how to simulate the following scenario in mathematica - wolfram-mathematica

Suppose I have n=6 distinct monomers each of which has two distinct and reactive ends. During each round of reaction, one random end unites with another random end, either elongates the monomer to a dimer or self-associates into a loop. This reaction process stops whenever no free ends are present in the system. I want to use Mma to simulate the reaction process.
I am thinking to represent the monomers as a list of strings, {'1-2', '3-4', '5-6', '7-8', '9-10', '11-12'}, then to do one round of reacion by updating the content of the list, for example either {'1-2-1', '3-4', '5-6', '7-8', '9-10', '11-12'} or {'1-2-3-4', '5-6', '7-8', '9-10', '11-12'}. But I am not able to go very far due to my programming limitation in Mma. Could anyone please help? Thanks a lot.

Here is the set-up:
Clear[freeVertices];
freeVertices[edgeList_List] := Select[Tally[Flatten[edgeList]], #[[2]] < 2 &][[All, 1]];
ClearAll[setNew, componentsBFLS];
setNew[x_, x_] := Null;
setNew[lhs_, rhs_] := lhs := Function[Null, (#1 := #0[##]); #2, HoldFirst][lhs, rhs];
componentsBFLS[lst_List] :=
Module[{f}, setNew ### Map[f, lst, {2}]; GatherBy[Tally[Flatten#lst][[All, 1]], f]];
Here is the start:
In[13]:= start = Partition[Range[12], 2]
Out[13]= {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}
Here are the steps:
In[51]:= steps =
NestWhileList[Append[#, RandomSample[freeVertices[#], 2]] &,
start, freeVertices[#] =!= {} &]
Out[51]= {{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}, {{1,
2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {5, 1}}, {{1,
2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {5, 1}, {3,
4}}, {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {5,
1}, {3, 4}, {7, 11}}, {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9,
10}, {11, 12}, {5, 1}, {3, 4}, {7, 11}, {8, 2}}, {{1, 2}, {3,
4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {5, 1}, {3, 4}, {7, 11}, {8,
2}, {6, 10}}, {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11,
12}, {5, 1}, {3, 4}, {7, 11}, {8, 2}, {6, 10}, {9, 12}}}
Here are the connected components (cycles etc), which you can study:
In[52]:= componentsBFLS /# steps
Out[52]= {{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}, {{1, 2,
5, 6}, {3, 4}, {7, 8}, {9, 10}, {11, 12}}, {{1, 2, 5, 6}, {3,
4}, {7, 8}, {9, 10}, {11, 12}}, {{1, 2, 5, 6}, {3, 4}, {7, 8, 11,
12}, {9, 10}}, {{1, 2, 5, 6, 7, 8, 11, 12}, {3, 4}, {9, 10}}, {{1,
2, 5, 6, 7, 8, 9, 10, 11, 12}, {3, 4}}, {{1, 2, 5, 6, 7, 8, 9, 10,
11, 12}, {3, 4}}}
What happens is that we treat all pairs as edges in one big graph, and add an edge randomly if both vertices have at most one connection to some other edge at the moment. At some point, the process stops. Then, we map the componentsBFLS function onto resulting graphs (representing the steps of the simulation), to get the connected components of the graphs (steps). You could use other metrics as well, of course, and write more functions which will analyze the steps for loops etc. Hope this will get you started.

It seems like it would be more natural to represent your molecules as lists rather than strings. So start with {{1,2},{3,4},{5,6}} and so on. Then open chains are just longer lists {1,2,3,4} or whatever, and have some special convention for loops such as starting with the symbol "loop". {{loop,1,2},{3,4,5,6},{7,8}} or whatever.
How detailed does your simulation actually need to be? For instance, do you actually care which monomers end up next to which, or do you only care about the statistics of the lengths of chains? In the latter case, you could greatly simplify the state of your simulation: it could, for instance, consist of a list of loop lengths (which would start empty) and a list of open chain lengths (which would start as a bunch of 1s). Then one simulation step is: pick an open chain at random; with appropriate probabilities, either turn that into a loop or combine it with another open chain.
Mathematica things you might want to look up: RandomInteger, RandomChoice; Prepend, Append, Insert, Delete, ReplacePart, Join; While (though actually some sort of "functional iteration" with, e.g., NestWhile might make for prettier code).

Here's a simple approach. Following the examples given in the question, I've assumed that the monomers have a prefered binding, so that only {1,2} + {3,4} -> {1,2,3,4} OR {1,2,1} + {3,4,3} is possible, but {1,2} + {3,4} -> {1,2,4,3} is not possible. The following code should be packaged up as a nice function/module once you are happy with it. If you're after statistics, then it can also probably be compiled to add some speed.
Initialize:
In[1]:= monomers=Partition[Range[12],2]
loops={}
Out[1]= {{1,2},{3,4},{5,6},{7,8},{9,10},{11,12}}
Out[2]= {}
The loop:
In[3]:= While[monomers!={},
choice=RandomInteger[{1,Length[monomers]},2];
If[Equal##choice,
AppendTo[loops, monomers[[choice[[1]]]]];
monomers=Delete[monomers,choice[[1]]],
monomers=Prepend[Delete[monomers,Transpose[{choice}]],
Join##Extract[monomers,Transpose[{choice}]]]];
Print[monomers,"\t",loops]
]
During evaluation of In[3]:= {{7,8,1,2},{3,4},{5,6},{9,10},{11,12}} {}
During evaluation of In[3]:= {{5,6,7,8,1,2},{3,4},{9,10},{11,12}} {}
During evaluation of In[3]:= {{5,6,7,8,1,2},{3,4},{9,10}} {{11,12}}
During evaluation of In[3]:= {{3,4,5,6,7,8,1,2},{9,10}} {{11,12}}
During evaluation of In[3]:= {{9,10}} {{11,12},{3,4,5,6,7,8,1,2}}
During evaluation of In[3]:= {} {{11,12},{3,4,5,6,7,8,1,2},{9,10}}
Edit:
If the monomers can bind at both ends, you just add a option to flip on of the monomers that you join, e.g.
Do[
choice=RandomInteger[{1,Length[monomers]},2];
reverse=RandomChoice[{Reverse,Identity}];
If[Equal##choice,
AppendTo[loops,monomers[[choice[[1]]]]];
monomers=Delete[monomers,choice[[1]]],
monomers=Prepend[Delete[monomers,Transpose[{choice}]],
Join[monomers[[choice[[1]]]],reverse#monomers[[choice[[2]]]]]]];
Print[monomers,"\t",loops],{Length[monomers]}]
{{7,8,10,9},{1,2},{3,4},{5,6},{11,12}} {}
{{3,4,5,6},{7,8,10,9},{1,2},{11,12}} {}
{{3,4,5,6},{7,8,10,9},{11,12}} {{1,2}}
{{7,8,10,9},{11,12}} {{1,2},{3,4,5,6}}
{{7,8,10,9,11,12}} {{1,2},{3,4,5,6}}
{} {{1,2},{3,4,5,6},{7,8,10,9,11,12}}

I see my implementation mimics Simon's closely. Reminder to self: never go to bed before posting solution...
simulatePolimerization[originalStuff_] :=
Module[{openStuff = originalStuff, closedStuff = {}, picks},
While[Length[openStuff] > 0,
picks = RandomInteger[{1, Length[openStuff]}, 2];
openStuff = If[RandomInteger[1] == 1, Reverse[#], #] & /# openStuff;
If[Equal ## picks,
(* closing *)
AppendTo[closedStuff,Append[openStuff[[picks[[1]]]], openStuff[[picks[[1]], 1]]]];
openStuff = Delete[openStuff, picks[[1]]],
(* merging *)
AppendTo[openStuff,Join[openStuff[[picks[[1]]]], openStuff[[picks[[2]]]]]];
openStuff = Delete[openStuff, List /# picks]
]
];
Return[closedStuff]
]
Some results:

Related

n'th biggest number in a multi-dimensional list in Mathematica

Imagine I have a 2D list of numbers in Mathematica :
myList = Table[{i,i*j},{i,1,10},{j,1,10}];
and I want to retrieve the 5th highest values in an efficient way. Using RankedMax gives an error. For example,
Max[myList]
gives 100 but:
RankedMax[myList,1]
gives :
RankedMax::vec : "Input {{{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, \
{1, 7}, {1, 8}, {1, 9}, {1, 10}}, {{2, 2}, {2, 4}, {2, 6}, {2, 8}, {2, 10}, \
{2, 12}, {2, 14}, {2, 16}, {2, 18}, {2, 20}}, 6, {{9, 9}, {9, 18}, {9, 27}, \
{9, 36}, {9, 45}, {9, 54}, {9, 63}, {9, 72}, {9, 81}, {9, 90}}, {{10, 10}, \
{10, 20}, {10, 30}, {10, 40}, {10, 50}, {10, 60}, {10, 70}, {10, 80}, {10, \
90}, {10, 100}}} is not a vector
How do I use RankedMax on my data or is there any other way around ?
Use Flatten
RankedMax[Flatten#myList,1]
This is fine if he's just looking for the fifth biggest of all the numbers in the table. If, as I suspect, he's looking for the fifth biggest of the calculated terms -- the second element in each pair -- we should slightly amend the previous solution to read:
RankedMax[Flatten#Map[Rest, myList, {2}], 5]

Mathematica: flatten a nested list with repetitions

I have a following list:
lis={{1, {2}}, {3, {4, 5, 6}}, {7, {8, 9}}, {10, {11}}};
I'd like to obtain this:
lis2={{1, 2}, {3, 4}, {3, 5}, {3, 6}, {7, 8}, {7, 9}, {10, 11}};
I can achieve that using nested tables and calculating the length of the second nested list:
Flatten[Table[Table[{lis[[kk, 1]], lis[[kk, 2, ii]]}, {ii, 1, Length[lis[[kk, 2]]]}], {kk, 1, Length[lis]}], 1]
It works, but is there a more straightforward way? Perhaps a combination of Map/Thread/Apply?
One way:
ArrayFlatten[Distribute[#, List] & /# lis, 1]
=> {{1, 2}, {3, 4}, {3, 5}, {3, 6}, {7, 8}, {7, 9}, {10, 11}}
Edit
Or
ArrayFlatten[Thread /# lis, 1]
Edit 2
Or, slightly simpler, as Mr Wizard points out in a comment:
Flatten[Thread /# lis, 1]

Mathematica, group pairs with common values

I'm trying to use the GatherBy function in Mathematica in order to take the pairs in the list a={{1, 4}, {2, 3}, {1, 5}, {2, 5}, {3, 4}, {6, 8}, {6, 7}, {7, 8}} and sort by the pairs that contain the value 1. Ideally, output would look like Output={ { {1,4},{1,5} } , {{2, 3}, {2, 5}, {3, 4}, {6, 8}, {6, 7}, {7, 8} } } or something similar where the first element in the output is a list of all elements in a containing a 1 and the second element contains all pairs that do not contain a 1.
GatherBy[a, #[[1]] == 1 || #[[2]] == 1 &]
answering the q in the comment, Sort the result to ensure the desired order:
a = {{1, 4}, {2, 3}, {1, 5}, {2, 5}, {3, 4}, {6, 8}, {6, 7}, {7, 8}};
SortBy[GatherBy[a, MemberQ[#, 2] &], !MemberQ[First##, 2] &]
another approach :
Reap[Sow[ # , MemberQ[#, 2] ] & /# a, {True, False}] // Last
Either yields:
{{{{2, 3}, {2, 5}}}, {{{1, 4}, {1, 5}, {3, 4}, {6, 8}, {6, 7}, {7,
8}}}}

Searching for certain triples in a list

Let’s assume we have a list of elements of the type {x,y,z} for x, y
and z integers. And, if needed x < y < z.
We also assume that the list contains at least 3 such triples.
Can Mathematica easily solve the following problem?
To detect at least one triple of the type {a,b,.}, {b,c,.} and {a,c,.}?
I am more intereseted in an elegant 1-liner than computational efficient solutions.
If I understood the problem, you want to detect triples not necessarily following one another, but generally present somewhere in the list. Here is one way to detect all such triples. First, some test list:
In[71]:= tst = RandomInteger[5,{10,3}]
Out[71]= {{1,1,0},{1,3,5},{3,3,4},{1,2,1},{2,0,3},{2,5,1},{4,2,2},
{4,3,4},{1,4,2},{4,4,3}}
Here is the code:
In[73]:=
Apply[Join,ReplaceList[tst,{___,#1,___,#2,___,#3,___}:>{fst,sec,th}]&###
Permutations[{fst:{a_,b_,_},sec:{b_,c_,_},th:{a_,c_,_}}]]
Out[73]= {{{1,4,2},{4,3,4},{1,3,5}},{{1,4,2},{4,2,2},{1,2,1}}}
This may perhaps satisfy your "one-liner" requirement, but is not very efficient. If you need only triples following one another, then, as an alternative to solution given by #Chris, you can do
ReplaceList[list,
{___, seq : PatternSequence[{a_, b_, _}, {b_, c_, _}, {a_,c_, _}], ___} :> {seq}]
I don't know if I interpreted your question correctly but suppose your list is something like
list = Sort /# RandomInteger[10, {20, 3}]
(*
{{3, 9, 9}, {0, 5, 6}, {3, 4, 8}, {4, 6, 10}, {3, 6, 9}, {1, 4, 8},
{0, 6, 10}, {2, 9, 10}, {3, 5, 9}, {6, 7, 9}, {0, 9, 10}, {1, 7, 10},
{4, 5, 10}, {0, 2, 5}, {0, 6, 7}, {1, 8, 10}, {1, 8, 10}}
*)
then you could do something like
ReplaceList[Sort[list],
{___, p:{a_, b_, _}, ___, q:{a_, c_, _}, ___, r:{b_, c_, _}, ___} :> {p, q, r}]
(* Output:
{{{0, 2, 5}, {0, 9, 10}, {2, 9, 10}}, {{3, 4, 8}, {3, 5, 9},
{4, 5, 10}}, {{3, 4, 8}, {3, 6, 9}, {4, 6, 10}}}
*)
Note that this works since it is given that for any element {x,y,z} in the original list we have x<=y. Therefore, for a triple {{a,b,_}, {a,c,_}, {b,c,_}} \[Subset] list we know that a<=b<=c. This means that the three elements {a,b,_}, {a,c,_}, and {b,c,_} will appear in that order in Sort[list].
To match triples "of the type {a,b,.}, {b,c,.} and {a,c,.}":
list = {{34, 37, 8}, {74, 32, 65}, {48, 77, 18}, {77, 100, 30},
{48, 100, 13}, {100, 94, 55}, {48, 94, 73}, {77, 28, 12},
{90, 91, 51}, {34, 5, 32}};
Cases[Partition[list, 3, 1], {{a_, b_, _}, {b_, c_, _}, {a_, c_, _}}]
(Edited)
(Tuples was not the way to go)
Do you require something like:
list = RandomInteger[10, {50, 3}];
Cases[Permutations[
list, {3}], {{a_, b_, _}, {b_, c_, _}, {a_, c_, _}} /; a < b < c]
giving
{{{0, 1, 2}, {1, 5, 2}, {0, 5, 4}},
{{2, 3, 5},{3, 4, 10}, {2, 4, 5}},
{{6, 8, 10}, {8, 10, 10},{6, 10, 0}},
{{2, 4, 5}, {4, 8, 2}, {2, 8, 5}},
{{2, 4, 5}, {4, 7, 7}, {2, 7, 3}},
{{0, 2, 2}, {2, 7, 3}, {0, 7, 2}},
{{0, 2, 1}, {2, 7, 3}, {0, 7, 2}}}
or perhaps (as other have interpreted the question):
Cases[Permutations[
list, {3}], {{a_, b_, _}, {b_, c_, _}, {a_, c_, _}}];

MapThread for any combination of variables

I have a set of regular (mod 5) matrices N2 and I would like to get the group generated by these matrices in Mathematica:
My approach was to use a function f doing the matrix multiplication and g for mod 5 and then I wanted to use MapThread
M= Function[{x,y},x.y];
g = Function[z, Mod[z, 5]]
g /# MapThread[M, {N2,N2}]
The problem is that MapThread is inserting only pairs of elements that are at the same position in the lists. I would like to insert any pair of elements in N. To get the group generated by the matrices in N I would just repeat this and update N2 every time.
E.g. let N2 ={A,B}
g /# MapThread[M, {N2,N2}]
would return {B^2,A^2}, while I want it to return any product of matrices in N2, i.e. {A^2,AB,BA,B^2}.
I'm not sure whether I understand your question, but if your intention is to get all combinations of the two matrices A,B you could use Tuples combined with Apply (which you may use in its functional form with square brackets or as many here do in initially cryptic prefix operator form ### = Apply at level 1):
In[24]:= Dot ### Tuples[{A, B}, 2]
Out[24]= {A.A, A.B, B.A, B.B}
In this case you need Outer:
In[27]:= n = RandomInteger[{1, 5}, {3, 2, 2}];
In[28]:= Outer[mFunc, n, n, 1]
Out[28]= {{mFunc[{{3, 5}, {2, 4}}, {{3, 5}, {2, 4}}],
mFunc[{{3, 5}, {2, 4}}, {{3, 4}, {4, 3}}],
mFunc[{{3, 5}, {2, 4}}, {{4, 4}, {5, 1}}]}, {mFunc[{{3, 4}, {4,
3}}, {{3, 5}, {2, 4}}],
mFunc[{{3, 4}, {4, 3}}, {{3, 4}, {4, 3}}],
mFunc[{{3, 4}, {4, 3}}, {{4, 4}, {5, 1}}]}, {mFunc[{{4, 4}, {5,
1}}, {{3, 5}, {2, 4}}],
mFunc[{{4, 4}, {5, 1}}, {{3, 4}, {4, 3}}],
mFunc[{{4, 4}, {5, 1}}, {{4, 4}, {5, 1}}]}}
In[29]:= n
Out[29]= {{{3, 5}, {2, 4}}, {{3, 4}, {4, 3}}, {{4, 4}, {5, 1}}}

Resources