in their answer by prepending the new coordinate in the head of the clause and examining the list only after the recursive call in the body, obviating the need for the second list parameter.
Edit 2 Also take a look at #lambda.xy.x's other solution as it has better time complexity as N approaches 100.
Since i had already written it, here is an alternative solution: The building block is gen_coord_notin/2 which guarantees a fresh solution C with regard to an exclusion list Excl.
gen_coord_notin(C, Excl) :-
random(1,10,X),
random(1,10,Y),
( memberchk(X-Y, Excl) ->
gen_coord_notin(C, Excl)
;
C = X-Y
).
The trick is that we only unify C with the new result, if it is fresh.
Then we only have to fold the generations into N iterations:
gen_coords([], 0).
gen_coords([X|Xs], N) :-
N > 0,
M is N - 1,
gen_coords(Xs, M),
gen_coord_notin(X, Xs).
Remark 1: since coordinates are always 2-tuples, a list representation invites unwanted errors (e.g. writing [X|Y] instead of [X,Y]). Traditionally, an infix operator like - is used to seperate tuples, but it's not any different than using coord(X,Y).
Remark 2: this predicate is inherently non-logical (i.e. calling gen_coords(X, 20) twice will result in different substitutions for X). You might use the meta-level predicates var/1, nonvar/1, ground/1, integer, etc. to guard against non-sensical calls like gen_coord(1-2, [1-1]).
Remark 3: it is also important that the conditional does not have multiple solutions (compare member(X,[A,B]) and memberchk(X,[A,B])). In general, this can be achieved by calling once/1 but there is a specialized predicate memberchk/2 which I used here.
I just realized that the performance of my other solutions is very bad for N close to 100. The reason is that with diminishing possible coordinates, the generate and test approach will take longer and longer. There's an alternative solution which generates all coordinates and picks N random ones:
all_pairs(Ls) :-
findall(X-Y, (between(1,10,X), between(1,10,Y)), Ls).
remove_index(X,[X|Xs],Xs,0).
remove_index(I,[X|Xs],[X|Rest],N) :-
N > 0,
M is N - 1,
remove_index(I,Xs,Rest,M).
n_from_pool(_Pool, [], 0).
n_from_pool(Pool, [C|Cs], N) :-
N > 0,
M is N - 1,
length(Pool, L),
random(0,L,R),
remove_index(C,Pool,NPool,R),
n_from_pool(NPool, Cs, M).
gen_coords2(Xs, N) :-
all_pairs(Pool),
n_from_pool(Pool, Xs, N).
Now the query
?- gen_coords2(Xs, 100).
Xs = [4-6, 5-6, 5-8, 9-6, 3-1, 1-3, 9-4, 6-1, ... - ...|...] ;
false.
succeeds as expected. The error message
?- gen_coords2(Xs, 101).
ERROR: random/1: Domain error: not_less_than_one' expected, found0'
when we try to generate more distinct elements than possible is not nice, but better than non-termination.
I'm new to Prolog, and using GNU Prolog, so no clp(fd) allowed. What I'm trying to do is for a given integer N, generate a list with elements of 1 ~ N. So set(3,T). will output T = [1,2,3].
Here is what I have so far:
set(0,[]).
set(N,T):-set(N-1,T1),append(T1,[N],T).
When I try set(2,T), it crashes. I debugged with trace, and find out that it's not evaluating N-1, but rather doing N-1-1-1...
Anyone can tell me how to solve this?
Thank you.
n_ups(N, Xs) :-
length(Xs, N),
numbered_from(Xs, 1).
numbered_from([], _).
numbered_from([I0|Is], I0) :-
I1 is I0+1,
numbered_from(Is, I1).
In fact, the complexity is hidden within length/2.
It should be:
set(N,T):- N2 is N-1, set(N2,T1), append(T1,[N],T).
Arithmetic operations are performed by using is/2. N-1 is a shorthand for -(N,1) (just like N2 is N-1 is shorthand for is(N2, N-1)), so you were just creating infinite tree -(-(-(-(...),1),1,1,1).
Little educational note:
If you want set/2 to be proper relation so it can answer queries like set(3,X), set(X, [1,2,3]) and set(X,Y) without error then you should write this predicate that way:
set(0, []).
set(Value, List) :-
length(List, Value),
append(ShorterList, [Value], List),
ValueMinusOne is Value - 1,
set(ValueMinusOne, ShorterList).
That way result of arithmetic operation is always possible to obtain because input value (lenght of the list) is either explicitly given or generated from length/1.
Working on a predicate, rotate(L,M,N), where L is a new list formed by rotating M to the right N times.
My approach was to just append the tail of M to its head N times.
rotate(L, M, N) :-
( N > 0,
rotate2(L, M, N)
; L = M
).
rotate2(L, [H|T], Ct) :-
append(T, [H], L),
Ct2 is Ct - 1,
rotate2(L, T, Ct2).
Currently, my code returns L equal to the original M, no matter what N is set to.
Seems like when I'm recursing, the tail isn't properly moved to the head.
You can use append to split lists, and length to create lists:
% rotate(+List, +N, -RotatedList)
% True when RotatedList is List rotated N positions to the right
rotate(List, N, RotatedList) :-
length(Back, N), % create a list of variables of length N
append(Front, Back, List), % split L
append(Back, Front, RotatedList).
Note: this only works for N <= length(L). You can use arithmetic to fix that.
Edit for clarity
This predicate is defined for List and N arguments that are not variables when the predicate is called. I inadvertently reordered the arguments from your original question, because in Prolog, the convention is that strictly input arguments should come before output arguments. So, List and N and input arguments, RotatedList is an output argument. So these are correct queries:
?- rotate([a,b,c], 2, R).
?- rotate([a,b,c], 1, [c,a,b]).
but this:
?- rotate(L, 2, [a,b,c]).
will go into infinite recursion after finding one answer.
When reading the SWI-Prolog documentation, look out for predicate arguments marked with a "?", as in length. They can be used as shown in this example.