Weird outputs from SendMessage on 64-bit Windows - windows

I'm sort of new to Windows GUI programming.
I got some code which works fine on 32-bit Windows but go weird on 64-bit Win7 (same exe).
LWG_CEDIT_GET( m_hwnd, IDC_EDIT_NUM_TEST, g_tmp_str, 4096 );
where LWG_CEDIT_GET is defined as:
#define LWG_CEDIT_GET(h,id,v,m) \
((*((U32*)(v))=(m)),SendMessage(GetDlgItem((h),(id)),EM_GETLINE,0,(LPARAM)(char*)(v))
On WinXP 32, this gives me g_tmp_str="1" (of course I inputted '1' into the textfield in dialog). But, on Win7 64, this gives me g_tmp_str=""(Oops, the weird character can't be shown in stackoverflow, whatever, odd char. [0]=49'1' [1]=16'').
Generally speaking, 32bit exe program can work flawlessly on Win7 64, so, why my program failed? Thanks.
Edit 1: IsWindowsUnicode(m_hwnd) returns FALSE.

See my last comments of the topic.

Related

LoadLibrary() fails with error 8 (ERROR_NOT_ENOUGH_MEMORY)

Later edit: After more investigation, the Windows Updates and the OpenGL DLL were red herrings. The cause of these symptoms was a LoadLibrary() call failing with GetLastError() == ERROR_NOT_ENOUGH_MEMORY. See my answer for how to solve such issues. Below is the original question for historical interest. /edit
A map viewer I wrote in Python/wxPython for Windows with a C++ backend suddenly
stopped working, without any code changes or even recompiling. The very same
executables had been working for weeks before (same Python, same DLLs, ...).
Now, when querying Windows for a pixel format to use with OpenGL (with
ChoosePixelFormat()), I get a MessageBox saying:
LoadLibrary failed with error 8:
Not enough storage is available to process this command
The error message is displayed when executing the following code fragment:
void DevContext::SetPixelFormat() {
PIXELFORMATDESCRIPTOR pfd;
memset(&pfd, 0, sizeof(pfd));
pfd.nSize = sizeof(pfd);
pfd.nVersion = 1;
pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL;
pfd.iPixelType = PFD_TYPE_RGBA;
pfd.cColorBits = 32;
int pf = ChoosePixelFormat(m_hdc, &pfd); // <-- ERROR OCCURS IN HERE
if (pf == 0) {
throw std::runtime_error("No suitable pixel format.");
}
if (::SetPixelFormat(m_hdc, pf, &pfd) == FALSE) {
throw std::runtime_error("Cannot set pixel format.");
}
}
It's actually an ATI GL driver DLL showing the message box. The relevant part of the call stack is this:
... More MessageBox stuff
0027e860 770cfcf1 USER32!MessageBoxTimeoutA+0x76
0027e880 770cfd36 USER32!MessageBoxExA+0x1b
*** ERROR: Symbol file not found. Defaulted to export symbols for C:\Windows\SysWOW64\atiglpxx.dll -
0027e89c 58471df1 USER32!MessageBoxA+0x18
0027e9d4 58472065 atiglpxx+0x1df1
0027e9dc 57acaf0b atiglpxx!DrvValidateVersion+0x13
0027ea00 57acb0f3 OPENGL32!wglSwapMultipleBuffers+0xc5e
0027edf0 57acb1a9 OPENGL32!wglSwapMultipleBuffers+0xe46
0027edf8 57acc6a4 OPENGL32!wglSwapMultipleBuffers+0xefc
0027ee0c 57ad5658 OPENGL32!wglGetProcAddress+0x45f
0027ee28 57ad5dd4 OPENGL32!wglGetPixelFormat+0x70
0027eec8 57ad6559 OPENGL32!wglDescribePixelFormat+0xa2
0027ef48 751c5ac7 OPENGL32!wglChoosePixelFormat+0x3e
0027ef60 57c78491 GDI32!ChoosePixelFormat+0x28
0027f0b0 57c7867a OutdoorMapper!DevContext::SetPixelFormat+0x71 [winwrap.cpp # 42]
0027f1a0 57ce3120 OutdoorMapper!OGLContext::OGLContext+0x6a [winwrap.cpp # 61]
0027f224 1e0acdf2 maplib_sip!func_CreateOGLDisplay+0xc0 [maps.sip # 96]
0027f240 1e0fac79 python33!PyCFunction_Call+0x52
... More Python stuff
I did a Windows Update two weeks ago and noticed some glitches (e.g. when
resizing the window), but my program still worked mostly OK. Just now I
rebooted, Windows installed 1 more update, and I don't get past
ChoosePixelFormat() any more. However, the last installed update was
KB2998527, a Russia timezone update?!
Things that I already checked:
Recompiling doesn't make it work.
Rebooting and running without other programs running doesn't work.
Memory consumption of my program is only 67 MB, I'm not out of memory.
Plenty of diskspace free (~50 GB).
The HDC m_hdc is obtained from the display panel's HWND and seems to be valid.
Changing my linker commandline doesn't work.
Should I update my graphics drivers or roll back the updates? Any other ideas?
System data dump: Windows 7 Ultimate SP1 x64, 4GB RAM; HP EliteBook 8470p; Python 3.3, wxPython 3.0.1.dev76673 msw (phoenix); access to C++ data structures via SIP 4.15.4; C++ code compiled with Visual Studio 2010 Express, Debug build with /MDd.
I was running out of virtual address space.
By default, LibTIFF reads TIF images by memory-mapping them (mmap() or CreateFileMapping()). This is fine for pictures of your wife, but it turns out it's a bad idea for gigabytes worth of topographic raster-maps of the Alps.
This was difficult to diagnose, because LibTIFF silently fell back to read() if the memory mapping failed, so there never was an explicit error before. Further, mapped memory is not accounted as working memory by Windows, so the Task-Manager was showing 67MB, when in fact nearly all virtual address space used up.
This blew up now because I added more TIF images to my database recently. LoadLibrary() started failing because it couldn't find any address space to put the new library. GetLastError() returned 8, which is ERROR_NOT_ENOUGH_MEMORY. That this happened within ATI's OpenGL library was just coincidence.
The solution was to pass "m" as flag to TiffOpen() to disable memory mapped IO.
Diagnosing this is easy with the Windows SysInternals tool VMMap (documentation link), which shows you how much of the virtual address space of a process is taken up by code/heap/stack/mapped files/shareable data/etc.
This should be the first thing to check if LoadLibrary() or CreateFileMapping() fails with ERROR_NOT_ENOUGH_MEMORY.

KbdLayerDescriptor returns NULL at 64bit architecture

im writing a complex program that analyses users writing, and i have problem when running this application on 64bit OS.
Here is the code you can run to re-interprate the problem.
http://thetechnofreak.com/technofreak/keylogger-visual-c/
but of course, you need to have 64bit OS, since the program runs correctly on 32bit OS.
after this call
pKbd = pKbdLayerDescriptor();
this pointer equals NULL
pKbd->pVkToWcharTable
I have tried to google the solution first, and i found this
http://www.codeproject.com/Questions/211107/RegQueryValueEx-programcrash-on-64-Bit
its the exact same problem as i have, but there seem not to be a solution.
So do you have any ideas what can be wrong ?
There is this piece of code in the program and it seems that it takes care of the size differences between pointers on 32 and 64bit architecture
#if defined(BUILD_WOW6432)
#define KBD_LONG_POINTER __ptr64
#else
#define KBD_LONG_POINTER
#endif
But clearly, its not helping.
I've just had exactly the same issue with that piece of code.
I'll assume you're compiling to 32-bit but running on 64-bit as I am. If so, then first you need to define BUILD_WOW6432 before including kbd.h (or kbdext.h if you're using it). Secondly, use
SHGetFolderPath(NULL, CSIDL_SYSTEMX86, NULL, 0, systemDirectory)
instead of GetSystemDirectory(systemDirectory, MAX_PATH). This means that you always use the 32-bit code, even on 64-bit machines.
This solved the problem for me, hope it helps you :)

Get number of cores on a XP 64 bit system

Hej,
I wrote a function that should give me the number of cores of a windows system. It works on all systems except XP 64 bit. Here's the way I get the information:
$objWMIItems = $objWMIService.ExecQuery ("SELECT * FROM Win32_Processor")
If (0 == IsObj($objWMIItems)) Then
;~ errorhandling
Else
For $objElement In $objWMIItems
$nCoreNumber = $objElement.NumberOfCores
Next
Regarding "NumberOfCores", Microsofts MSDN page tells me "Windows Server 2003, Windows XP, and Windows 2000: This property is not available". Somewhere I read, it is possible with having SP3 installed. I suppose that's true, because it works that way on XP 32 bit systems. But there is no SP3 for XP 64...
Is there another way to get the information?
Thanks
I think it's easiest to read the NUMBER_OF_PROCESSORS environment variable.
Do you want "cores" or "number of logical processors including hyperthreading"? (In other words, do you want to count hyperthreading as a "core")?
In any case, copying my answer from a similar question a while back:
If you actually need to distinguish between actual cores, chips, and
logical processors, the API to call is
GetLogicalProcessInformation
GetSystemInfo if just want to know how many logical processors on
a machine (with no differentiation for hyperthreading.).

Same C code producing different results on Mac OS X than Windows and Linux

I'm working with an older version of OpenSSL, and I'm running into some behavior that has stumped me for days when trying to work with cross-platform code.
I have code that calls OpenSSL to sign something. My code is modeled after the code in ASN1_sign, which is found in a_sign.c in OpenSSL, which exhibits the same issues when I use it. Here is the relevant line of code (which is found and used exactly the same way in a_sign.c):
EVP_SignUpdate(&ctx,(unsigned char *)buf_in,inl);
ctx is a structure that OpenSSL uses, not relevant to this discussion
buf_in is a char* of the data that is to be signed
inl is the length of buf_in
EVP_SignUpdate can be called repeatedly in order to read in data to be signed before EVP_SignFinal is called to sign it.
Everything works fine when this code is used on Ubuntu and Windows 7, both of them produce the exact same signatures given the same inputs.
On OS X, if the size of inl is less than 64 (that is there are 64 bytes or less in buf_in), then it too produces the same signatures as Ubuntu and Windows. However, if the size of inl becomes greater than 64, it produces its own internally consistent signatures that differ from the other platforms. By internally consistent, I mean that the Mac will read the signatures and verify them as proper, while it will reject the signatures from Ubuntu and Windows, and vice versa.
I managed to fix this issue, and cause the same signatures to be created by changing that line above to the following, where it reads the buffer one byte at a time:
int input_it;
for(input_it = (int)buf_in; input_it < inl + (int)buf_in; intput_it++){
EVP_SIGNUpdate(&ctx, (unsigned char*) input_it, 1);
}
This causes OS X to reject its own signatures of data > 64 bytes as invalid, and I tracked down a similar line elsewhere for verifying signatures that needed to be broken up in an identical manner.
This fixes the signature creation and verification, but something is still going wrong, as I'm encountering other problems, and I really don't want to go traipsing (and modifying!) much deeper into OpenSSL.
Surely I'm doing something wrong, as I'm seeing the exact same issues when I use stock ASN1_sign. Is this an issue with the way that I compiled OpenSSL? For the life of me I can't figure it out. Can anyone educate me on what bone-headed mistake I must be making?
This is likely a bug in the MacOS implementation. I recommend you file a bug by sending the above text to the developers as described at http://www.openssl.org/support/faq.html#BUILD17
There are known issues with OpenSSL on the mac (you have to jump through a few hoops to ensure it links with the correct library instead of the system library). Did you compile it yourself? The PROBLEMS file in the distribution explains the details of the issue and suggests a few workarounds. (Or if you are running with shared libraries, double check that your DYLD_LIBRARY_PATH is correctly set). No guarantee, but this looks a likely place to start...
The most common issue porting Windows and Linux code around is default values of memory. I think Windows sets it to 0xDEADBEEF and Linux set's it to 0s.

CreateThread() fails on 64 bit Windows, works on 32 bit Windows. Why?

Operating System: Windows XP 64 bit, SP2.
I have an unusual problem. I am porting some code from 32 bit to 64 bit. The 32 bit code works just fine. But when I call CreateThread() for the 64 bit version the call fails. I have three places where this fails. 2 call CreateThread(). 1 calls beginthreadex() which calls CreateThread().
All three calls fail with error code 0x3E6, "Invalid access to memory location".
The problem is all the input parameters are correct.
HANDLE h;
DWORD threadID;
h = CreateThread(0, // default security
0, // default stack size
myThreadFunc, // valid function to call
myParam, // my param
0, // no flags, start thread immediately
&threadID);
All three calls to CreateThread() are made from a DLL I've injected into the target program at the start of the program execution (this is before the program has got to the start of main()/WinMain()). If I call CreateThread() from the target program (same params) via say a menu, it works. Same parameters etc. Bizarre.
If I pass NULL instead of &threadID, it still fails.
If I pass NULL as myParam, it still fails.
I'm not calling CreateThread from inside DllMain(), so that isn't the problem. I'm confused and searching on Google etc hasn't shown any relevant answers.
If anyone has seen this before or has any ideas, please let me know.
Thanks for reading.
ANSWER
Short answer: Stack Frames on x64 need to be 16 byte aligned.
Longer answer:
After much banging my head against the debugger wall and posting responses to the various suggestions (all of which helped in someway, prodding me to try new directions) I started exploring what-ifs about what was on the stack prior to calling CreateThread(). This proved to be a red-herring but it did lead to the solution.
Adding extra data to the stack changes the stack frame alignment. Sooner or later one of the tests gets you to 16 byte stack frame alignment. At that point the code worked. So I retraced my steps and started putting NULL data onto the stack rather than what I thought was the correct values (I had been pushing return addresses to fake up a call frame). It still worked - so the data isn't important, it must be the actual stack addresses.
I quickly realised it was 16 byte alignment for the stack. Previously I was only aware of 8 byte alignment for data. This microsoft document explains all the alignment requirements.
If the stackframe is not 16 byte aligned on x64 the compiler may put large (8 byte or more) data on the wrong alignment boundaries when it pushes data onto the stack.
Hence the problem I faced - the hooking code was called with a stack that was not aligned on a 16 byte boundary.
Quick summary of alignment requirements, expressed as size : alignment
1 : 1
2 : 2
4 : 4
8 : 8
10 : 16
16 : 16
Anything larger than 8 bytes is aligned on the next power of 2 boundary.
I think Microsoft's error code is a bit misleading. The initial STATUS_DATATYPE_MISALIGNMENT could be expressed as a STATUS_STACK_MISALIGNMENT which would be more helpful. But then turning STATUS_DATATYPE_MISALIGNMENT into ERROR_NOACCESS - that actually disguises and misleads as to what the problem is. Very unhelpful.
Thank you to everyone that posted suggestions. Even if I disagreed with the suggestions, they prompted me to test in a wide variety of directions (including the ones I disagreed with).
Written a more detailed description of the problem of datatype misalignment here: 64 bit porting gotcha #1! x64 Datatype misalignment.
The only reason that 64bit would make a difference is that threading on 64bit requires 64bit aligned values. If threadID isn't 64bit aligned, you could cause this problem.
Ok, that idea's not it. Are you sure it's valid to call CreateThread before main/WinMain? It would explain why it works in a menu- because that's after main/WinMain.
In addition, I'd triple-check the lifetime of myParam. CreateThread returns (this I know from experience) long before the function you pass in is called.
Post the thread routine's code (or just a few lines).
It suddenly occurs to me: Are you sure that you're injecting your 64bit code into a 64bit process? Because if you had a 64bit CreateThread call and tried to inject that into a 32bit process running under WOW64, bad things could happen.
Starting to seriously run out of ideas. Does the compiler report any warnings?
Could the bug be due to a bug in the host program, rather than the DLL? There's some other code, such as loading a DLL if you used __declspec(import/export), that occurs before main/WinMain. If that DLLMain, for example, had a bug in it.
I ran into this issue today. And I checked every argument feed into _beginthread/CreateThread/NtCreateThread via rohitab's Windows API Monitor v2. Every argument is aligned properly (AFAIK).
So, where does STATUS_DATATYPE_MISALIGNMENT come from?
The first few lines of NtCreateThread validate parameters passed from user mode.
ProbeForReadSmallStructure (ThreadContext, sizeof (CONTEXT), CONTEXT_ALIGN);
for i386
#define CONTEXT_ALIGN (sizeof(ULONG))
for amd64
#define STACK_ALIGN (16UI64)
...
#define CONTEXT_ALIGN STACK_ALIGN
On amd64, if the ThreadContext pointer is not aligned to 16 bytes, NtCreateThread will return STATUS_DATATYPE_MISALIGNMENT.
CreateThread (actually CreateRemoteThread) allocated ThreadContext from stack, and did nothing special to guarantee the alignment requirement is satisfied. Things will work smoothly if every piece of your code followed Microsoft x64 calling convention, which unfortunately not true for me.
PS: The same code may work on newer Windows (say Vista and newer). I didn't check though. I'm facing this issue on Windows Server 2003 R2 x64.
I'm in the business of using parallel threads under windows
for calculations. No funny business, no dll-calls, and certainly
no call-back's. The following works in 32 bits windows. I set up the stack for my calculation, well within the area reserved for my program.
All releveant data about area's and start addresses is contained in
a data structure that is passed to CreateThread as parameter 3.
The address that is called contains a small assembler routine
that uses this data stucture.
Indeed this routine finds the address to return to on the stack,
then the address of the data structure.
There is no reason to go far into this. It just works and it calculates
the number of primes below 2,000,000,000 just fine, in one thread,
in two threads or in 20 threads.
Now CreateThread in 64 bits doesn't push the address of the data
structure. That seems implausible so I show you the smoking gun,
a dump of a debug session.
In the subwindow at the bottom right you see the stack, and
there is merely the return address, amidst a sea of zeroes.
The mechanism I use to fill in parameters is portable between 32 and 64 bits.
No other call exhibits a difference between word-sizes.
Moreover why would the code address work but not the data address?
The bottom line: one would expect that CreateThread passes the data parameter on the stack in the same way in 64 bits as in 32 bits, then does a subroutine call. At the assembler level it doesn't work that way. If there are any hidden requirements to e.g. RSP that are automatically fullfilled in C++ that would be very nasty.
P.S. No there are no 16 byte alignment problems. That lies ages behind me.
Try using _beginthread() or _beginthreadex() instead, you shouldn't be using CreateThread directly.
See this previous question.

Resources