omp_set_dynamic - how does the runtime determine the number of threads? - openmp

How does the OpenMP runtime determine the best number of threads when omp_set_dynamic is used?
e.g. Are some sort of timing mechanisms used or does the compiler give hints to the runtime of how large the task size is?

I don't think that the OpenMP does determine the 'best' number of threads for an application, in any likely sense of the word 'best'. As #aaa has commented, the runtime's behaviour when omp_set_dynamic is true is implementation specific.
I don't think that current Fortran/C/C++ compilers could provide information such as timings or task sizes to the runtime.
I believe that this function is available so that schedulers (and similar) can manage programs on machines, for throughput or similar.

Related

Emulate a very fast (virtual) CPU core

I know that the usual method when we want to make a big math computation faster is to use multiprocessing / parallel processing: we split the job in for example 4 parts, and we let 4 CPU cores run in parallel (parallelization). This is possible for example in Python with multiprocessing module: on a 4-core CPU, it would allow to use 100% of the processing power of the computer instead of only 25% for a single-process job.
But let's say we want to make faster a non-easily-splittable computation job.
Example: we are given a number generator function generate(n) that takes the previously-generated number as input, and "it is said to have 10^20 as period". We want to check this assertion with the following pseudo-code:
a = 17
for i = 1..10^20
a = generate(a)
check if a == 17
Instead of having a computer's 4 CPU cores (3.3 Ghz) running "in parallel" with a total of 4 processes, is it possible to emulate one very fast single-core CPU of 13.2 Ghz (4*3.3) running one single process with the previous code?
Is such technique available for a desktop computer? If not, is it available on cloud computing platforms (AWS EC2, etc.)?
Single-threaded performance is extremely valuable; it's much easier to write sequential code than to explicitly expose thread-level parallelism.
If there was an easy and efficient general-purpose way to do what you're asking which works when there is no parallelism in the code, it would already be in widespread use. Either internally inside multi-core CPUs, or in software if it required higher-level / larger-scale code transformations.
Out-of-order CPUs can find and exploit instruction-level parallelism within a single thread (over short distances, like a couple hundred instructions), but you need explicit thread-level parallelism to take advantage of multiple cores.
This is similar to How does a single thread run on multiple cores? over on SoftwareEnginnering.SE, except that you've already ruled out any easy-to-find parallelism including instruction-level parallelism. (And the answer is: it doesn't. It's the hardware of a single core that finds the instruction-level parallelism in a single thread; my answer there explains some of the microarchitectural details of how that works.)
The reverse process: turning one big CPU into multiple weaker CPUs does exist, and is useful for running multiple threads which don't have much instruction-level parallelism. It's called SMT (Simultaneous MultiThreading). You've probably heard of Intel's Hyperthreading, the most widely known implementation of SMT. It trades single-threaded performance for more throughput, keeping more execution units fed with useful work more of the time. The cost of building a single wide core grows at least quadratically, which is why typical desktop CPUs don't just have a single massive core with 8-way SMT. (And note that a really wide CPU still wouldn't help with a totally dependent instruction stream, unless the generate function has some internal instruction-level parallelism.)
SMT would be good if you wanted to test 8 different generate() functions at once on a quad-core CPU. Without SMT, you could alternate in software between two generate chains in one thread, so out-of-order execution could be working on instructions from both dependency chains in parallel.
Auto-parallelization by compilers at compile time is possible for source that has some visible parallelism, but if generate(a) isn't "separable" (not the correct technical term, I think) then you're out of luck.
e.g. if it's return a + hidden_array[static_counter++]; then the compiler can use math to prove that summing chunks of the array in parallel and adding the partial sums will still give the same result.
But if there's truly a serial dependency through a (like even a simple LCG PRNG), and the software doesn't know any mathematical tricks to break the dependency or reduce it to a closed form, you're out of luck. Compilers do know tricks like sum(0..n) = n*(n+1)/2 (evaluated slightly differently to avoid integer overflow in a partial result), or a+a+a+... (n times) is a * n, but that doesn't help here.
There is a scheme studied mostly in the academy called "Thread Decomposition". It aims to do more or less what you ask about - given a single-threaded code, it tries to break it down into multiple threads in order to divide the work on a multicore system. This process can be done by a compiler (although this requires figuring out all possible side effects at compile time which is very hard), by a JIT runtime, or through HW binary-translation, but each of these methods has complicated limitations and drawbacks.
Unfortunately, other than being automated, this process has very little appeal as it can hardly match true manual parallelization done by a person how understands the code. It also doesn't simply scale performance according to the number of threads, since it usually incurs a large overhead in the form of code that has to be duplicated.
Example paper by some nice folks from UPC in Barcelona: http://ieeexplore.ieee.org/abstract/document/5260571/

Are all cores used automatically?

I am a mere astronomer, so this is quite probably an obvious question.
Having no experience with parallel computing and hardly any with optimizing performance in general: my machine has four cores. If I ignorantly run my code, will all four be utilized automatically?
Chances are your code is not executed on all cores but just one. It depends if you code using a specific platform/library that already abstracts thread management.
Depending on the language, you want to have a look at specific libraries. But thread programming is a general subject you have to further explore before choosing any.

Cilk or Cilk++ or OpenMP

I'm creating a multi-threaded application in Linux. here is the scenario:
Suppose I am having x instance of a class BloomFilter and I have some y GB of data(greater than memory available). I need to test membership for this y GB of data in each of the bloom filter instance. It is pretty much clear that parallel programming will help to speed up the task moreover since I am only reading the data so it can be shared across all processes or threads.
Now I am confused about which one to use Cilk, Cilk++ or OpenMP(which one is better). Also I am confused about which one to go for Multithreading or Multiprocessing
Cilk Plus is the current implementation of Cilk by Intel.
They both are multithreaded environment, i.e., multiple threads are spawned during execution.
If you are new to parallel programming probably OpenMP is better for you since it allows an easier parallelization of already developed sequential code. Do you already have a sequential version of your code?
OpenMP uses pragma to instruct the compiler which portions of the code has to run in parallel. If I understand your problem correctly you probably need something like this:
#pragma omp parallel for firstprivate(array_of_bloom_filters)
for i in DATA:
check(i,array_of_bloom_filters);
the instances of different bloom filters are replicated in every thread in order to avoid contention while data is shared among thread.
update:
The paper actually consider an application which is very unbalanced, i.e., different taks (allocated on different thread) may incur in very different workload. Citing the paper that you mentioned "a highly unbalanced task graph that challenges scheduling,
load balancing, termination detection, and task coarsening strategies". Consider that in order to balance computation among threads it is necessary to reduce the task size and therefore increase the time spent in synchronizations.
In other words, good load balancing comes always at a cost. The description of your problem is not very detailed but it seems to me that the problem you have is quite balanced. If this is not the case then go for Cilk, its work stealing approach its probably the best solution for unbalanced workloads.
At the time this was posted, Intel was putting a lot of effort into boosting Cilk(tm) Plus; more recently, some effort has been diverted toward OpenMP 4.0.
It's difficult in general to contrast OpenMP with Cilk(tm) Plus.
If it's not possible to distribute work evenly across threads, one would likely set schedule(runtime) in an OpenMP version, and then at run time try various values of environment variable, such as OMP_SCHEDULE=guided, OMP_SCHEDULE=dynamic,2 or OMP_SCHEDULE=auto. Those are the closest OpenMP analogies to the way Cilk(tm) Plus work stealing works.
Some sparse matrix functions in Intel MKL library do actually scan the job first and determine how much to allocate to each thread so as to balance work. For this method to be useful, the time spent in serial scanning and allocating has to be of lower order than the time spent in parallel work.
Work-stealing, or dynamic scheduling, may lose much of the potential advantage of OpenMP in promoting cache locality by pinning threads with cache locality e.g. by OMP_PROC_BIND=close.
Poor cache locality becomes a bigger issue on a NUMA architecture where it may lead to significant time spent on remote memory access.
Both OpenMP and Cilk(tm) Plus have facilities for switching between serial and parallel execution.

Schedule clause in OpenMP

I have a piece of code (which is part of an application) that I'm trying to optimize using OpenMP, am trying out various scheduling policies. In my case, I noticed that the schedule(RUNTIME) clause has an edge over others (I am not specifying a chunk_size). I've two questions:
When I do not specify chunk_size, is there a difference between schedule(DYNAMIC) and schedule(GUIDED)?
How does OpenMP determine the default implementation-specific scheduling that is stored in the OMP_SCHEDULE variable?
I learned that if no scheduling scheme is specified, then by default schedule(STATIC) is used. So if I don't modify the OMP_SCHEDULE variable, and use schedule(RUNTIME) in my program, would the scheduling scheme be schedule(STATIC) all the times or does OpenMP have some intelligent way to dynamically devise the schedule strategy and change it from time to time?
Yes, if you do not specify a chunk size then DYNAMIC will make the size of all chunks 1. But GUIDED will make the minimum chunk size 1 but other chunk sizes will be implementation dependent. Perhaps you could figure out your situation by running some experiments or reading the documentation.
As I understand the situation: if the environment variable OMP_SCHEDULE is not set then the runtime schedule is implementation dependent. I think it would be very odd if the same schedule was not chosen for each execution of the program. I do not believe that OpenMP, which is a set of compile-time directives, has any way to understand the run-time performance of your program and to choose a schedule based on such information.

How to determine the optimum number of worker threads

I wrote a C program which reads a dataset from a file and then applies a data mining algorithm to find the clusters and classes in the data. At the moment I am trying to rewrite this sequential program multithreaded with PThreads and I am newbie to a parallel programming and I have a question about the number of worker threads which struggled my mind:
What is the best practice to find the number of worker threads when you do parallel programming and how do you determine it? Do you try different number of threads and see its results then determine or is there a procedure to find out the optimum number of threads. Of course I'm investigating this question from the performance point of view.
There are a couple of issues here.
As Alex says, the number of threads you can use is application-specific. But there are also constraints that come from the type of problem you are trying to solve. Do your threads need to communicate with one another, or can they all work in isolation on individual parts of the problem? If they need to exchange data, then there will be a maximum number of threads beyond which inter-thread communication will dominate, and you will see no further speed-up (in fact, the code will get slower!). If they don't need to exchange data then threads equal to the number of processors will probably be close to optimal.
Dynamically adjusting the thread pool to the underlying architecture for speed at runtime is not an easy task! You would need a whole lot of additional code to do runtime profiling of your functions. See for example the way FFTW works in parallel. This is certainly possible, but is pretty advanced, and will be hard if you are new to parallel programming. If instead the number of cores estimate is sufficient, then trying to determine this number from the OS at runtime and spawning your threads accordingly will be a much easier job.
To answer your question about technique: Most big parallel codes run on supercomputers with a known architecture and take a long time to run. The best number of processors is not just a function of number, but also of the communication topology (how the processors are linked). They therefore benefit from a testing phase where the best number of processors is determined by measuring the time taken on small problems. This is normally done by hand. If possible, profiling should always be preferred to guessing based on theoretical considerations.
You basically want to have as many ready-to-run threads as you have cores available, or at most 1 or 2 more to ensure no core that's available to you will ever be left idle. The trick is in estimating how many threads will typically be blocked waiting for something else (mostly I/O), as that is totally dependent on your application and even on external entities beyond your control (databases, other distributed services, etc, etc).
In the end, once you've determined about how many threads should be optimal, running benchmarks for thread pool sizes around your estimated value, as you suggest, is good practice (at the very least, it lets you double check your assumptions), especially if, as it appears, you do need to get the last drop of performance out of your system!

Resources