JDialog dispose and repainting problem - performance

In a jnlp application, we create a modal popup extends from javax.swing.JDialog, and call dispose() to hide the dialog whenever necessary. However, sometimes the final client get repainting problem. The dialog doesn't really disappear, and its parent window look messy. I couldn't reproduce, but it happen many times on final client PC. I guess there are 2 possible reasons:
There is a thread in our application update the cursor directly. However, I can't prove this thread is the root cause of the issue.
Periodically, we have another process highly use the CPU in a few seconds. I tried to load the CPU, but I couldn't reproduce the issue too.
Any advice for me in this case?
Thanks!

It looks the answer is in the question ;-)
Having a thread (not the EDT) updating the UI (the cursor in your case) may lead to this kind of problem.
Hence, ensure that your thread calls SwingUtilities.invokeLater() (or invokeAndWait() depending on your needs).
Another possibility (but this depends a lot on what your thread does, without further description from your side, it is hard to tell) would be to use SwingWorker instead of a thread.

Related

PowerBuilder 12.1 production performance issues causing asynchrony?

We have a legacy PowerBuilder 12.1 Classic application with an Oracle 11g back end, and are experiencing performance issues in production that we cannot reproduce in our test environments.
The window in question has shared grid/freeform DataWindows and buttons to open other response windows, which when closed cause the grid to re-retrieve.
The grid has a very expensive query behind it, several columns receive their values from function calls with some very intense SQL within, however it still runs within a couple seconds, even in production.
The only consistency in when the errors occur is that it seems to be more likely if they attempt to navigate to the other windows quickly. The buttons that open said windows are assuming that a certain instance variable is set with the appropriate value from the row in focus in the grid. However, in this scenario, the instance variable has not yet been set, even though it looks like the row focus change has occurred. This is causing null reference exceptions that shouldn't be possible.
The end users' network connectivity is often sluggish, and their hardware isn't any less capable than ours. I want to blame the network, but I attempted to reproduce this myself in development by intentionally slowing down the SQL so that I could attempt to click a button, however everything happened as I expected: clicking the button didn't happen until after retrieve and all the other events finished.
My gut tells me that for some reason things aren't running synchronously when they should, and the only factor I can imagine is the speed of the SQL, whether from the query being slow, or the network being slow, but when I tried reproducing that effect things still happened in the proper sequence. The only suspect code is that the datawindow ancestor posts a user event called ue_post_rfc from rowfocuschanged, and this event does a Yield(). ue_post_rfc is where code goes instead of rowfocuschanged.
Is there any way Yield() would cause these problems, without manifesting itself in test environments, even when SQL is artificially slowed?
While your message may not give enough information to give you a recipe to solve your problem, it does give me a hint towards a common point of hard-to-diagnose failures that I see often in PowerBuilder systems.
The sequence of development events goes something like this
Developer develops code where there is a dependence on one event firing before another event, often a dependence through instance or global variables
This event sequence has been something the developer has observed, but isn't documented as a guaranteed sequence (like the AcceptText() sequence or the Update() sequence are documented)
I find this a lot with posted events, and I'm not talking about event and post-event where post-event is posted from event, but more like between post-ItemChanged and post-GetFocus
Something changes the sequence of events, breaking the code. Things that I've seen change non-guaranteed sequences of events include:
PowerBuilder version change
Operating system change
Hardware change
The application running with other applications taxing the system resources
Whoever is now in charge of solving this, has no clue what is going on or how to deal with it, so they start peppering the code with Yield() statements (I've literally seen comments beside a Yield() that said "I don't know why this works, but it solves problem X")
Note that Yield() allows any and all events in the message queue to be processed, while this developer really wants only one particular event to get through
Also note that the commonly-seen-in-my-career DO ... LOOP UNTIL (NOT Yield()) could loop infinitely on a heavily loaded system
Something happens to change the event sequence again
Now when the Yield() occurs, there is a different sequence of messages in the queue to be processed, and not the message the developer had wanted to be processed
Things start failing again
My advice to get rid of this problem (if this is your problem) is to either:
Get rid of the cross-event dependence
Get rid of event sequence assumptions
Manage the event sequence yourself
Good luck,
Terry
P.S. Here's a couple of quotes from your question that make me think of Yield() (not that I don't love the opportunity to jump all over Yield() grin)
The only consistency in when the errors occur is that it seems to be
more likely if they attempt to navigate to the other windows quickly.
Seen this when the user tries to initiate (let's say for example) two actions very quickly. If the script from the first action contains a Yield(), the script from the second action will both start and finish before the first action finishes. This can be true of any combination of user actions (e.g. button clicks, menu clicks, tabs, window closings... you coded with the possibility that the window isn't there anymore after the Yield() was done, right? If not, join the 99% of those that code Yield(), don't, and live dangerously) and system events (e.g. GetFocus, Deactivate, Timer)
My gut tells me that for some reason things aren't running
synchronously when they should
You're right. PowerBuilder (unless you force it) runs synchronously. However, if one event is starting before another finishes (see above), then you're going to get behaviours that look like asynchronous behaviours.
There's nothing definitive in what you've said, but you did ask about Yield(). The really kicker to nail this down is if you could reproduce this with a PBDEBUG trace; you'd see which event(s) is(are) surprising you. However, the amount that PBDEBUG slows things down affects event sequences and queuing, which may or may not be helpful.

How to use DoEvents() without being "evil"?

A simple search for DoEvents brings up lots of results that lead, basically, to:
DoEvents is evil. Don't use it. Use threading instead.
The reasons generally cited are:
Re-entrancy issues
Poor performance
Usability issues (e.g. drag/drop over a disabled window)
But some notable Win32 functions such as TrackPopupMenu and DoDragDrop perform their own message processing to keep the UI responsive, just like DoEvents does.
And yet, none of these seem to come across these issues (performance, re-entrancy, etc.).
How do they do it? How do they avoid the problems cited with DoEvents? (Or do they?)
DoEvents() is dangerous. But I bet you do lots of dangerous things every day. Just yesterday I set off a few explosive devices (future readers: note the original post date relative to a certain American holiday). With care, we can sometimes account for the dangers. Of course, that means knowing and understanding what the dangers are:
Re-entry issues. There are actually two dangers here:
Part of the problem here has to do with the call stack. If you call .DoEvents() in a loop that itself handles messages that use DoEvents(), and so on, you're getting a pretty deep call stack. It's easy to over-use DoEvents() and accidentally fill up your call stack, resulting in a StackOverflow exception. If you're only using .DoEvents() in one or two places, you're probably okay. If it's the first tool you reach for whenever you have a long-running process, you can easily find yourself in trouble here. Even one use in the wrong place can make it possible for a user to force a stackoverflow exception (sometimes just by holding down the enter key), and that can be a security issue.
It is sometimes possible to find your same method on the call stack twice. If you didn't build the method with this in mind (hint: you probably didn't) then bad things can happen. If everything passed in to the method is a value type, and there is no dependance on things outside of the method, you might be fine. But otherwise, you need to think carefully about what happens if your entire method were to run again before control is returned to you at the point where .DoEvents() is called. What parameters or resources outside of your method might be modified that you did not expect? Does your method change any objects, where both instances on the stack might be acting on the same object?
Performance Issues. DoEvents() can give the illusion of multi-threading, but it's not real mutlithreading. This has at least three real dangers:
When you call DoEvents(), you are giving control on your existing thread back to the message pump. The message pump might in turn give control to something else, and that something else might take a while. The result is that your original operation could take much longer to finish than if it were in a thread by itself that never yields control, definitely longer than it needs.
Duplication of work. Since it's possible to find yourself running the same method twice, and we already know this method is expensive/long-running (or you wouldn't need DoEvents() in the first place), even if you accounted for all the external dependencies mentioned above so there are no adverse side effects, you may still end up duplicating a lot of work.
The other issue is the extreme version of the first: a potential to deadlock. If something else in your program depends on your process finishing, and will block until it does, and that thing is called by the message pump from DoEvents(), your app will get stuck and become unresponsive. This may sound far-fetched, but in practice it's surprisingly easy to do accidentally, and the crashes are very hard to find and debug later. This is at the root of some of the hung app situations you may have experienced on your own computer.
Usability Issues. These are side-effects that result from not properly accounting for the other dangers. There's nothing new here, as long as you looked in other places appropriately.
If you can be sure you accounted for all these things, then go ahead. But really, if DoEvents() is the first place you look to solve UI responsiveness/updating issues, you're probably not accounting for all of those issues correctly. If it's not the first place you look, there are enough other options that I would question how you made it to considering DoEvents() at all. Today, DoEvents() exists mainly for compatibility with older code that came into being before other credible options where available, and as a crutch for newer programmers who haven't yet gained enough experience for exposure to the other options.
The reality is that most of the time, at least in the .Net world, a BackgroundWorker component is nearly as easy, at least once you've done it once or twice, and it will do the job in a safe way. More recently, the async/await pattern or the use of a Task can be much more effective and safe, without needing to delve into full-blown multi-threaded code on your own.
Back in 16-bit Windows days, when every task shared a single thread, the only way to keep a program responsive within a tight loop was DoEvents. It is this non-modal usage that is discouraged in favor of threads. Here's a typical example:
' Process image
For y = 1 To height
For x = 1 to width
ProcessPixel x, y
End For
DoEvents ' <-- DON'T DO THIS -- just put the whole loop in another thread
End For
For modal things (like tracking a popup), it is likely to still be OK.
I may be wrong, but it seems to me that DoDragDrop and TrackPopupMenu are rather special cases, in that they take over the UI, so don't have the reentrancy problem (which I think is the main reason people describe DoEvents as "Evil").
Personally I don't think it's helpful to dismiss a feature as "Evil" - rather explain the pitfalls so that people can decide for themselves. In the case of DoEvents there are rare cases where it's still reasonable to use it, for example while a modal progress dialog is displayed, where the user can't interact with the rest of the UI so there is no re-entrancy issue.
Of course, if by "Evil" you mean "something you shouldn't use without fully understanding the pitfalls", then I agree that DoEvents is evil.

How to fool Windows into thinking that your application is still busy, although it's not responding

My application is a windowing application that performs certain complex mathematical algorithms. Because I started with the application a long time ago, most of it is still single-threaded. To be more precise, the main thread executes all the complex calculation logic. It's important to mention that during the calculations, I show some progress on the screen.
In most cases, the mathematical algorithms only take several seconds, so after the user has started the action, an hourglass (or the running circle in Windows 7) is shown, and a few seconds later the results are shown.
In some cases, the algorithm can take several minutes. During this time, I show the hourglass, and while the algorithm is busy, I show the progress in my window. But, if the user clicks in the application after it has been busy for a while, the Window becomes 'more white' (as if a non-completely-transparent piece of plastic is laid over the window), the Window is not updated anymore, and Windows reports 'the application is not responding'.
I use Qt and I use the Qt function QWidget::repaint to force a repaint while my algorithm is busy. The repaint works for some time, but as said above, Windows seems to block this after a while.
What is the correct way to tell Windows that your application is still busy so that the window keeps on updating? If I enter an explicit message loop, the user might trigger other actions in the application which I don't want.
Is it enough to call PeekMessage?
It is enough to call GetMessage?
Or should I call DispatchMessage? And how do I prevent the user from starting another action (actually, prevent all user input)
Should I call one of these messages every time I update my window, or can I limit myself to call it every few seconds (10 seconds?, 30 seconds? ...)
Notice that moving the calculation logic to a separate thread is currently not an option.
I'm using Visual Studio 2010 on Windows 7, in combination with Qt 4.7.
You should separate the GUI from the application logic. All other solutions are hacks. Moving the calculation logic to a separate thread can easily be achieved with Qt using minor effort.
I assume that there is a function (lets call it execute()) that when called performs all these time consuming mathematical operations. One option is to use the Qt Concurrent API for calling this function in a separate thread, without using low-level thread handling.
What you need is the QtConcurrent::run function :
The QtConcurrent::run() function runs a function in a separate thread.
The return value of the function is made available through the QFuture
API.
Instead of simply calling execute() which will block your User Interface you can do the following (let A be the class in which execute() is defined):
QFuture<void> future = QtConcurrent::run(this, &A::execute);
You can use QFutrureWatcher in order to get notified about when the function has finished.
You could simply call QApplication::processEvents() from time to time, say every 2 or 3 seconds or so. That should trigger a repaint event and refresh your progress bar and other elements.
Similar question and lots of info here:
I need a message pump that doesn't mess up my open window
However, as you probably already know, this is quite a hack and it would be better to try to move the code to another thread. Why is this "not an option"?
The DisableProcessWindowGhosting function (see http://msdn.microsoft.com/en-us/library/ms648415(v=vs.85).aspx) tells Windows that it must not show the 'ghost window' if an application is not responsive.
My colleague did some experiments with it and noticed the following:
the animation showing the progress continues nicely (this is actually what I wanted to achieve)
the user can still minimize, move, ... the window (great)
on the downside: if the application is really hanging, the user must use Task Manager to kill it
So, this solves my problem.

Total system freezing when using timers in graphical application

I’m really stuck with this issue and will greatly appreciate any advice.
The problem:
Some of our users complain about total system “freezing” when using our product. No matter how we tried, we couldn’t reproduce it in any of systems available for troubleshooting.
The product:
Physically, it’s a 32bit/64bit DLL. The product has a self-refreshing GUI, which draws a realtime spectrogram of an audio signal
Problem details:
What I managed to collect from a number of fragmentary reports makes the following picture:
When GIU is opened, sometimes immediately, sometimes after a few minutes of GIU being visible, the system completely stalls, without possibility to operate with windows, start Task Manager etc. No reactions on keyboard, no mouse cursor seen (or it’s seen but is not responsibe to mouse movements – this I do not know). The user has to hard-reset the system in order to reboot. What is important, I think, is that (in some cases) for some time the GIU is responsive and shows some adequate pictures. Then this freezing happens. One of the reports tells that once the system was frozen, the audio continued to be rendered – i.e. heard by the reporter (but the whole graphic shell of Windows was already frozen). Note: in this sort of apps it’s usually a specialized thread which is responsible for sound processing.
The freezing is more or less confirmed to happen for 2 users on Windows7 x64 using both 32 and 64 bit versions of the DLL, never heard of any other OSs mentioned with connection to this freezing (though there was 1 report without any OS specified).
That’s all that I managed to collect.
The architecture / suspicions:
I strongly suspect that it’s the GUI refreshing cycle that is a culprit.
Basically, it works like this:
There is a timer that triggers callbacks at a frame rate of approx 25 fps.
In this callback audio analysis is performed and GUI updated
Some details about the timer:
It’s based on this call:
CreateTimerQueueTimer(&m_timerHandle, NULL, xPlatformTimerCallbackWrapper,
this, m_firstExpInterval, m_period, WT_EXECUTEINTIMERTHREAD);
We create a timer and m_timerHandle is called periodically.
Some details about the GUI refreshing:
It works like this:
HDC hdc = GetDC (hwnd);
// Some drawing
ReleaseDC(hwnd,hdc);
My intuition tells me that this CreateTimeQueueTimer might be not the right decision. The reference page tells that in case of using WT_EXECUTEINTIMERTHREAD:
The callback function is invoked by the timer thread itself. This flag
should be used only for short tasks or
it could affect other timer
operations. The callback function is
queued as an APC. It should not
perform alertable wait operations.
I don’t remember why this WT_EXECUTEINTIMERTHREAD option was chosen actually, now WT_EXECUTEDEFAULT seems equally suitable for me.
In fact, I don’t see any major difference in using any of the options mentioned in the reference page.
Questions:
Is anything of what was told give anyone any clue on what might be wrong?
Have you faced similar problems, what was the reason?
Thanks for any info!
==========================================
Update: 2010-02-20
Unfortunatelly, the advise given here (which I could check so far) didn't help, namelly:
changing to WT_EXECUTEDEFAULT in CreateTimerQueueTimer(&m_timerHandle,NULL,xPlatformTimerCallbackWrapper,this,m_firstExpInterval,m_period, WT_EXECUTEDEFAULT);
the reenterability guard was already there
I havent' yet checked if updateding the GUI in WM_PAINT hander helps or not
Thanks for the hints anyway.
Now, I've been playing with this for a while, also got a real W7 intallation (I used to use the virtual one) and it seems that the problem can be narrowed down.
On my installation, using of the app really get the GUI far less responsive, although I couldn't manage to reproduce a total system freezing as someone reported.
My assumption now is this responsiveness degradation and reported total freezing have a common origin.
Then I did some primitive profiling and found that at least one of the culprits is BitBlt function that is called approx 50 times a second
BitBlt ((HDC)pContext->getSystemContext (), // hdcDest
destRect.left + pContext->offset.h,
destRect.top + pContext->offset.v,
destRect.right - destRect.left,
destRect.bottom - destRect.top,
(HDC)pSystemContext,
srcOffset.h,
srcOffset.v,
SRCCOPY);
The regions being copied are not really large (approx. 400x200 pixels). It is used for displaying the backbuffer and is executed in the timer callback.
If I comment out this BitBlt call, the problem seems to disappear (at least partly).
On the same machine running WinXP everything works just fine.
Any ideas on this?
Most likely what's happening is that your timer callback is taking more than 25 ms to execute. Then another timer tick comes along and it starts processing, too. And so on, and pretty soon you have a whole bunch of threads sucking down CPU cycles, all trying to do your audio analysis and in short order the system is so busy doing thread context switches that no real work gets done. And all the while, more and more timer ticks are getting placed into the queue.
I would strongly suggest that you use WT_EXECUTEDEFAULT here, rather than WT_EXECUTEINTIMERTHREAD. Also, you need to prevent overlapping timer callbacks. There are several ways to do that.
You can use a critical section in your timer callback. When the callback is triggered it calls TryEnterEnterCriticalSection and if not successful, just returns without doing anything.
You can do something similar using a volatile variable and InterlockedCompareExchange.
Or, you can change your timer to be a one-shot (WT_EXECUTEONLYONCE), and then re-set the timer at the end of every callback. That would make the thing execute 25 ms after the last one completed.
Which you choose is up to you. If your analysis often takes longer than 25 ms but not more than 35 ms, then you'll probably get a smoother update rate using WT_EXECUTEONLYONCE. If it's rare that analysis takes more than 25 ms, or if it often takes more than about 35 ms (but less than 50 ms), then you're probably better off using one of the other techniques.
Of course, if it often takes longer than 25 ms, then you probably want to increase the time (reduce the update rate).
Also, as one of the commenters pointed out, it's possible that the problem also involves accessing the GUI from the timer thread. You should do all of your analysis in the timer thread, store the results somewhere that the main thread can access it, and then send a message to the window proc, telling it to update the display.
Have you asked the users to disable Aero/WDMDWM? With Aero enabled, rendering is implemented quite different. Without Aero, the behaviour will be similar to XP. Not that it solves anything, but it will give you a clue as to what the problem is.

How can a breakpoint's location affect the findability of a bug?

In this MSO bug report, our very own waffles makes the following observation:
This bug also happens to be a heisenbug, when debugging it if your first breakpoint is too early, stepping through shows that everything is good.
(Ref: Wikipedia's entry on Heisenbugs)
How is it even possible for the location of a breakpoint make a difference in whether a bug appears?
(Yes, I know the Wikipedia article answers this, but I thought it'd be a good question for SO to have the answer to, and I bet SO can do better anyways.)
If there is any kind of asynchronous activity going on then this could affect heisenbugs. e.g. threads, I/O, interrupts, etc. Setting breakpoints in different locations would affect the relative timing of the main thread and the asynchronous events which could then potentially result in related bugs either showing up or disappearing.
A common source is timing, in particular with multiple threads.
Lets say you have a GUI app with some event handlers and a bug where a table selection is not handled correctly, perhaps because Swing sometimes start updating the table before your event is handled.
By pausing a thread at a breakpoint, you may change the order in which the table component receives events and thus you might see a different outcome with and without the breakpoint. It's a very common problem, and one of the things that can make debugging complex GUI apps with lots of events really painful.

Resources