I can't seem to find a definitive answer on this and I want to make sure I understand this to the "n'th level" :-)
a = { "a" => "Hello", "b" => "World" }
a.count # 2
a.size # 2
a.length # 2
a = [ 10, 20 ]
a.count # 2
a.size # 2
a.length # 2
So which to use? If I want to know if a has more than one element then it doesn't seem to matter but I want to make sure I understand the real difference. This applies to arrays too. I get the same results.
Also, I realize that count/size/length have different meanings with ActiveRecord. I'm mostly interested in pure Ruby (1.92) right now but if anyone wants to chime in on the difference AR makes that would be appreciated as well.
Thanks!
For arrays and hashes size is an alias for length. They are synonyms and do exactly the same thing.
count is more versatile - it can take an element or predicate and count only those items that match.
> [1,2,3].count{|x| x > 2 }
=> 1
In the case where you don't provide a parameter to count it has basically the same effect as calling length. There can be a performance difference though.
We can see from the source code for Array that they do almost exactly the same thing. Here is the C code for the implementation of array.length:
static VALUE
rb_ary_length(VALUE ary)
{
long len = RARRAY_LEN(ary);
return LONG2NUM(len);
}
And here is the relevant part from the implementation of array.count:
static VALUE
rb_ary_count(int argc, VALUE *argv, VALUE ary)
{
long n = 0;
if (argc == 0) {
VALUE *p, *pend;
if (!rb_block_given_p())
return LONG2NUM(RARRAY_LEN(ary));
// etc..
}
}
The code for array.count does a few extra checks but in the end calls the exact same code: LONG2NUM(RARRAY_LEN(ary)).
Hashes (source code) on the other hand don't seem to implement their own optimized version of count so the implementation from Enumerable (source code) is used, which iterates over all the elements and counts them one-by-one.
In general I'd advise using length (or its alias size) rather than count if you want to know how many elements there are altogether.
Regarding ActiveRecord, on the other hand, there are important differences. check out this post:
Counting ActiveRecord associations: count, size or length?
There is a crucial difference for applications which make use of database connections.
When you are using many ORMs (ActiveRecord, DataMapper, etc.) the general understanding is that .size will generate a query that requests all of the items from the database ('select * from mytable') and then give you the number of items resulting, whereas .count will generate a single query ('select count(*) from mytable') which is considerably faster.
Because these ORMs are so prevalent I following the principle of least astonishment. In general if I have something in memory already, then I use .size, and if my code will generate a request to a database (or external service via an API) I use .count.
In most cases (e.g. Array or String) size is an alias for length.
count normally comes from Enumerable and can take an optional predicate block. Thus enumerable.count {cond} is [roughly] (enumerable.select {cond}).length -- it can of course bypass the intermediate structure as it just needs the count of matching predicates.
Note: I am not sure if count forces an evaluation of the enumeration if the block is not specified or if it short-circuits to the length if possible.
Edit (and thanks to Mark's answer!): count without a block (at least for Arrays) does not force an evaluation. I suppose without formal behavior it's "open" for other implementations, if forcing an evaluation without a predicate ever even really makes sense anyway.
I found a good answare at http://blog.hasmanythrough.com/2008/2/27/count-length-size
In ActiveRecord, there are several ways to find out how many records
are in an association, and there are some subtle differences in how
they work.
post.comments.count - Determine the number of elements with an SQL
COUNT query. You can also specify conditions to count only a subset of
the associated elements (e.g. :conditions => {:author_name =>
"josh"}). If you set up a counter cache on the association, #count
will return that cached value instead of executing a new query.
post.comments.length - This always loads the contents of the
association into memory, then returns the number of elements loaded.
Note that this won't force an update if the association had been
previously loaded and then new comments were created through another
way (e.g. Comment.create(...) instead of post.comments.create(...)).
post.comments.size - This works as a combination of the two previous
options. If the collection has already been loaded, it will return its
length just like calling #length. If it hasn't been loaded yet, it's
like calling #count.
Also I have a personal experience:
<%= h(params.size.to_s) %> # works_like_that !
<%= h(params.count.to_s) %> # does_not_work_like_that !
We have a several ways to find out how many elements in an array like .length, .count and .size. However, It's better to use array.size rather than array.count. Because .size is better in performance.
Adding more to Mark Byers answer. In Ruby the method array.size is an alias to Array#length method. There is no technical difference in using any of these two methods. Possibly you won't see any difference in performance as well. However, the array.count also does the same job but with some extra functionalities Array#count
It can be used to get total no of elements based on some condition. Count can be called in three ways:
Array#count # Returns number of elements in Array
Array#count n # Returns number of elements having value n in Array
Array#count{|i| i.even?} Returns count based on condition invoked on each element array
array = [1,2,3,4,5,6,7,4,3,2,4,5,6,7,1,2,4]
array.size # => 17
array.length # => 17
array.count # => 17
Here all three methods do the same job. However here is where the count gets interesting.
Let us say, I want to find how many array elements does the array contains with value 2
array.count 2 # => 3
The array has a total of three elements with value as 2.
Now, I want to find all the array elements greater than 4
array.count{|i| i > 4} # =>6
The array has total 6 elements which are > than 4.
I hope it gives some info about count method.
Related
Given this hash:
numsHash = {5=>10, 3=>9, 4=>7, 2=>5, 20=>4}
How can I return the key-value pair of this hash if and when the sum of its keys would be under or equal to a maximum value such as 10?
The expected result would be something like:
newHash = { 5=>10, 3=>9, 2=>5 }
because the sum of these keys equals 10.
I've been obsessing with this for hours now and can't find anything that leads up to a solution.
Summary
In the first section, I provide some context and a well-commented working example of how to solve the defined knapsack problem in a matter of microseconds using a little brute force and some Ruby core classes.
In the second section, I refactor and expand on the code to demonstrate the conversion of the knapsack solution into output similar to what you want, although (as explained and demonstrated in the answer below) the correct output when there are multiple results must be a collection of Hash objects rather than a single Hash unless there are additional selection criteria not included in your original post.
Please note that this answer uses syntax and classes from Ruby 3.0, and was specifically tested against Ruby 3.0.3. While it should work on Ruby 2.7.3+ without changes, and with most currently-supported Ruby 2.x versions with some minor refactoring, your mileage may vary.
Solving the Knapsack Problem with Ruby Core Methods
This seems to be a variant of the knapsack problem, where you're trying to optimize filling a container of a given size. This is actually a complex problem that is NP-complete, so a real-world application of this type will have many different solutions and possible algorithmic approaches.
I do not claim that the following solution is optimal or suitable for general purpose solutions to this class of problem. However, it works very quickly given the provided input data from your original post.
Its suitability is primarily based on the fact that you have a fairly small number of Hash keys, and the built-in Ruby 3.0.3 core methods of Hash#permutation and Enumerable#sum are fast enough to solve this particular problem in anywhere from 44-189 microseconds on my particular machine. That seems more than sufficiently fast for the problem as currently defined, but your mileage and real objectives may vary.
# This is the size of your knapsack.
MAX_VALUE = 10
# It's unclear why you need a Hash or what you plan to do with the values of the
# Hash, but that's irrelevant to the problem. For now, just grab the keys.
#
# NB: You have to use hash rockets or the parser complains about using an
# Integer as a Symbol using the colon notation and raises SyntaxError.
nums_hash = {5 => 10, 3 => 9, 4 => 7, 2 => 5, 20 => 4}
keys = nums_hash.keys
# Any individual element above MAX_VALUE won't fit in the knapsack anyway, so
# discard it before permutation.
keys.reject! { _1 > MAX_VALUE }
# Brute force it by evaluating all possible permutations of your array, dropping
# elements from the end of each sub-array until all remaining elements fit.
keys.permutation.map do |permuted_array|
loop { permuted_array.sum > MAX_VALUE ? permuted_array.pop : break }
permuted_array
end
Returning an Array of Matching Hashes
The code above just returns the list of keys that will fit into your knapsack, but per your original post you then want to return a Hash of matching key/value pairs. The problem here is that you actually have more than one set of Hash objects that will fit the criteria, so your collection should actually be an Array rather than a single Hash. Returning only a single Hash would basically return the original Hash minus any keys that exceed your MAX_VALUE, and that's unlikely to be what's intended.
Instead, now that you have a list of keys that fit into your knapsack, you can iterate through your original Hash and use Hash#select to return an Array of unique Hash objects with the appropriate key/value pairs. One way to do this is to use Enumerable#reduce to call Hash#merge on each Hash element in the subarrays to convert the final result to an Array of Hash objects. Next, you should call Enumerable#unique to remove any Hash that is equivalent except for its internal ordering.
For example, consider this redesigned code:
MAX_VALUE = 10
def possible_knapsack_contents hash
hash.keys.reject! { _1 > MAX_VALUE }.permutation.map do |a|
loop { a.sum > MAX_VALUE ? a.pop : break }; a
end.sort
end
def matching_elements_from hash
possible_knapsack_contents(hash).map do |subarray|
subarray.map { |i| hash.select { |k, _| k == i } }.
reduce({}) { _1.merge _2 }
end.uniq
end
hash = {5 => 10, 3 => 9, 4 => 7, 2 => 5, 20 => 4}
matching_elements_from hash
Given the defined input, this would yield 24 hashes if you didn't address the uniqueness issue. However, by calling #uniq on the final Array of Hash objects, this will correctly yield the 7 unique hashes that fit your defined criteria if not necessarily the single Hash you seem to expect:
[{2=>5, 3=>9, 4=>7},
{2=>5, 3=>9, 5=>10},
{2=>5, 4=>7},
{2=>5, 5=>10},
{3=>9, 4=>7},
{3=>9, 5=>10},
{4=>7, 5=>10}]
I am trying to improve the performance of my code by removing any sources of type instability.
For example, I have several instances of Array{Any} declarations, which I know generally destroy performance. Here is a minimal example (greatly simplified compared to my code) of a 2D Array of LinearInterpolation objects, i.e
n,m=5,5
abstract_arr=Array{Any}(undef,n+1,m+1)
arr_x=LinRange(1,10,100)
for l in 1:n
for alpha in 1:m
abstract_arr[l,alpha]=LinearInterpolation(arr_x,alpha.*arr_x.^n)
end
end
so that typeof(abstract_arr) gives Array{Any,2}.
How can I initialize abstract_arr to avoid using Array{Any} here?
And how can I do this in general for Arrays whose entries are structures like Dicts() where the Dicts() are dictionaries of 2-tuples of Float64?
If you make a comprehension, the type will be figured out for you:
arr = [LinearInterpolation(arr_x, ;alpha.*arr_x.^n) for l in 1:n, alpha in 1:m]
isconcretetype(eltype(arr)) # true
When it can predict the type & length, it will make the right array the first time. When it cannot, it will widen or extend it as necessary. So probably some of these will be Vector{Int}, and some Vector{Union{Nothing, Int}}:
[rand()>0.8 ? nothing : 0 for i in 1:3]
[rand()>0.8 ? nothing : 0 for i in 1:3]
[rand()>0.8 ? nothing : 0 for i in 1:10]
The main trick is that you just need to know the type of the object that is returned by LinearInterpolation, and then you can specify that instead of Any when constructing the array. To determine that, let's look at the typeof one of these objects
julia> typeof(LinearInterpolation(arr_x,arr_x.^2))
Interpolations.Extrapolation{Float64, 1, ScaledInterpolation{Float64, 1, Interpolations.BSplineInterpolation{Float64, 1, Vector{Float64}, BSpline{Linear{Throw{OnGrid}}}, Tuple{Base.OneTo{Int64}}}, BSpline{Linear{Throw{OnGrid}}}, Tuple{LinRange{Float64}}}, BSpline{Linear{Throw{OnGrid}}}, Throw{Nothing}}
This gives a fairly complicated type, but we don't necessarily need to use the whole thing (though in some cases it might be more efficient to). So for instance, we can say
using Interpolations
n,m=5,5
abstract_arr=Array{Interpolations.Extrapolation}(undef,n+1,m+1)
arr_x=LinRange(1,10,100)
for l in 1:n
for alpha in 1:m
abstract_arr[l,alpha]=LinearInterpolation(arr_x,alpha.*arr_x.^n)
end
end
which gives us a result of type
julia> typeof(abstract_arr)
Matrix{Interpolations.Extrapolation} (alias for Array{Interpolations.Extrapolation, 2})
Since the return type of this LinearInterpolation does not seem to be of known size, and
julia> isbitstype(typeof(LinearInterpolation(arr_x,arr_x.^2)))
false
each assignment to this array will still trigger allocations, and consequently there actually may not be much or any performance gain from the added type stability when it comes to filling the array. Nonetheless, there may still be performance gains down the line when it comes to using values stored in this array (depending on what is subsequently done with them).
I have an array containing multiple arrays (the number may vary) of significant dimensions (an array may contain up to 150 objects).
With the array, I need to find a combination (one element for each sub-array) that matches a condition.
Due to the dimensions, I tried to use Enumerator::Lazy as follows
catch :match do
array[0].product(*array[1..-1]).lazy.each do |combination|
throw :match if ConditionMatcher.match(combination)
end
end
However, I realize when I call each the enumerator is evaluated and it performs very slowly.
I have tried to replace each with methods included in Enumerator::Lazy such as take_while
array[0].product(*array[1..-1]).lazy.take_while do |combination|
return false if ConditionMatcher.match(combination)
end
But also, in this case, the product is evaluated with low performance.
For better performance, even id I don't really like it, I'm thinking to replace product with a nested each loop. Something like
catch :match do
array[0].each do |first|
array[1].each do |second|
array[2].each do |third|
throw :match if ConditionMatcher.match([first, second, third])
end
end
end
end
Due to the fact that the number of sub-arrays changes from time to time. I'm not sure how to implement it.
Moreover, is there a better way to loop through all the sub-arrays without loading the entire set of combinations?
Update 1 -
Each sub-array contains an ActiveRecord::Relation on a polymorphic association. Therefore, each element of each combination responds to the same 2 methods (start_time and end_time) each returning an instance of Time.
The matcher checks if all the objects in the combination don't have overlapping times.
The problem is that Array#product already returns a huge array containing all combinations. With 3 sub-arrays containing 150 items each, it returns a 150 × 150 × 150 = 3,375,000 element array. Calling lazy on that array won't speed up anything.
To make product calculate the Cartesian product lazily (i.e. one combination after the other), you simply have to (directly) pass a block to it:
first, *others = array
first.product(*others) do |combination|
# ...
end
I'm attempting to solve http://projecteuler.net/problem=1.
I want to create a method which takes in an integer and then creates an array of all the integers preceding it and the integer itself as values within the array.
Below is what I have so far. Code doesn't work.
def make_array(num)
numbers = Array.new num
count = 1
numbers.each do |number|
numbers << number = count
count = count + 1
end
return numbers
end
make_array(10)
(1..num).to_a is all you need to do in Ruby.
1..num will create a Range object with start at 1 and end at whatever value num is. Range objects have to_a method to blow them up into real Arrays by enumerating each element within the range.
For most purposes, you won't actually need the Array - Range will work fine. That includes iteration (which is what I assume you want, given the problem you're working on).
That said, knowing how to create such an Array "by hand" is valuable learning experience, so you might want to keep working on it a bit. Hint: you want to start with an empty array ([]) instead with Array.new num, then iterate something num.times, and add numbers into the Array. If you already start with an Array of size num, and then push num elements into it, you'll end up with twice num elements. If, as is your case, you're adding elements while you're iterating the array, the loop never exits, because for each element you process, you add another one. It's like chasing a metal ball with the repulsing side of a magnet.
To answer the Euler Question:
(1 ... 1000).to_a.select{|x| x%3==0 || x%5==0}.reduce(:+) # => 233168
Sometimes a one-liner is more readable than more detailed code i think.
Assuming you are learning Ruby by examples on ProjectEuler, i'll explain what the line does:
(1 ... 1000).to_a
will create an array with the numbers one to 999. Euler-Question wants numbers below 1000. Using three dots in a Range will create it without the boundary-value itself.
.select{|x| x%3==0 || x%5==0}
chooses only elements which are divideable by 3 or 5, and therefore multiples of 3 or 5. The other values are discarded. The result of this operation is a new Array with only multiples of 3 or 5.
.reduce(:+)
Finally this operation will sum up all the numbers in the array (or reduce it to) a single number: The sum you need for the solution.
What i want to illustrate: many methods you would write by hand everyday are already integrated in ruby, since it is a language from programmers for programmers. be pragmatic ;)
I play around with arrays and hashes quite a lot in ruby and end up with some code that looks like this:
sum = two_dimensional_array.select{|i|
i.collect{|j|
j.to_i
}.sum > 5
}.collect{|i|
i.collect{|j|
j ** 2
}.average
}.sum
(Let's all pretend that the above code sample makes sense now...)
The problem is that even though TextMate (my editor of choice) picks up simple {...} or do...end blocks quite easily, it can't figure out (which is understandable since even I can't find a "correct" way to fold the above) where the above blocks start and end to fold them.
How would you fold the above code sample?
PS: considering that it could have 2 levels of folding, I only care about the outer consecutive ones (the blocks with the i)
To be honest, something that convoluted is probably confusing TextMate as much as anyone else who has to maintain it, and that includes you in the future.
Whenever you see something that rolls up into a single value, it's a good case for using Enumerable#inject.
sum = two_dimensional_array.inject(0) do |sum, row|
# Convert row to Fixnum equivalent
row_i = row.collect { |i| i.to_i }
if (row_i.sum > 5)
sum += row_i.collect { |i| i ** 2 }.average
end
sum # Carry through to next inject call
end
What's odd in your example is you're using select to return the full array, allegedly converted using to_i, but in fact Enumerable#select does no such thing, and instead rejects any for which the function returns nil. I'm presuming that's none of your values.
Also depending on how your .average method is implemented, you may want to seed the inject call with 0.0 instead of 0 to use a floating-point value.