I'm trying to play around with the Google ngrams dataset using Amazon's Elastic Map Reduce. There's a public dataset at http://aws.amazon.com/datasets/8172056142375670, and I want to use Hadoop streaming.
For the input files, it says "We store the datasets in a single object in Amazon S3. The file is in sequence file format with block level LZO compression. The sequence file key is the row number of the dataset stored as a LongWritable and the value is the raw data stored as TextWritable."
What do I need to do in order to process these input files with Hadoop Streaming?
I tried adding an extra "-inputformat SequenceFileAsTextInputFormat" to my arguments, but this doesn't seem to work -- my jobs keep failing for some unspecified reason. Are there other arguments I'm missing?
I've tried using a very simple identity as both my mapper and reducer
#!/usr/bin/env ruby
STDIN.each do |line|
puts line
end
but this doesn't work.
lzo is packaged as part of elastic mapreduce so there's no need to install anything.
i just tried this and it works...
hadoop jar ~hadoop/contrib/streaming/hadoop-streaming.jar \
-D mapred.reduce.tasks=0 \
-input s3n://datasets.elasticmapreduce/ngrams/books/20090715/eng-all/1gram/ \
-inputformat SequenceFileAsTextInputFormat \
-output test_output \
-mapper org.apache.hadoop.mapred.lib.IdentityMapper
Lzo compression has been removed from Hadoop 0.20.x onwards due to licensing issues. If you want to process lzo-compressed sequence files, lzo native libraries have to be installed and configured in hadoop cluster.
Kevin's Hadoop-lzo project is the current working solution I am aware of. I have tried it. It works.
Install ( if not done already so ) lzo-devel packages at OS. These packages enable lzo compression at the OS level without which hadoop lzo compression won't work.
Follow the instructions specified in the hadoop-lzo readme and compile it. After build, you would get hadoop-lzo-lib jar and hadoop lzo native libraries. Ensure that you compile it from the machine ( or machine of same arch ) where your cluster is configured.
Hadoop standard native libraries are also required which have been provided in the distribution by default for linux. If you are using solaris, you would also need to build hadoop from source inorder to get standard hadoop native libraries.
Restart the cluster once all changes are made.
You may want to look at this https://github.com/kevinweil/hadoop-lzo
I have weird results use lzo and my problem get resolved with some other codec
-D mapred.map.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec
-D mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec
Then things just work. You don't need (maybe also shouldn't) to change the -inputformat.
Version: 0.20.2-cdh3u4, 214dd731e3bdb687cb55988d3f47dd9e248c5690
Related
I'm new to Hadoop, and trying to use streaming option to develop some jobs using Python on windows 10 localy.
After double checking my pathes given, and even my program, I encounter an Exception that is not discussed in any pages. the Exception is as:
I will be grateful for any help.
No FileSystem for scheme
The error comes from either:
your core-site.xml , fs.defaultFS value. That needs to be hdfs://127.0.0.1:9000, for example, not your Windows filesystem. Perhaps you confused that with hdfs-site.xml values for the namenode/datanode data directories.
Your code. You need to use file://c:/path, not C:/ for Hadoop-compatible file paths, especially values passed as -mapper or -reducer
Also, no one really writes mapreduce code anymore. You can run similar code in PySpark, and you don't need Hadoop to run it.
I'm working with Windows and trying to set up Spark.
Previously I installed Hadoop in addition to Spark, edited the config files, run the hadoop namenode -format and away we went.
I'm now trying to achieve the same by using the bundled version of Spark that is pre built with hadoop - spark-1.6.1-bin-hadoop2.6.tgz
So far it's been a much cleaner, simpler process however I no longer have access to the command that creates the hdfs, the config files for the hdfs are no longer present and I've no 'hadoop' in any of the bin folders.
There wasn't an Hadoop folder in the spark install, I created one for the purpose of winutils.exe.
It feels like I've missed something. Do the pre-built versions of spark not include hadoop? Is this functionality missing from this variant or is there something else that I'm overlooking?
Thanks for any help.
By saying that Spark is built with Hadoop, it is meant that Spark is built with the dependencies of Hadoop, i.e. with the clients for accessing Hadoop (or HDFS, to be more precise).
Thus, if you use a version of Spark which is built for Hadoop 2.6 you will be able to access HDFS filesystem of a cluster with the version 2.6 of Hadoop via Spark.
It doesn't mean that Hadoop is part of the pakage and downloading it Hadoop is installed as well. You have to install Hadoop separately.
If you download a Spark release without Hadoop support, you'll need to include the Hadoop client libraries in all the applications you write wiƬhich are supposed to access HDFS (by a textFile for instance).
I am also using same spark in my windows 10. What I have done create C:\winutils\bin directory and put winutils.exe there. Than create HADOOP_HOME=C:\winutils variable. If you have set all
env variables and PATH like SPARK_HOME,HADOOP_HOME etc than it should work.
I've deployed a hadoop cluster via Deployments interface in google console. (Hadoop 2.x)
My task was to filter data stored in one Google Storage (GS) bucket and put the results to another. So, this is a map only job with simple python script. Note that cluster and output bucket are in the same zone (EU).
Leveraging Google Cloud Storage Connector, I run the following streaming job:
hadoop jar /home/hadoop/hadoop-install/share/hadoop/tools/lib/hadoop-streaming-2.4.1.jar \
-D mapreduce.output.fileoutputformat.compress=true \
-D mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec \
-D mapreduce.job.reduces=0 \
-file file_1 \
-file mymapper.py \
-input gs://inputbucket/somedir/somedir2/*-us-* \
-output gs://outputbucket/somedir3/somedir2 \
-inputformat org.apache.hadoop.mapred.TextInputFormat \
-mapper mymapper.py
What happens is all the mappers process data and store the results in temporary directory in GS, which looks like:
gs://outputbucket/somedir3/somedir2/_temporary/1/mapper-0000/part-0000.gz
After all mappers are finished, job progress hangs at 100% map, 0% reduce. Looking at output bucket with gsutil, I see that result files are being copied to the destination directory:
gs://outputbucket/somedir3/somedir2
This process takes a very long time and kills the whole benefit from using hadoop.
My questions are:
1) Is it a known issue or I just done something wrong? I couldn't find any relevant info.
2) Am I correct saying that normally hdfs would move those files to destination dir, but GS can't perform move and thus the files are copied?
3) What can I do to avoid this pattern?
You're almost certainly running into the "Slow FileOutputCommitter" issue which affects Hadoop 2.0 through 2.6 inclusive and is fixed in 2.7.
If you're looking for a nice managed Hadoop option on Google Cloud Platform, you should consider Google Cloud Dataproc (documentation here), where we maintain our distro to ensure we pick up patches relevant to Google Cloud Platform quickly. Dataproc indeed configures the mapreduce.fileoutputcommitter.algorithm.version so that the final commitJob is fast.
For something more "do-it-yourself", you can user our command-line bdutil tool , which also has the latest update to use the fast FileOutputCommitter.
I'm new to hadoop. I want to do stress/performance test on hadoop cluster. To do that, I followed the instructions given at Hadoop benchmarking. The difference is that in tutorial he is talking about hadoop 0.20.0 version and I'm trying to run similar thing in hadoop 2.4.0. I understand tutorial might not work fully, as there are many changes in version. For performing IO performance test on Hadoop, in tutorial he told me to use TestDFSIO. But I can't find the same in my hadoop installation.
To find TestDFSIO, I tried following command,
jar tf /home/hadoop/share/hadoop/hdfs/hadoop-hdfs-2.4.0-tests.jar|grep TestDFS
But couldn't find it. So, I assume I the filename is changed in newer version. Can somebody help in finding the new filename? or equivalent benchmarking techniques required for hadoop 2.4.0?
Found the jar which has TestDFSIO and other bench-marking classes/code. It is present in
/home/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.4.0-tests.jar
Here /home/hadoop is my hadoop installed path. It may not be same for you.
The Hadoop documentation states it's possible to make files available locally by use of the -file option.
How can I do this using the Elastic MapReduce Ruby CLI?
You could use the DistributedCache with EMR to do this.
With the ruby client this can be done with the following option:
`--cache <path_to_file_being_cached#name_in_current_working_dir>`
It places a single file in the DistributedCache. It lets you specify the location (s3n or hdfs) of the file followed by its name as referenced in the current working directory of the application, and will place the file locally on your task nodes on the directory identified by mapred.local.dir (I think).
You can then access the files in your Mapper/Reducer tasks easily. I believe you can directly access it just like any normal file, but you may have to do something like DistributedCache.getLocalCacheFiles(job); in the setup method of your tasks.
An example to do this in the Ruby client taken from Amazon's forums:
./elastic-mapreduce --create --stream --input s3n://your_bucket/wordcount/input --output s3n://your_bucket/wordcount/output --mapper s3n://your_bucket/wordcount/wordSplitter.py --reducer aggregate --cache s3n://your_bucket/wordcount/stop-word-list#stop-word-list