main vs initialize in Ruby - ruby

Okay, so I've looked through a couple of my ruby books and done some googling to no avail.
What is the difference between main and initialize in Ruby? I've seen code that uses
class Blahblah
def main
# some logic here
end
# more methods...
end
and then calls it using Blahblah.new.
Isn't new reserved only for
initialize? if not, then what's the difference between the two?

Class#new calls alloc on the class and then initialize on the created object. It does not call main.
The method name main has no special meaning in ruby's standard library. So unless you're inheriting from a class, which defines new or initialize in such a way, that main will be called, main will not be called automatically in any way.

See class Class
Look up class Class in your Ruby documentation.
You will find a public instance method called new.
All classes are instances of Class, so they all have a class method self.new. As it happens, this method calls allocate to create the class and then, if an initialize instance method is defined for the new class, it calls it, and forwards its (i.e., new's) arguments.
There isn't anything special about main.

Related

Ruby methods called at top of classes

I've seen this a lot in Ruby (started using Ruby for the first time a couple years ago):
class MyAwesomeClass
another_method
def initialize; end
end
And I can't get my head around what type of method another_method is...
Looking at examples, it's sometimes declared as a class method, but usually you call class methods in your code like this:
AnotherClass.another_method
And most importantly you call your methods regardless if they are from another class, module, or inherited class inside another method of your class you use them. For example:
module SomeModule
def some_method; end
end
class AnotherClass
private
def another_method; end
end
class YetAnotherClass
self.yet_another_method; end
end
class MyAwesomeClass < AnotherClass
include SomeModule
def initialize
some_method # method from my included module
another_method # method inherited from AnotherClass
YetAnotherClass.yet_another_method # class method called directly
end
end
So what are these methods that can be called at the top of a class and NOT called inside of another method as my examples above?
Are you able to just call class methods inside another class (that it inherits from) outside of your method calls?
I can't get my head around what type of method another_method is...
There is only one type of method in Ruby: every method in Ruby is an instance method of some module. There is no other type of method.
We may sometimes talk about "class methods" or "singleton methods", but that is just a convenient way of talking about a particular way to use methods. The methods themselves are no different.
Every method in Ruby is an instance method of some module. The question is simply: which module?
We are sometimes talking about class methods, but class methods don't really exist. Class methods are simply singleton methods of an object that happens to be an instance of the Class class.
There is absolutely no difference between
Foo = ''
def Foo.bar; end
and
class Foo; end
def Foo.bar; end
and
module Foo; end
def Foo.bar; end
We call the first one a "singleton method", the second one a "class method", and the third one a "module function", but there is actually no difference between the three. The only difference is that the first object is an instance of the String class, the second object is an instance of the Class class, and the third object is an instance of the Module class, that's it.
Actually, I must confess something: I lied. I wrote that class methods are simply singleton methods of an object that happens to be an instance of the Class class, but in reality … singleton methods don't exist either.
A singleton method is simply a boring old normal instance method of the singleton class.
There is no difference between
foo = ''
def foo.bar; end
and
foo = ''
class << foo
def bar; end
end
There you have it: singleton methods are actually just instance methods of the singleton class, class methods are actually just instance methods of the singleton class of an object that is an instance of the Class class, module functions are actually just instance methods of the singleton class of an object that is an instance of the Module class.
It's just that "instance method of the singleton class of an object that is an instance of the Class class" is annoying to say and write all the time, so we say "class method" instead, knowing full well that there is no such thing.
Looking at examples, it's sometimes declared as a class method, but usually you call class methods in your code like this:
AnotherClass.another_method
Again, there is no such thing as a class method. There is exactly one kind of method, and they are always called the same way:
receiver.method(args)
If the receiver is self, then you can leave it out, and if you have no arguments, you can leave them out, too.
And most importantly you call your methods regardless if they are from another class, module, or inherited class inside another method of your class you use them.
That is not true.
In fact, in your own example, you are calling two methods outside of a method body: Module#private and Module#include, and you seem to have no trouble with those. Other methods that I am sure you have already called outside of a method body are Module#attr_accessor, Kernel#require, or Kernel#puts. In fact, in simple scripts, there is often not a single method definition body at all.
So what are these methods that can be called at the top of a class and NOT called inside of another method as my examples above?
They are instance methods just like any other instance methods, there is absolutely nothing special about them.
Are you able to just call class methods inside another class (that it inherits from) outside of your method calls?
Since class methods don't exist, and these are simply instance methods just like every other instance method, the method lookup algorithm is of course also just the method lookup algorithm for instance methods:
Start with the private internal hidden __klass__ pointer of the receiver. If you can't find the method there …
Get the private internal hidden __superklass__ pointer and repeat.
And that's it. (Yes, okay, there is a tiny bit more to it: if you come to a point where there is no __superklass__ pointer, then you try again with method_missing and the name of the method as an argument, and if you also cannot find that, then you raise a NoMethodError.)
So, let's try that in your example:
class MyAwesomeClass
another_method
end
Okay, first off: what is the receiver? Well, if no receiver is given, then the receiver is always implicitly self. Now, what is self here?
A ha! That is actually the most important question in Ruby, always. At any point in Ruby, you must always know what self is.
Well, we know that inside of a method body, self is the receiver of the message send. So, we can guess: what would make the most sense for self inside of a class definition. The class itself, of course! Let's test that:
what_is_self = class MyAwesomeClass
self
end
p what_is_self
# MyAwesomeClass
Well, looks like we're right. Okay, we know the receiver of the message send is MyAwesomeClass, so what is the first step in our algorithm? We get the private internal hidden __klass__ pointer.
We cannot actually do that in Ruby (it is a private internal hidden implementation detail of the Ruby implementation). But let me assure you that is pretty much always going to be the singleton class. (There are some objects which cannot have singleton classes, and some Ruby implementations optimize the creation of singleton classes so that they are only created when needed, but for all intents and purposes, we can assume that the __klass__ pointer is always the singleton class.)
We look inside the singleton class, and we find no definition of the method another_method. So, we move to the second step of the algorithm: we get the __superklass__ of the singleton class.
The __superklass__ of the singleton class is usually going to be the class of the object. So, in this case, the object is MyAwesomeClass, which is a class, so the class of MyAwesomeClass and the __superklass__ of the singleton class is going to be Class.
Again, we look inside Class and we don't find another_method. Ergo, we get Class's __superklass__, which is Module. We also don't find another_method here, so we move on to Object, which also doesn't have another_method.
Now, it gets interesting again, because Object's __superklass__ pointer is actually Kernel and not BasicObject as you might have thought. (More precisely, it is an include class which shares its method table with the Kernel module, since Kernel is not a class at all and thus cannot be a superclass.)
Kernel also doesn't have a method named another_method, so we get Kernel's __superklass__ (again, technically we are talking about an include class that proxies Kernel and not Kernel itself), which is BasicObject. Finally, BasicObject does not have a __superklass__.
Which means we start aaaaaaaaaaaall the way back from step #1 again, but this time as-if you had written
class MyAwesomeClass
method_missing(:another_method)
end
We do the whole song-and-dance again, and we also never find a method until we get to the very top, to BasicObject, which has a method_missing that roughly looks like this:
class BasicObject
def method_missing(meth, *args)
raise NoMethodError, "undefined method `#{meth}' for #{inspect}", meth, args, receiver: self
end
end
So, if you want your call to another_method to not fail, it needs to be defined anywhere along the whole chain we just walked up:
In MyAwesomeClass's singleton class
In a module that MyAwesomeClass extends
In Class
In a module that Class includes
Or in a module included by that module
In Module
In a module that Module includes
Or in a module included by that module
In Object
In Kernel
Or another module that Object includes
Or in a module that Kernel includes
In BasicObject
In a module that BasicObject includes
Or in a module included by that module
Or maybe the Ruby implementation you are using has an implementation-specific superclass of BasicObject (e.g. MacRuby has Objective-C's NSObject as the superclass of BasicObject)
To illustrate difference between different type of methods, consider this example:
class Foo
puts 'method called outside of method'
def initialize
puts 'initialize called'
end
def instanse_method
puts 'instance method called'
end
def self.clazz_method
puts 'class method called'
end
end
Foo
foo = Foo.new
foo.instanse_method
Foo.clazz_method
What will be the output?
method called outside of method
initialize called
instance method called
class method called
So what are these methods that can be called at the top of a class and NOT called inside of another method as my examples above?
As you can see, any method can be called before initialize method. It's executed when class is loaded.
Just calling
Foo
would be sufficient enough to output:
method called outside of method
(but notice that it was not called multiple times)
Looking at examples, it's sometimes declared as a class method, but usually you call class methods in your code like this: AnotherClass.another_method
It's like static function in PHP. In my example, it's Foo#clazz_method.
And most importantly you call your methods regardless if they are from another class, module, or inherited class inside another method of your class you use them
Usually, you have to include a file that define another class before using its method. But most frameworks like Ruby on Rails, have already built-in autoloading system, so it looks like it's working magically without explicit require or include. But there are times when RoR does not know where your custom classes are. In this case, you have to require the file explicitly before you use it. Well, usually in the beginning of the file.
It'll be easier to understand by looking at it in action.
# Step 1
# Run this in IRB
class MyClass
def self.another_method
puts "Executed when class is loaded to memory"
end
end
# Step 2
# Now when you run the following in IRB after that, its going to execute the
# class method which was defined in its parent class (MyClass)
class MyAwesomeClass < MyClass
another_method # Executed ONCE when the class is loaded to memory for the first
def initialize; end
end
# Now if you instantiate MyAwesomeClass though, it will not print the same as of
# Step 2 as class method :another_method already has been executed when class
# was loaded
awesome1 = MyAwesomeClass.new
The body of a class will be interpreted and executed sequentially & behaves much like you'd expect it inside an instance method. Try putting a puts "Hello World" in the body of your class definition like so:
class MyClass
# Executes when the class is defined in IRB(Loaded to memory)
puts "Hello World"
end

If "puts" method is a private instance method, why can we call it from anywhere?

I have read that "puts" is a private instance method of the module Kernel (and therefore of Object, since Object mixes in Kernel).
That's why when we call puts, we don't specify a explicit receiver. My question is, if it's a private instance method, how is it possible that we can call it from any other scope? So, we can do:
class Test
puts "hello" # self is Test. So, we are calling self.puts "hello" -
end
What am I missing here? How is it possible that this works? We are calling a private instance method?
EDIT:
Same question arises if I do this:
class Object
private
def talk
puts "hi there"
end
end
class Test
talk # outputs 'hi there'
end
Why is it possible that from class Test we can call a private method from the class Object?
Please have a look at the doc for the Kernel module - http://www.ruby-doc.org/core-2.0.0/Kernel.html.
Unlike Java, Ruby is not limited to Classes as containers of implementations. Modules act as wonderful containers which can be mixed into other classes. When a module is mixed into another class, all its instance methods become instance methods of those class. Since the Kernel module is mixed into the Object class, its methods are therefore available in all Ruby classes.
Please read the following:
Ruby access control
Common misunderstanding and clarification about access controls in Ruby
With the risk of duplication, I have to say this: private in Ruby is not the same as in C++ or Java. Subclasses of a class can call private methods declared in their superclass. In fact, you can call private method of any class using :send. The only difference between private and protected methods is that private methods can't be called with explicit receivers.
Even the last rule has an exception. If your private method is something like age=, it can (and has to be) called with self. Funny, isn't it? :)
UPDATE: (to explain the gist):
The talk method which you wrote in your code above is being called on the main object which is the context for all Ruby programs. It's not being called on the Test class which is why it's not working for your second gist.
In the gist that I have provided, talk is a private class method which is why it gets executed at the time of class definition. In the same gist, the talk2 method is an instance method and can only be called from within instance methods. Your example gist didn't work because you were trying to invoke an instance method at the time of defining the class.
I don't understand why such long answer as in the other answer is required, or is upvoted. The answer to your question is simple.
It is because almost all classes (i.e., anything other than BasicObject) includes Kernel. Therefore, in the scope of a usual object, Kernel class is inherited, and hence its methods are accessible. That is all.

Is there any reason to use Classname.new keyword in ruby other than when creating an instance of an object in a main

This class takes in a hash, and depending on the input, it converts temperatures.
class Temp
def initialize(opt={})
if opt.include?(:cold)
#colddegree=opt[:cold]
end
end
def self.from_cold(cel)
Temp.new(:cold => cel) <= instance of class created in class method
end
end
An instance of a class is created inside a class method. Why is it necessary to do so, and what it does it do, what is the reasoning behind it?
Why would we need to create an instance of a class inside the class instead of the main?
Why would it be used inside a class method? Can there be a time when it would be required inside a regular object methods?
What is it calling and what is happening when it is creating an instance inside a class method? what difference does it make?
Rubyists don't always use the word, but self.from_cold is a factory. This allows you to expose a Temp.from_cold(-40) method signature that programmers consuming your API can understand readily without having to concern themselves with the boilerplate of, say, learning that you have an implicitly required parameter named :cold.
It becomes extra useful when you have a work-performing object that needs to be initialized and then invoked, such as TempConverter.new(cel: -40).to_fahrenheit. Sometimes it's cleaner to expose a TempConverter.cel_to_fahr(-40) option to be consumed by other libraries. It's mostly just a way of hiding complexity inside of this class so that other classes with temp conversion needs don't have to violate the Law of Demeter.
An important thing to understand is that unlike C#, JavaScript, or C++, new is not a keyword in Ruby. It's just a message which objects of class Class understand. The default behaviour is to allocate and initialize a new object of that class, but there's nothing stopping you overriding it, for example:
class Foo
def self.new
puts "OMG i'm initializing an object"
super
end
end
So to answer your last question, it makes no difference where Temp.new is called. In all cases, it sends the message new to the object Temp (which is also a class, but remember that almost everything in Ruby is an object, including classes), which creates and returns a new instance.
I'm not going to attempt to answer your other two questions, because the other answer already does.

Questions about OBJECTS in Ruby

I'm reading 'metaprogramming in ruby'
its such an EXCELLENT book. Seriously, it talks about stuff that I never hear mentioned elsewhere.
I have a few specific questions however about objects (I'm in the first few chapters)
I understand that the RubyGems gem installs the method 'gem' to the module Kernel so that it shows up on every object. Is there a reason they didnt put it into the Object class?
He talks about how when ruby looks for the method it always goes right then up. What exactly does 'up' mean? I see it in the diagram, its just that I dont really understand the purpose of 'up'. he doesnt explain that part much.
What is the point of the Object class? How come those methods cant be just placed into Class? If every object belongs to a class (even if its Class), then what is the point of object, basicobject, and kernel?
String, Array, blah blah are obviously an instance of Class. Class is also an instance of itself. So if Class is an instance of Class.... how does it also inherit from Object? Where in the code does it relates to BOTH Class and Object?
I know kernel contains methods such as puts that can be used everywhere, and this relates to question 1, but why cant they just condense it and put it all into Object... where it would seem everything inherits from object anyway
Both would work, but typically methods on Object should only be methods that deal with a particular object. Puting things in the Kernel module are less about about object and more global.
I assume it means "up the inheritance chain". So it looks for the method on the child class, then on that classes parent class until it finds one or runs out of parent classes.
Object is the base class of all objects, naturally (For ruby 1.8 at least). The crazy part is that a class is actually an instance of the Class class. (you follow that?) So adding instance methods to Class would add methods to class objects, but not instances of those classes.
Nearly everything in ruby is an object. Class.superclass is actually Module (which is like a class you can't instantiate) and Module.superclass returns Object. So Class < Module < Object is the inheritance chain if the Class class. (For ruby 1.8 at least)
More convention than anything. Since Object can get rather HUGE, it's customary to put things into modules and then combine those modules later. If the method doesn't deal with an instance of an object directly as self then the method doesn't belong directly in Object. More global non-object instance methods like gem go in the Kernel module to signify that they are simply methods available everywhere.
Some more about class objects and inheritance...
class Foo < Bar
def hi
puts 'Hi!'
end
end
What this does is really quite awesome. It defines a class object, of course. Now this class object is configured to have a name Foo, a parent class Bar and a method hi. This info is sort of like this class object's meta data.
Now the class object Foo itself is an instance of Class. But Foo defines a class that inherits from Bar. The Class class defines a data structure to store this meta data about a class.
You can think of the Class class sorta kinda being defined like this:
class Class < Module
# fictional method called on class creation
def set_meta_data(name, superclass, methods)
#name = name
#superclass = superclass
#methods = methods
end
# fictional way in which an instance might be created
def new
instance = Object.new
instance.superclass = #superclass
instance.addMethods(#methods)
instance
end
end
So a class object itself would inherit from Class but it would create objects that do not.
Thinking of classes as objects can be a bit mind bending in this way, but this also why ruby is awesome.
For 1 and 5, pseudo-keyword commands tend to go into Kernel rather than Object.
For 2, it makes sense for sub-classes to be "down" relative to their parent class (sub literally meaning "beneath"). Therefore if you're heading for a parent class and its ancestors, you have to go "up".
For 3, an object object is not an instance of Class, it is an instance of Object.
For 4, what's wrong with something being an instance of Class and inheriting from Object? All classes inherit from Object.

Static block in Ruby

I have been a Java programmer for a while and I am trying to switch to ruby for a while. I was just trying to develop a small test program in ruby and my intention is something like following.
I want to create a simple linked list type of an object in ruby; where an instance variable in class points to another instance of same type.
I want to populate and link all nodes; before the constructor is called and only once. Something that we'd usually do in Java Static block.
Initialize method is a constructor signature in ruby. Are there any rules around them? Like in Java you cannot call another constructor from a constructor if its not the first line (or after calling the class code?)
Thanks for the help.
-Priyank
I want to create a simple linked list type of an object in ruby; where an instance variable in class points to another instance of same type.
Just a quick note: the word type is a very dangerous word in Ruby, especially if you come from Java. Due to an historic accident, the word is used both in dynamic typing and in static typing to mean two only superficially related, but very different things.
In dynamic typing, a type is a label that gets attached to a value (not a reference).
Also, in Ruby the concept of type is much broader than in Java. In Java programmer's minds, "type" means the same thing as "class" (although that's not true, since Interfaces and primitives are also types). In Ruby, "type" means "what can I do with it".
Example: in Java, when I say something is of type String, I mean it is a direct instance of the String class. In Ruby, when I say something is of type String, I mean it is either
a direct instance of the String class or
an instance of a subclass of the String class or
an object which responds to the #to_str method or
an object which behaves indistinguishably from a String.
I want to populate and link all nodes; before the constructor is called and only once. Something that we'd usually do in Java Static block.
In Ruby, everything is executable. In particular, there is no such thing as a "class declaration": a class body is just exectuable code, just like any other. If you have a list of method definitions in your class body, those are not declarations that are read by the compiler and then turned into a class object. Those are expressions that get executed by the evaluator one by one.
So, you can put any code you like into a class body, and that code will be evaluated when the class is created. Within the context of a class body, self is bound to the class (remember, classes are just objects like any other).
Initialize method is a constructor signature in ruby. Are there any rules around them? Like in Java you cannot call another constructor from a constructor if its not the first line (or after calling the class code?)
Ruby doesn't have constructors. Constructors are just factory methods (with stupid restrictions); there is no reason to have them in a well-designed language, if you can just use a (more powerful) factory method instead.
Object construction in Ruby works like this: object construction is split into two phases, allocation and initialization. Allocation is done by a public class method called allocate, which is defined as an instance method of class Class and is generally never overriden. It just allocates the memory space for the object and sets up a few pointers, however, the object is not really usable at this point.
That's where the initializer comes in: it is an instance method called initialize, which sets up the object's internal state and brings it into a consistent, fully defined state which can be used by other objects.
So, in order to fully create a new object, what you need to do is this:
x = X.allocate
x.initialize
[Note: Objective-C programmers may recognize this.]
However, because it is too easy to forget to call initialize and as a general rule an object should be fully valid after construction, there is a convenience factory method called Class#new, which does all that work for you and looks something like this:
class Class
def new(*args, &block)
obj = alloc
obj.initialize(*args, &block)
return obj
end
end
[Note: actually, initialize is private, so reflection has to be used to circumvent the access restrictions like this: obj.send(:initialize, *args, &block)]
That, by the way, is the reason why to construct an object you call a public class method Foo.new but you implement a private instance method Foo#initialize, which seems to trip up a lot of newcomers.
To answer your question: since an initializer method is just a method like any other, there are absolutely no restrictions as to what you can do whithin an initializer, in particular you can call super whenever, wherever, however and how often you want.
BTW: since initialize and new are just normal methods, there is no reason why they need to be called initialize and new. That's only a convention, although a pretty strong one, since it is embodied in the core library. In your case, you want to write a collection class, and it is quite customary for a collection class to offer an alternative factory method called [], so that I can call List[1, 2, 3] instead of List.new(1, 2, 3).
Just as a side note: one obvious advantage of using normal methods for object construction is that you can construct instances of anonymous classes. This is not possible in Java, for absolutely no sensible reason whatsoever. The only reason why it doesn't work is that the constructor has the same name as the class, and anonymous classes don't have a name, ergo there cannot be a constructor.
Although I am not quite sure why you would need to run anything before object creation. Unless I am missing something, shouldn't a list basically be
class List
def initialize(head=nil, *tail)
#head = head
#tail = List.new(*tail) unless tail.empty?
end
end
for a Lisp-style cons-list or
class List
def initialize(*elems)
elems.map! {|el| Element.new(el)}
elems.zip(elems.drop(1)) {|prv, nxt| prv.instance_variable_set(:#next, nxt)}
#head = elems.first
end
class Element
def initialize(this)
#this = this
end
end
end
for a simple linked list?
You can simply initialize your class variables in the class body, outside of any method declaration. It will behave like a static initializer in Java:
class Klass
##foo = "bar"
def sayFoo
puts ##foo
end
def self.sayFoo
puts ##foo
end
end
The class field ##foo is here initialized to "bar".
In ruby object creation works like this
class Class
def new(*args)
obj= self.allocate # get some memory
obj.send(:initialize) # call the private method initialize
end
end
Object#initialize is just an ordinary private method.
If you wan't something to happen before Object#initialize you have to write your own Class#new. But I see no reason why you would want to do that.
This is basically the same answer paradigmatic gave back in '09.
Here I want to illustrate that the "static initializer" can call other code. I'm simulating a scenario of loading a special user once, upon class initialization.
class Foo
def user
"Thomas"
end
end
class Bar
##my_user = Foo.new.user
def my_statically_defined_user
##my_user
end
end
b = Bar.new
puts b.my_statically_defined_user # ==> Thomas

Resources