How to design authentication and authorization system for REST backend / Ajax front End Application - ajax

I am starting a new project where we are planing to build a restful back end and an AJAX font end. I am approaching the problem by focusing on Identifying all the resources that I have and what the various HTTP verbs will do them, their URI and the JSON representations of those resources.
I am looking for the best design for securing the backend. Here is the list of designs I have considered. I am looking for alternative designs not listed below, and pros, cons recommendations. The system will be implemented with Spring 3.0 and possibly Spring Security 3.0, SSL will be used for many parts of the system but not for all of them, so some requests may come on SSL and some might not.
Option 1: Use the HTTP session
Show a standard login screen, create a server side session and let tomcat send back a jsessionid cookie and have the ajax client include the JSESSIONID cookie on every XHR request. This options just feels like it's the wrong approach for the following reasons.
The connection becomes statefull which is against the rules of REST
I want to be able to split the bakcend into multiple seperate WAR files which means i could have multiple HTTP sessions on the backend, if that is the case then this approach does not work. While I don't need the ability to split the backend into multiple apps today, I would prefer a design that allows for that possibility.
Option 2: Find an open source Java based security library that does this
Other than Spring security I have not found any other Java libraries, any recommendations are highly appreciated.
Option 3: Try to use an existing protocol like OAuth
In my very brief look at OAuth it seems that it is designed for authentication across sites where each site has it's own user database. In this system i want a global user database shared across all the backend ajax services.
Option 4: Use SAML and Shiboleth
This options seems over kill and hugely complex to setup and maintain.
Option 5: Send the username and password with every request
This requires that user sends their username and password with every request, which means that the front end AJAX app must store the username and password as a JavaScript object and if the user navigates away from the page then back the username/password combo will be gone and the user might be forced to log in again. I don't want the front end to try and put the username and password into cookie as that would comprise security.
Option 6: Implement my own authentication / Authorization protocol
Create a REST service that users can present their username/password combination to and then get back and security token, which they must send back to the service with every request. The security token would be digitally signed by the service and would have an expiry time. The token would be only good for most operations high security operations would require a new login screen as port of confirming the operation.
Problem with this approach is I have to invent yet another security protocol which seems like a total waste of time.
I am sure I am not the only person up against this problem, I hope the stack overflow community can point to some options and tools that I have not found yet.

Take a look at Apache Shiro. It is an authentication system that has a session management feature that can be used to share sessions across applications. This may be the easiest thing to do.
Or you could use Spring Security (or Shiro) with a Remember Me cookie that is shared across the webapps (as long as they are in the same HTTP domain). The remember me cookie would be analogous to your token in option 6. You can set the expiration on the cookie that so it is short lived like a session cookie or long lived like a regular remember me.

You might also want to take a look at Jasig CAS - Single Sign-On for the Web. It has a REST API and a protocol (Proxy Tickets) that allows services to proxy user AuthN to backend services like you described in option 6. http://www.jasig.org/cas
Briefly...the application that serves up the AJAX client is protected with Spring Security (supports CAS out of the box) and gets a Proxy Granting Ticket that you embed in the AJAX client. The AJAX client uses the PGT to get Proxy Tickets for your REST services...protected with Spring Security too. The REST services get an authenticated userId without every touching primary credentials.
Alternative, you could keep the PGT on the server and use AJAX calls to retrieve Proxy Tickets that are then used by the AJAX client to call you REST services.

As I understood you are going to secure a rest application, to preface you must know that a security provider consisd of three concepts (3A):
-Authentication
-Authorization
-Auditing
to implement these three together you must provide bunch of tools such as :
-SSO provider
-Session Store
-Open Id pattern
-user credentials integration
....
I have used ACL(Spring ACL) to provide authorization services and oauth2 for authentication.
there is one channel to connect these two together and its scopes(oauth2 scopes) but the problem is scopes are not flexible(pure strings) enough to implement authorization modules such as role_voter, cache_strategy, black_list or,Role_base strategy, exceptional permissions, white_list... (but you can use #EnableGlobalMethodSecurity)
In my case I used authorization server as a resource for oauth2 authentication server(take a look at http://projects.spring.io/spring-security-oauth/docs/oauth2.html), then I considered two spots to check authorization, the first I issued ACL to front-end and forced programmer to design her page dynamically up to ACL concept, the second is in back-end on service layer(BLL) using Aspect when one rest is going to be called. I sent the service key as an actee to check if current user has enough access control to do that. and for auditing you must monitor all requests I mean you must use an listener in your gateway or broker...

Related

outbound propagation of oidc access token in Liberty

Hello I manage 2 Liberty servers that serve UI and BFF content respectively and I want to secure them both with corporate oidc OP. Having heard about inbound propagation, I was thinking in propagating the access token from UI to BFF.
However I didnt find documentation on how should I configure it to outbound propagate the access token after successful authentication. The documentation only refers to inbound propagation. Only thing I see is a WASOidcClient_*** cookie being set, which I know nothing about it.
I also heard about jwtSso-1.0 feature and tried to create my own JWT with the necessary user information, but can't make this feature get the desired claims from the ID Token (already opened this other question).
So I'm unclear of:
Am I designing this correctly?
How can I get the UI Liberty propagate access token after successful authentication, preferably without coding anything?
Should I propagate access token, or IDToken? BFF needs basic user information that is present in IDToken
What is the WASOidcClient_*** cookie for? Can it be used by different Liberty instances to authenticate requests? Is the name configurable? Im just curious, because this cookie is probably proprietary and not portable, not much desired.
Appreciate it in advance!!

How to access a secured API in the frontend?

There is a lot of good content on the internet that explains how to secure a Spring API with Keycloak: Create a Client that represents the API Service in Keycloak and use a link like the one below to get the access and refresh token:
<Domain>/auth/realms/<realm>/protocol/openid-connect/auth/{some parameters}
This yields both tokens. So far so good.
Now, however, I am not sure how the flow for the frontend accessing the API should look like.
Should the frontend directly access this endpoint and, therefore, obtain the access and refresh token? That would mean that the API can only have the access-type public because there is no way to store the client (the API) secret securely.
Or should there be a third server that somehow stores the refresh token for each user, that the user can call if his access token is no longer valid. This server would then use the client's refresh token (and the client secret that could be stored securely, since it would be in the backend) to get a new access token from Keycloak and would forward it to the user.
I guess the main question that I am asking is, whether the client/user should get the refresh token.
If one needs to implement a logic according to the second option, I would be interested in a link or description of how something like this can be done in Spring.
I think, in either case you need to use the Authorization Code Flow. The implicit flow, which was recommended for SPAs (frontends without a backend server) in former versions of OAuth2 must not be used anymore.
The best option is to have a backend server, so the user retrieves the auth code via redirection and the backend server exchanges this auth code with the access and refresh tokens (and keep them without forwarding them to the frontend).
If there is no backend in place and your frontend needs to retrieve and hold the tokens directly, I would recommend to use the Authorization Code Flow with a public client and the PKCE extension (which - put simply - ensures that the entity asking for the auth code is the same as the entity asking for the tokens and that the auth code was not stolen and used by a foreign entity). There are several sources with more detailed explanations, which might help you, for example: https://auth0.com/docs/flows/authorization-code-flow-with-proof-key-for-code-exchange-pkce
Hope this helps you with your architectural considerations.

Does custom security HTTP headers violate separation of concerns

Does custom application specific, security related HTTP headers violate separation of concerns, is it considered a bad practice? I realize using custom header to control the service would tightly couple the client with the service implementation. Or in this case, to control the security framework behavior. The context where I planned using the custom header is the following:
We are using token based authentication, where token has a fixed lifetime, and new token is issued each time authenticated client calls the web API. SPA client may call the server with AJAX in two contexts
User action (navigation and submit)
Automatic refresh (current view re-fetches data at fixed intervals)
Now, if user leaves the page open, the session never expires, as new token is generated for each automatic fetch. Somehow, we need to differentiate user action from automatic refresh in the server side, and issue new token only for user actions.
I realize Websocket based refresh would be one solution, but we have decided to stick with timed AJAX call due specific matters. Another solution would be to provide token refresh as a separate endpoint, but this would violate the DRY principle from client's perspective, and would be more cumbersome to setup with Spring Security.
Only remaining option is to embed the user/automated information in the request itself, and using a header seems a viable option here. A presence of certain header would prevent the token refresh. Easy to implement with a few lines of code.
I'm only concerned, if this couples the client too much with the service implementation. Technically, it doesn't couple client with the service, but the preceding security filter, thus leaking security concerns in the user interface. Ideally security stuff should be transparent to user interface, so new client could be coded without knowing anything about security (especially when cookies are used).
In the other hand, this solution isn't destructive or mutative. It's an optional feature. By client utilizing it, security is enhanced, but in either case never reduced (from the perspective of server, as it is). Now the question is, what principles using a optional header to enhance security is violating, and is it a valid solution in this context?
In my option the security should be maximized transparently, but I don't see how to not leak security concerns in the client in this situation.
It sounds like you're using your own home-built custom Token Authentication solution here. This is not a good idea.
I'll take a moment to explain WHY you don't want to do what you're proposing, and then what the better option is.
First off -- the problem that you're trying to solve here is that you don't want a user to remain logged into your site forever if they leave a tab open. The reason you need to fix this is because right now, you're assigning a new Access Token on EVERY REQUEST from the user.
The correct solution to handling the above problem is to have two types of token.
An Access Token that has a very short lifetime (let's say: 1 hour), and a Refresh Token that has a longer lifetime (let's say: 24 hours).
The way this should work is that:
When the user first authenticates to your service, the Access and Refresh tokens are generated with their respective timeouts.
These tokens are both set in HTTP cookies that the client-side JS cannot access.
From this point on, every time your user's browser makes a request to your service, you'll parse out the Access token from the cookie, check to see if it's valid, then allow the request.
If the Access token is no longer valid (if it has expired), you'll then parse out the Refresh token from the cookie, and see if that is valid.
If the Refresh token is valid, you'll generate a NEW Access token with another 1 hour lifetime, and override the old Access token cookie with the new on.
If the Refresh token is invalid, you'll simply return a 301 redirect to the login page of your app, forcing the user to manually re-authenticate again.
This flow has a number of benefits:
There is a maximum session length, which is technical (duration of Refresh token + duration of Access token) -- aka: 25 hours in this example.
Access tokens are short lived, which means that if a token is somehow compromised, attackers can't use it for very long to impersonate the user.
What's nice about the above flow is that it is a web authorization standard: OAuth2.
The OAuth2 Password Grant flow does EXACTLY what you're describing. It generates both types of tokens, handles 'refreshing' tokens, handles the entire thing from start to finish in a safe, standards-compliant way.
What I'd highly recommend you do is implement an OAuth2 library on both your server and client, which will take care of these needs for you.
Now -- regarding the tokens, most OAuth2 implementations now-a-days will generate tokens as JSON Web Tokens. These are cryptographically signed tokens that provide a number of security benefits.
Anyhow: I hope this was helpful! I author several popular authentication libraries in Python, Node, and Go -- so this comes from my direct experience working with these protocols over the last several years.

Spring Security - Authenticate RESTful Resource using OAUTH maintaining true STATELESS access

I have done a lot of research on this topic - "Authenticate RESTful Resource using OAUTH maintaining true STATELESS nature between Client-Server". From what it looks like - it's not possible.
I wonder if what I think is correct or there's someway to achieve this somehow.
Since OAUTH involves a 3rd party Service Provider, I am sure user won't like to enter username/password each time a request is sent to the server. Perhaps there's a way by storing some cookie or something on the client side to detect if user is logged-in. Any suggestions?
It is not (practically) possible. The only alternative that I've found is to go through the authentication process for every single request from a given client, which is as you pointed out is completely impractical. I consider the stateless "requirement" of REST architecture to include 'business data': session attributes and other contextual data / flags / caches related to the resources you are serving and not authentication / authorization details.

Do sessions really violate RESTfulness?

Is using sessions in a RESTful API really violating RESTfulness? I have seen many opinions going either direction, but I'm not convinced that sessions are RESTless. From my point of view:
authentication is not prohibited for RESTfulness (otherwise there'd be little use in RESTful services)
authentication is done by sending an authentication token in the request, usually the header
this authentication token needs to be obtained somehow and may be revoked, in which case it needs to be renewed
the authentication token needs to be validated by the server (otherwise it wouldn't be authentication)
So how do sessions violate this?
client-side, sessions are realized using cookies
cookies are simply an extra HTTP header
a session cookie can be obtained and revoked at any time
session cookies can have an infinite life time if need be
the session id (authentication token) is validated server-side
As such, to the client, a session cookie is exactly the same as any other HTTP header based authentication mechanism, except that it uses the Cookie header instead of the Authorization or some other proprietary header. If there was no session attached to the cookie value server-side, why would that make a difference? The server side implementation does not need to concern the client as long as the server behaves RESTful. As such, cookies by themselves should not make an API RESTless, and sessions are simply cookies to the client.
Are my assumptions wrong? What makes session cookies RESTless?
First of all, REST is not a religion and should not be approached as such. While there are advantages to RESTful services, you should only follow the tenets of REST as far as they make sense for your application.
That said, authentication and client side state do not violate REST principles. While REST requires that state transitions be stateless, this is referring to the server itself. At the heart, all of REST is about documents. The idea behind statelessness is that the SERVER is stateless, not the clients. Any client issuing an identical request (same headers, cookies, URI, etc) should be taken to the same place in the application. If the website stored the current location of the user and managed navigation by updating this server side navigation variable, then REST would be violated. Another client with identical request information would be taken to a different location depending on the server-side state.
Google's web services are a fantastic example of a RESTful system. They require an authentication header with the user's authentication key to be passed upon every request. This does violate REST principles slightly, because the server is tracking the state of the authentication key. The state of this key must be maintained and it has some sort of expiration date/time after which it no longer grants access. However, as I mentioned at the top of my post, sacrifices must be made to allow an application to actually work. That said, authentication tokens must be stored in a way that allows all possible clients to continue granting access during their valid times. If one server is managing the state of the authentication key to the point that another load balanced server cannot take over fulfilling requests based on that key, you have started to really violate the principles of REST. Google's services ensure that, at any time, you can take an authentication token you were using on your phone against load balance server A and hit load balance server B from your desktop and still have access to the system and be directed to the same resources if the requests were identical.
What it all boils down to is that you need to make sure your authentication tokens are validated against a backing store of some sort (database, cache, whatever) to ensure that you preserve as many of the REST properties as possible.
I hope all of that made sense. You should also check out the Constraints section of the wikipedia article on Representational State Transfer if you haven't already. It is particularly enlightening with regard to what the tenets of REST are actually arguing for and why.
First, let's define some terms:
RESTful:
One can characterise applications conforming to the REST constraints
described in this section as "RESTful".[15] If a service violates any
of the required constraints, it cannot be considered RESTful.
according to wikipedia.
stateless constraint:
We next add a constraint to the client-server interaction:
communication must be stateless in nature, as in the
client-stateless-server (CSS) style of Section 3.4.3 (Figure 5-3),
such that each request from client to server must contain all of the
information necessary to understand the request, and cannot take
advantage of any stored context on the server. Session state is
therefore kept entirely on the client.
according to the Fielding dissertation.
So server side sessions violate the stateless constraint of REST, and so RESTfulness either.
As such, to the client, a session cookie is exactly the same as any
other HTTP header based authentication mechanism, except that it uses
the Cookie header instead of the Authorization or some other
proprietary header.
By session cookies you store the client state on the server and so your request has a context. Let's try to add a load balancer and another service instance to your system. In this case you have to share the sessions between the service instances. It is hard to maintain and extend such a system, so it scales badly...
In my opinion there is nothing wrong with cookies. The cookie technology is a client side storing mechanism in where the stored data is attached automatically to cookie headers by every request. I don't know of a REST constraint which has problem with that kind of technology. So there is no problem with the technology itself, the problem is with its usage. Fielding wrote a sub-section about why he thinks HTTP cookies are bad.
From my point of view:
authentication is not prohibited for RESTfulness (otherwise there'd be little use in RESTful services)
authentication is done by sending an authentication token in the request, usually the header
this authentication token needs to be obtained somehow and may be revoked, in which case it needs to be renewed
the authentication token needs to be validated by the server (otherwise it wouldn't be authentication)
Your point of view was pretty solid. The only problem was with the concept of creating authentication token on the server. You don't need that part. What you need is storing username and password on the client and send it with every request. You don't need more to do this than HTTP basic auth and an encrypted connection:
Figure 1. - Stateless authentication by trusted clients
You probably need an in-memory auth cache on server side to make things faster, since you have to authenticate every request.
Now this works pretty well by trusted clients written by you, but what about 3rd party clients? They cannot have the username and password and all the permissions of the users. So you have to store separately what permissions a 3rd party client can have by a specific user. So the client developers can register they 3rd party clients, and get an unique API key and the users can allow 3rd party clients to access some part of their permissions. Like reading the name and email address, or listing their friends, etc... After allowing a 3rd party client the server will generate an access token. These access token can be used by the 3rd party client to access the permissions granted by the user, like so:
Figure 2. - Stateless authentication by 3rd party clients
So the 3rd party client can get the access token from a trusted client (or directly from the user). After that it can send a valid request with the API key and access token. This is the most basic 3rd party auth mechanism. You can read more about the implementation details in the documentation of every 3rd party auth system, e.g. OAuth. Of course this can be more complex and more secure, for example you can sign the details of every single request on server side and send the signature along with the request, and so on... The actual solution depends on your application's need.
Cookies are not for authentication. Why reinvent a wheel? HTTP has well-designed authentication mechanisms. If we use cookies, we fall into using HTTP as a transport protocol only, thus we need to create our own signaling system, for example, to tell users that they supplied wrong authentication (using HTTP 401 would be incorrect as we probably wouldn't supply Www-Authenticate to a client, as HTTP specs require :) ). It should also be noted that Set-Cookie is only a recommendation for client. Its contents may be or may not be saved (for example, if cookies are disabled), while Authorization header is sent automatically on every request.
Another point is that, to obtain an authorization cookie, you'll probably want to supply your credentials somewhere first? If so, then wouldn't it be RESTless? Simple example:
You try GET /a without cookie
You get an authorization request somehow
You go and authorize somehow like POST /auth
You get Set-Cookie
You try GET /a with cookie. But does GET /a behave idempotently in this case?
To sum this up, I believe that if we access some resource and we need to authenticate, then we must authenticate on that same resource, not anywhere else.
Actually, RESTfulness only applies to RESOURCES, as indicated by a Universal Resource Identifier. So to even talk about things like headers, cookies, etc. in regards to REST is not really appropriate. REST can work over any protocol, even though it happens to be routinely done over HTTP.
The main determiner is this: if you send a REST call, which is a URI, then once the call makes it successfully to the server, does that URI return the same content, assuming no transitions have been performed (PUT, POST, DELETE)? This test would exclude errors or authentication requests being returned, because in that case, the request has not yet made it to the server, meaning the servlet or application that will return the document corresponding to the given URI.
Likewise, in the case of a POST or PUT, can you send a given URI/payload, and regardless of how many times you send the message, it will always update the same data, so that subsequent GETs will return a consistent result?
REST is about the application data, not about the low-level information required to get that data transferred about.
In the following blog post, Roy Fielding gave a nice summary of the whole REST idea:
http://groups.yahoo.com/neo/groups/rest-discuss/conversations/topics/5841
"A RESTful system progresses from one steady-state to the
next, and each such steady-state is both a potential start-state
and a potential end-state. I.e., a RESTful system is an unknown
number of components obeying a simple set of rules such that they
are always either at REST or transitioning from one RESTful
state to another RESTful state. Each state can be completely
understood by the representation(s) it contains and the set of
transitions that it provides, with the transitions limited to a
uniform set of actions to be understandable. The system may be
a complex state diagram, but each user agent is only able to see
one state at a time (the current steady-state) and thus each
state is simple and can be analyzed independently. A user, OTOH,
is able to create their own transitions at any time (e.g., enter
a URL, select a bookmark, open an editor, etc.)."
Going to the issue of authentication, whether it is accomplished through cookies or headers, as long as the information isn't part of the URI and POST payload, it really has nothing to do with REST at all. So, in regards to being stateless, we are talking about the application data only.
For example, as the user enters data into a GUI screen, the client is keeping track of what fields have been entered, which have not, any required fields that are missing etc. This is all CLIENT CONTEXT, and should not be sent or tracked by the server. What does get sent to the server is the complete set of fields that need to be modified in the IDENTIFIED resource (by the URI), such that a transition occurs in that resource from one RESTful state to another.
So, the client keeps track of what the user is doing, and only sends logically complete state transitions to the server.
As I understand, there are two types of state when we are talking about sessions
Client and Server Interaction State
Resource State
Stateless constraint here refers to the second type in Rest. Using cookies (or local storage) does not violate Rest since it is related to the first.
Fielding says: 'Each request from client to server must contain all of the information necessary to understand the request, and cannot take advantage of any stored context on the server. Session state is therefore kept entirely on the client.'
The thing here is that every request to be fulfilled on the server needs the all necessary data from the client. Then this is considered as stateless. And again, we're not talking about cookies here, we're talking about resources.
HTTP transaction, basic access authentication, is not suitable for RBAC, because basic access authentication uses the encrypted username:password every time to identify, while what is needed in RBAC is the Role the user wants to use for a specific call.
RBAC does not validate permissions on username, but on roles.
You could tric around to concatenate like this: usernameRole:password, but this is bad practice, and it is also inefficient because when a user has more roles, the authentication engine would need to test all roles in concatenation, and that every call again. This would destroy one of the biggest technical advantages of RBAC, namely a very quick authorization-test.
So that problem cannot be solved using basic access authentication.
To solve this problem, session-maintaining is necessary, and that seems, according to some answers, in contradiction with REST.
That is what I like about the answer that REST should not be treated as a religion. In complex business cases, in healthcare, for example, RBAC is absolutely common and necessary. And it would be a pity if they would not be allowed to use REST because all REST-tools designers would treat REST as a religion.
For me there are not many ways to maintain a session over HTTP. One can use cookies, with a sessionId, or a header with a sessionId.
If someone has another idea I will be glad to hear it.
i think token must include all the needed information encoded inside it, which makes authentication by validating the token and decoding the info
https://www.oauth.com/oauth2-servers/access-tokens/self-encoded-access-tokens/
No, using sessions does not necessarily violate RESTfulness. If you adhere to the REST precepts and constraints, then using sessions - to maintain state - will simply be superfluous. After all, RESTfulness requires that the server not maintain state.
Sessions are not RESTless
Do you mean that REST service for http-use only or I got smth wrong? Cookie-based session must be used only for own(!) http-based services! (It could be a problem to work with cookie, e.g. from Mobile/Console/Desktop/etc.)
if you provide RESTful service for 3d party developers, never use cookie-based session, use tokens instead to avoid the problems with security.

Resources