Lets say I have a parabola. Now I also have a bunch of sticks that are all of the same width (yes my drawing skills are amazing!). How can I stack these sticks within the parabola such that I am minimizing the space it uses as much as possible? I believe that this falls under the category of Knapsack problems, but this Wikipedia page doesn't appear to bring me closer to a real world solution. Is this a NP-Hard problem?
In this problem we are trying to minimize the amount of area consumed (eg: Integral), which includes vertical area.
I cooked up a solution in JavaScript using processing.js and HTML5 canvas.
This project should be a good starting point if you want to create your own solution. I added two algorithms. One that sorts the input blocks from largest to smallest and another that shuffles the list randomly. Each item is then attempted to be placed in the bucket starting from the bottom (smallest bucket) and moving up until it has enough space to fit.
Depending on the type of input the sort algorithm can give good results in O(n^2). Here's an example of the sorted output.
Here's the insert in order algorithm.
function solve(buckets, input) {
var buckets_length = buckets.length,
results = [];
for (var b = 0; b < buckets_length; b++) {
results[b] = [];
}
input.sort(function(a, b) {return b - a});
input.forEach(function(blockSize) {
var b = buckets_length - 1;
while (b > 0) {
if (blockSize <= buckets[b]) {
results[b].push(blockSize);
buckets[b] -= blockSize;
break;
}
b--;
}
});
return results;
}
Project on github - https://github.com/gradbot/Parabolic-Knapsack
It's a public repo so feel free to branch and add other algorithms. I'll probably add more in the future as it's an interesting problem.
Simplifying
First I want to simplify the problem, to do that:
I switch the axes and add them to each other, this results in x2 growth
I assume it is parabola on a closed interval [a, b], where a = 0 and for this example b = 3
Lets say you are given b (second part of interval) and w (width of a segment), then you can find total number of segments by n=Floor[b/w]. In this case there exists a trivial case to maximize Riemann sum and function to get i'th segment height is: f(b-(b*i)/(n+1))). Actually it is an assumption and I'm not 100% sure.
Max'ed example for 17 segments on closed interval [0, 3] for function Sqrt[x] real values:
And the segment heights function in this case is Re[Sqrt[3-3*Range[1,17]/18]], and values are:
Exact form:
{Sqrt[17/6], 2 Sqrt[2/3], Sqrt[5/2],
Sqrt[7/3], Sqrt[13/6], Sqrt[2],
Sqrt[11/6], Sqrt[5/3], Sqrt[3/2],
2/Sqrt[3], Sqrt[7/6], 1, Sqrt[5/6],
Sqrt[2/3], 1/Sqrt[2], 1/Sqrt[3],
1/Sqrt[6]}
Approximated form:
{1.6832508230603465,
1.632993161855452, 1.5811388300841898, 1.5275252316519468, 1.4719601443879744, 1.4142135623730951, 1.35400640077266, 1.2909944487358056, 1.224744871391589, 1.1547005383792517, 1.0801234497346435, 1, 0.9128709291752769, 0.816496580927726, 0.7071067811865475, 0.5773502691896258, 0.4082482904638631}
What you have archived is a Bin-Packing problem, with partially filled bin.
Finding b
If b is unknown or our task is to find smallest possible b under what all sticks form the initial bunch fit. Then we can limit at least b values to:
lower limit : if sum of segment heights = sum of stick heights
upper limit : number of segments = number of sticks longest stick < longest segment height
One of the simplest way to find b is to take a pivot at (higher limit-lower limit)/2 find if solution exists. Then it becomes new higher or lower limit and you repeat the process until required precision is met.
When you are looking for b you do not need exact result, but suboptimal and it would be much faster if you use efficient algorithm to find relatively close pivot point to actual b.
For example:
sort the stick by length: largest to smallest
start 'putting largest items' into first bin thy fit
This is equivalent to having multiple knapsacks (assuming these blocks are the same 'height', this means there's one knapsack for each 'line'), and is thus an instance of the bin packing problem.
See http://en.wikipedia.org/wiki/Bin_packing
How can I stack these sticks within the parabola such that I am minimizing the (vertical) space it uses as much as possible?
Just deal with it like any other Bin Packing problem. I'd throw meta-heuristics on it (such as tabu search, simulated annealing, ...) since those algorithms aren't problem specific.
For example, if I'd start from my Cloud Balance problem (= a form of Bin Packing) in Drools Planner. If all the sticks have the same height and there's no vertical space between 2 sticks on top of each other, there's not much I'd have to change:
Rename Computer to ParabolicRow. Remove it's properties (cpu, memory, bandwith). Give it a unique level (where 0 is the lowest row). Create a number of ParabolicRows.
Rename Process to Stick
Rename ProcessAssignement to StickAssignment
Rewrite the hard constraints so it checks if there's enough room for the sum of all Sticks assigned to a ParabolicRow.
Rewrite the soft constraints to minimize the highest level of all ParabolicRows.
I'm very sure it is equivalent to bin-packing:
informal reduction
Be x the width of the widest row, make the bins 2x big and create for every row a placeholder element which is 2x-rowWidth big. So two placeholder elements cannot be packed into one bin.
To reduce bin-packing on parabolic knapsack you just create placeholder elements for all rows that are bigger than the needed binsize with size width-binsize. Furthermore add placeholders for all rows that are smaller than binsize which fill the whole row.
This would obviously mean your problem is NP-hard.
For other ideas look here maybe: http://en.wikipedia.org/wiki/Cutting_stock_problem
Most likely this is the 1-0 Knapsack or a bin-packing problem. This is a NP hard problem and most likely this problem I don't understand and I can't explain to you but you can optimize with greedy algorithms. Here is a useful article about it http://www.developerfusion.com/article/5540/bin-packing that I use to make my php class bin-packing at phpclasses.org.
Props to those who mentioned the fact that the levels could be at varying heights (ex: assuming the sticks are 1 'thick' level 1 goes from 0.1 unit to 1.1 units, or it could go from 0.2 to 1.2 units instead)
You could of course expand the "multiple bin packing" methodology and test arbitrarily small increments. (Ex: run the multiple binpacking methodology with levels starting at 0.0, 0.1, 0.2, ... 0.9) and then choose the best result, but it seems like you would get stuck calulating for an infinite amount of time unless you had some methodlogy to verify that you had gotten it 'right' (or more precisely, that you had all the 'rows' correct as to what they contained, at which point you could shift them down until they met the edge of the parabola)
Also, the OP did not specify that the sticks had to be laid horizontally - although perhaps the OP implied it with those sweet drawings.
I have no idea how to optimally solve such an issue, but i bet there are certain cases where you could randomly place sticks and then test if they are 'inside' the parabola, and it would beat out any of the methodologies relying only on horizontal rows.
(Consider the case of a narrow parabola that we are trying to fill with 1 long stick.)
I say just throw them all in there and shake them ;)
Related
Grid Illumination: Given an NxN grid with an array of lamp coordinates. Each lamp provides illumination to every square on their x axis, every square on their y axis, and every square that lies in their diagonal (think of a Queen in chess). Given an array of query coordinates, determine whether that point is illuminated or not. The catch is when checking a query all lamps adjacent to, or on, that query get turned off. The ranges for the variables/arrays were about: 10^3 < N < 10^9, 10^3 < lamps < 10^9, 10^3 < queries < 10^9
It seems like I can get one but not both. I tried to get this down to logarithmic time but I can't seem to find a solution. I can reduce the space complexity but it's not that fast, exponential in fact. Where should I focus on instead, speed or space? Also, if you have any input as to how you would solve this problem please do comment.
Is it better for a car to go fast or go a long way on a little fuel? It depends on circumstances.
Here's a proposal.
First, note you can number all the diagonals that the inputs like on by using the first point as the "origin" for both nw-se and ne-sw. The diagonals through this point are both numbered zero. The nw-se diagonals increase per-pixel in e.g the northeast direction, and decreasing (negative) to the southwest. Similarly ne-sw are numbered increasing in the e.g. the northwest direction and decreasing (negative) to the southeast.
Given the origin, it's easy to write constant time functions that go from (x,y) coordinates to the respective diagonal numbers.
Now each set of lamp coordinates is naturally associated with 4 numbers: (x, y, nw-se diag #, sw-ne dag #). You don't need to store these explicitly. Rather you want 4 maps xMap, yMap, nwSeMap, and swNeMap such that, for example, xMap[x] produces the list of all lamp coordinates with x-coordinate x, nwSeMap[nwSeDiagonalNumber(x, y)] produces the list of all lamps on that diagonal and similarly for the other maps.
Given a query point, look up it's corresponding 4 lists. From these it's easy to deal with adjacent squares. If any list is longer than 3, removing adjacent squares can't make it empty, so the query point is lit. If it's only 3 or fewer, it's a constant time operation to see if they're adjacent.
This solution requires the input points to be represented in 4 lists. Since they need to be represented in one list, you can argue that this algorithm requires only a constant factor of space with respect to the input. (I.e. the same sort of cost as mergesort.)
Run time is expected constant per query point for 4 hash table lookups.
Without much trouble, this algorithm can be split so it can be map-reduced if the number of lampposts is huge.
But it may be sufficient and easiest to run it on one big machine. With a billion lamposts and careful data structure choices, it wouldn't be hard to implement with 24 bytes per lampost in an unboxed structures language like C. So a ~32Gb RAM machine ought to work just fine. Building the maps with multiple threads requires some synchronization, but that's done only once. The queries can be read-only: no synchronization required. A nice 10 core machine ought to do a billion queries in well less than a minute.
There is very easy Answer which works
Create Grid of NxN
Now for each Lamp increment the count of all the cells which suppose to be illuminated by the Lamp.
For each query check if cell on that query has value > 0;
For each adjacent cell find out all illuminated cells and reduce the count by 1
This worked fine but failed for size limit when trying for 10000 X 10000 grid
Consider array of points in 2D,3D,(4D...) space ( e.g. nodes of unstructured mesh ). Initially the index of a point in array is not related to its position in space. In simple case, assume I already know some nearest neighbor connectivity graph.
I would like some heuristics which increase probability that two points which are close to each other in space would have similar index (would be close in array).
I understand that exact solution is very hard (perhaps similar to Travelling salesman problem ) but I don't need exact solution, just something which increase probability.
My ideas on solution:
some naive solution would be like:
1. for each point "i" compute fitness E_i given by sum of distances in array (i.e. index-wise) from its spatial neighbors (i.e. space-wise)
E_i = -Sum_k ( abs( index(i)-index(k) ) )
where "k" are spatial nearest neighbors of "i"
2. for pairs of points (i,j) which have low fitness (E_i,E_j)
try to swap them,
if fitness improves, accept
but the detailed implementation and its performance optimization is not so clear.
Other solution which does not need precomputed nearest-neighbors would be based on some Locality-sensitive_hashing
I think this could be quite common problem, and there may exist good solutions, I do not want to reinvent the wheel.
Application:
improve cache locality, considering that memory access is often bottleneck of graph-traversal
it could accelerate interpolation of unstructured grid, more specifically search for nodes which are near the smaple (e.g. centers of Radial-basis function).
I'd say space filling curves (SPC) are the standard solution to map proximity in space to a linear ordering. The most common ones are Hilbert-curves and z-curves (Morton order).
Hilbert curves have the best proximity mapping, but they are somewhat expensive to calculate. Z-ordering still has a good proximity mapping but is very easy to calculate. For z-ordering, it is sufficient to interleave the bits of each dimension. Assuming integer values, if you have a 64bit 3D point (x,y,z), the z-value is $x_0,y_0,z_0,x_1,y_1,z_1, ... x_63,y_63,z_63$, i.e. a 192 bit value consisting of the first bit of every dimension, followed by the second bit of every dimension, and so on. If your array is ordered according to that z-value, points that are close in space are usually also close in the array.
Here are example functions that interleave (merge) values into a z-value (nBitsPerValue is usually 32 or 64):
public static long[] mergeLong(final int nBitsPerValue, long[] src) {
final int DIM = src.length;
int intArrayLen = (src.length*nBitsPerValue+63) >>> 6;
long[] trg = new long[intArrayLen];
long maskSrc = 1L << (nBitsPerValue-1);
long maskTrg = 0x8000000000000000L;
int srcPos = 0;
int trgPos = 0;
for (int j = 0; j < nBitsPerValue*DIM; j++) {
if ((src[srcPos] & maskSrc) != 0) {
trg[trgPos] |= maskTrg;
} else {
trg[trgPos] &= ~maskTrg;
}
maskTrg >>>= 1;
if (maskTrg == 0) {
maskTrg = 0x8000000000000000L;
trgPos++;
}
if (++srcPos == DIM) {
srcPos = 0;
maskSrc >>>= 1;
}
}
return trg;
}
You can also interleave the bits of floating point values (if encoded with IEEE 754, as they usually are in standard computers), but this results in non-euclidean distance properties. You may have to transform negative values first, see here, section 2.3.
EDIT
Two answer the questions from the comments:
1) I understand how to make space filling curve for regular
rectangular grid. However, if I have randomly positioned floating
points, several points can map into one box. Would that algorithm work
in that case?
There are several ways to use floating point (FP) values. The simplest is to convert them to integer values by multiplying them by a large constant. For example multiply everything by 10^6 to preserve 6 digit precision.
Another way is to use the bitlevel representation of the FP value to turn it into an integer. This has the advantage that no precision is lost and you don't have to determine a multiplication constant. The disadvantage is that euclidean distance metric do not work anymore.
It works as follows: The trick is that the floating point values do not have infinite precision, but are limited to 64bit. Hence they automatically form a grid. The difference to integer values is that floating point values do not form a quadratic grid but a rectangular grid where the rectangles get bigger with growing distance from (0,0). The grid-size is determined by how much precision is available at a given point. Close to (0,0), the precision (=grid_size) is 10^-28, close to (1,1), it is 10^-16 see here. This distorted grid still has the proximity mapping, but distances are not euclidean anymore.
Here is the code to do the transformation (Java, taken from here; in C++ you can simply cast the float to int):
public static long toSortableLong(double value) {
long r = Double.doubleToRawLongBits(value);
return (r >= 0) ? r : r ^ 0x7FFFFFFFFFFFFFFFL;
}
public static double toDouble(long value) {
return Double.longBitsToDouble(value >= 0.0 ? value : value ^ 0x7FFFFFFFFFFFFFFFL);
}
These conversion preserve ordering of the converted values, i.e. for every two FP values the resulting integers have the same ordering with respect to <,>,=. The non-euclidean behaviour is caused by the exponent which is encoded in the bit-string. As mentioned above, this is also discussed here, section 2.3, however the code is slightly less optimized.
2) Is there some algorithm how to do iterative update of such space
filling curve if my points moves in space? ( i.e. without reordering
the whole array each time )
The space filling curve imposes a specific ordering, so for every set of points there is only one valid ordering. If a point is moved, it has to be reinserted at the new position determined by it's z-value.
The good news is that small movement will likely mean that a point may often stay in the same 'area' of your array. So if you really use a fixed array, you only have to shift small parts of it.
If you have a lot of moving objects and the array is to cumbersome, you may want to look into 'moving objects indexes' (MX-CIF-quadtree, etc). I personally can recommend my very own PH-Tree. It is a kind of bitwise radix-quadtree that uses a z-curve for internal ordering. It is quite efficient for updates (and other operations). However, I usually recommend it only for larger datasets, for small datasets a simple quadtree is usually good enough.
The problem you are trying to solve has meaning iff, given a point p and its NN q, then it is true that the NN of q is p.
That is not trivial, since for example the two points can represent positions in a landscape, so the one point can be high in a mountain, so going from the bottom up to mountain costs more that the other way around (from the mountain to the bottom). So, make sure you check that's not your case.
Since TilmannZ already proposed a solution, I would like to emphasize on LSH you mentioned. I would not choose that, since your points lie in a really low dimensional space, it's not even 100, so why using LSH?
I would go for CGAL's algorithm on that case, such as 2D NNS, or even a simple kd-tree. And if speed is critical, but space is not, then why not going for a quadtree (octree in 3D)? I had built one, it won't go beyond 10 dimensions in an 8GB RAM.
If however, you feel that your data may belong in a higher dimensional space in the future, then I would suggest using:
LSH from Andoni, really cool guy.
FLANN, which offers another approach.
kd-GeRaF, which is developed by me.
I'm looking at listing/counting the number of integer points in R^N (in the sense of Euclidean space), within certain geometric shapes, such as circles and ellipses, subject to various conditions, for small N. By this I mean that N < 5, and the conditions are polynomial inequalities.
As a concrete example, take R^2. One of the queries I might like to run is "How many integer points are there in an ellipse (parameterised by x = 4 cos(theta), y = 3 sin(theta) ), such that y * x^2 - x * y = 4?"
I could implement this in Haskell like this:
ghci> let latticePoints = [(x,y) | x <- [-4..4], y <-[-3..3], 9*x^2 + 16*y^2 <= 144, y*x^2 - x*y == 4]
and then I would have:
ghci> latticePoints
[(-1,2),(2,2)]
Which indeed answers my question.
Of course, this is a very naive implementation, but it demonstrates what I'm trying to achieve. (I'm also only using Haskell here as I feel it most directly expresses the underlying mathematical ideas.)
Now, if I had something like "In R^5, how many integer points are there in a 4-sphere of radius 1,000,000, satisfying x^3 - y + z = 20?", I might try something like this:
ghci> :{
Prelude| let latticePoints2 = [(x,y,z,w,v) | x <-[-1000..1000], y <- [-1000..1000],
Prelude| z <- [-1000..1000], w <- [-1000..1000], v <-[1000..1000],
Prelude| x^2 + y^2 + z^2 + w^2 + v^2 <= 1000000, x^3 - y + z == 20]
Prelude| :}
so if I now type:
ghci> latticePoints2
Not much will happen...
I imagine the issue is because it's effectively looping through 2000^5 (32 quadrillion!) points, and it's clearly unreasonably of me to expect my computer to deal with that. I can't imagine doing a similar implementation in Python or C would help matters much either.
So if I want to tackle a large number of points in such a way, what would be my best bet in terms of general algorithms or data structures? I saw in another thread (Count number of points inside a circle fast), someone mention quadtrees as well as K-D trees, but I wouldn't know how to implement those, nor how to appropriately query one once it was implemented.
I'm aware some of these numbers are quite large, but the biggest circles, ellipses, etc I'd be dealing with are of radius 10^12 (one trillion), and I certainly wouldn't need to deal with R^N with N > 5. If the above is NOT possible, I'd be interested to know what sort of numbers WOULD be feasible?
There is no general way to solve this problem. The problem of finding integer solutions to algebraic equations (equations of this sort are called Diophantine equations) is known to be undecidable. Apparently, you can write equations of this sort such that solving the equations ends up being equivalent to deciding whether a given Turing machine will halt on a given input.
In the examples you've listed, you've always constrained the points to be on some well-behaved shape, like an ellipse or a sphere. While this particular class of problem is definitely decidable, I'm skeptical that you can efficiently solve these problems for more complex curves. I suspect that it would be possible to construct short formulas that describe curves that are mostly empty but have a huge bounding box.
If you happen to know more about the structure of the problems you're trying to solve - for example, if you're always dealing with spheres or ellipses - then you may be able to find fast algorithms for this problem. In general, though, I don't think you'll be able to do much better than brute force. I'm willing to admit that (and in fact, hopeful that) someone will prove me wrong about this, though.
The idea behind the kd-tree method is that you recursive subdivide the search box and try to rule out whole boxes at a time. Given the current box, use some method that either (a) declares that all points in the box match the predicate (b) declares that no points in the box match the predicate (c) makes no declaration (one possibility, which may be particularly convenient in Haskell: interval arithmetic). On (c), cut the box in half (say along the longest dimension) and recursively count in the halves. Obviously the method can choose (c) all the time, which devolves to brute force; the goal here is to do (a) or (b) as much as possible.
The performance of this method is very dependent on how it's instantiated. Try it -- it shouldn't be more than a couple dozen lines of code.
For nicely connected region, assuming your shape is significantly smaller than your containing search space, and given a seed point, you could do a growth/building algorithm:
Given a seed point:
Push seed point into test-queue
while test-queue has items:
Pop item from test-queue
If item tests to be within region (eg using a callback function):
Add item to inside-set
for each neighbour point (generated on the fly):
if neighbour not in outside-set and neighbour not in inside-set:
Add neighbour to test-queue
else:
Add item to outside-set
return inside-set
The trick is to find an initial seed point that is inside the function.
Make sure your set implementation gives O(1) duplicate checking. This method will eventually break down with large numbers of dimensions as the surface area exceeds the volume, but for 5 dimensions should be fine.
I need some advice. I'm developing a game similar to Flow Free wherein the gameboard is composed of a grid and colored dots, and the user has to connect the same colored dots together without overlapping other lines, and using up ALL the free spaces in the board.
My question is about level-creation. I wish to make the levels generated randomly (and should at least be able to solve itself so that it can give players hints) and I am in a stump as to what algorithm to use. Any suggestions?
Note: image shows the objective of Flow Free, and it is the same objective of what I am developing.
Thanks for your help. :)
Consider solving your problem with a pair of simpler, more manageable algorithms: one algorithm that reliably creates simple, pre-solved boards and another that rearranges flows to make simple boards more complex.
The first part, building a simple pre-solved board, is trivial (if you want it to be) if you're using n flows on an nxn grid:
For each flow...
Place the head dot at the top of the first open column.
Place the tail dot at the bottom of that column.
Alternatively, you could provide your own hand-made starter boards to pass to the second part. The only goal of this stage is to get a valid board built, even if it's just trivial or predetermined, so it's worth keeping it simple.
The second part, rearranging the flows, involves looping over each flow, seeing which one can work with its neighboring flow to grow and shrink:
For some number of iterations...
Choose a random flow f.
If f is at the minimum length (say 3 squares long), skip to the next iteration because we can't shrink f right now.
If the head dot of f is next to a dot from another flow g (if more than one g to choose from, pick one at random)...
Move f's head dot one square along its flow (i.e., walk it one square towards the tail). f is now one square shorter and there's an empty square. (The puzzle is now unsolved.)
Move the neighboring dot from g into the empty square vacated by f. Now there's an empty square where g's dot moved from.
Fill in that empty spot with flow from g. Now g is one square longer than it was at the beginning of this iteration. (The puzzle is back to being solved as well.)
Repeat the previous step for f's tail dot.
The approach as it stands is limited (dots will always be neighbors) but it's easy to expand upon:
Add a step to loop through the body of flow f, looking for trickier ways to swap space with other flows...
Add a step that prevents a dot from moving to an old location...
Add any other ideas that you come up with.
The overall solution here is probably less than the ideal one that you're aiming for, but now you have two simple algorithms that you can flesh out further to serve the role of one large, all-encompassing algorithm. In the end, I think this approach is manageable, not cryptic, and easy to tweek, and, if nothing else, a good place to start.
Update: I coded a proof-of-concept based on the steps above. Starting with the first 5x5 grid below, the process produced the subsequent 5 different boards. Some are interesting, some are not, but they're always valid with one known solution.
Starting Point
5 Random Results (sorry for the misaligned screenshots)
And a random 8x8 for good measure. The starting point was the same simple columns approach as above.
Updated answer: I implemented a new generator using the idea of "dual puzzles". This allows much sparser and higher quality puzzles than any previous method I know of. The code is on github. I'll try to write more details about how it works, but here is an example puzzle:
Old answer:
I have implemented the following algorithm in my numberlink solver and generator. In enforces the rule, that a path can never touch itself, which is normal in most 'hardcore' numberlink apps and puzzles
First the board is tiled with 2x1 dominos in a simple, deterministic way.
If this is not possible (on an odd area paper), the bottom right corner is
left as a singleton.
Then the dominos are randomly shuffled by rotating random pairs of neighbours.
This is is not done in the case of width or height equal to 1.
Now, in the case of an odd area paper, the bottom right corner is attached to
one of its neighbour dominos. This will always be possible.
Finally, we can start finding random paths through the dominos, combining them
as we pass through. Special care is taken not to connect 'neighbour flows'
which would create puzzles that 'double back on themselves'.
Before the puzzle is printed we 'compact' the range of colours used, as much as possible.
The puzzle is printed by replacing all positions that aren't flow-heads with a .
My numberlink format uses ascii characters instead of numbers. Here is an example:
$ bin/numberlink --generate=35x20
Warning: Including non-standard characters in puzzle
35 20
....bcd.......efg...i......i......j
.kka........l....hm.n....n.o.......
.b...q..q...l..r.....h.....t..uvvu.
....w.....d.e..xx....m.yy..t.......
..z.w.A....A....r.s....BB.....p....
.D.........E.F..F.G...H.........IC.
.z.D...JKL.......g....G..N.j.......
P...a....L.QQ.RR...N....s.....S.T..
U........K......V...............T..
WW...X.......Z0..M.................
1....X...23..Z0..........M....44...
5.......Y..Y....6.........C.......p
5...P...2..3..6..VH.......O.S..99.I
........E.!!......o...."....O..$$.%
.U..&&..J.\\.(.)......8...*.......+
..1.......,..-...(/:.."...;;.%+....
..c<<.==........)./..8>>.*.?......#
.[..[....]........:..........?..^..
..._.._.f...,......-.`..`.7.^......
{{......].....|....|....7.......#..
And here I run it through my solver (same seed):
$ bin/numberlink --generate=35x20 | bin/numberlink --tubes
Found a solution!
┌──┐bcd───┐┌──efg┌─┐i──────i┌─────j
│kka│└───┐││l┌─┘│hm│n────n┌o│┌────┐
│b──┘q──q│││l│┌r└┐│└─h┌──┐│t││uvvu│
└──┐w┌───┘d└e││xx│└──m│yy││t││└──┘│
┌─z│w│A────A┌┘└─r│s───┘BB││┌┘└p┌─┐│
│D┐└┐│┌────E│F──F│G──┐H┐┌┘││┌──┘IC│
└z└D│││JKL┌─┘┌──┐g┌─┐└G││N│j│┌─┐└┐│
P──┐a││││L│QQ│RR└┐│N└──┘s││┌┘│S│T││
U─┐│┌┘││└K└─┐└─┐V││└─────┘││┌┘││T││
WW│││X││┌──┐│Z0││M│┌──────┘││┌┘└┐││
1┐│││X│││23││Z0│└┐││┌────M┌┘││44│││
5│││└┐││Y││Y│┌─┘6││││┌───┐C┌┘│┌─┘│p
5││└P│││2┘└3││6─┘VH│││┌─┐│O┘S┘│99└I
┌┘│┌─┘││E┐!!│└───┐o┘│││"│└─┐O─┘$$┌%
│U┘│&&│└J│\\│(┐)┐└──┘│8││┌*└┐┌───┘+
└─1└─┐└──┘,┐│-└┐│(/:┌┘"┘││;;│%+───┘
┌─c<<│==┌─┐││└┐│)│/││8>>│*┌?│┌───┐#
│[──[└─┐│]││└┐│└─┘:┘│└──┘┌┘┌┘?┌─^││
└─┐_──_│f││└,│└────-│`──`│7┘^─┘┌─┘│
{{└────┘]┘└──┘|────|└───7└─────┘#─┘
I've tested replacing step (4) with a function that iteratively, randomly merges two neighboring paths. However it game much denser puzzles, and I already think the above is nearly too dense to be difficult.
Here is a list of problems I've generated of different size: https://github.com/thomasahle/numberlink/blob/master/puzzles/inputs3
The most straightforward way to create such a level is to find a way to solve it. This way, you can basically generate any random starting configuration and determine if it is a valid level by trying to have it solved. This will generate the most diverse levels.
And even if you find a way to generate the levels some other way, you'll still want to apply this solving algorithm to prove that the generated level is any good ;)
Brute-force enumerating
If the board has a size of NxN cells, and there are also N colours available, brute-force enumerating all possible configurations (regardless of wether they form actual paths between start and end nodes) would take:
N^2 cells total
2N cells already occupied with start and end nodes
N^2 - 2N cells for which the color has yet to be determined
N colours available.
N^(N^2 - 2N) possible combinations.
So,
For N=5, this means 5^15 = 30517578125 combinations.
For N=6, this means 6^24 = 4738381338321616896 combinations.
In other words, the number of possible combinations is pretty high to start with, but also grows ridiculously fast once you start making the board larger.
Constraining the number of cells per color
Obviously, we should try to reduce the number of configurations as much as possible. One way of doing that is to consider the minimum distance ("dMin") between each color's start and end cell - we know that there should at least be this much cells with that color. Calculating the minimum distance can be done with a simple flood fill or Dijkstra's algorithm.
(N.B. Note that this entire next section only discusses the number of cells, but does not say anything about their locations)
In your example, this means (not counting the start and end cells)
dMin(orange) = 1
dMin(red) = 1
dMin(green) = 5
dMin(yellow) = 3
dMin(blue) = 5
This means that, of the 15 cells for which the color has yet to be determined, there have to be at least 1 orange, 1 red, 5 green, 3 yellow and 5 blue cells, also making a total of 15 cells.
For this particular example this means that connecting each color's start and end cell by (one of) the shortest paths fills the entire board - i.e. after filling the board with the shortest paths no uncoloured cells remain. (This should be considered "luck", not every starting configuration of the board will cause this to happen).
Usually, after this step, we have a number of cells that can be freely coloured, let's call this number U. For N=5,
U = 15 - (dMin(orange) + dMin(red) + dMin(green) + dMin(yellow) + dMin(blue))
Because these cells can take any colour, we can also determine the maximum number of cells that can have a particular colour:
dMax(orange) = dMin(orange) + U
dMax(red) = dMin(red) + U
dMax(green) = dMin(green) + U
dMax(yellow) = dMin(yellow) + U
dMax(blue) = dMin(blue) + U
(In this particular example, U=0, so the minimum number of cells per colour is also the maximum).
Path-finding using the distance constraints
If we were to brute force enumerate all possible combinations using these color constraints, we would have a lot less combinations to worry about. More specifically, in this particular example we would have:
15! / (1! * 1! * 5! * 3! * 5!)
= 1307674368000 / 86400
= 15135120 combinations left, about a factor 2000 less.
However, this still doesn't give us the actual paths. so a better idea would be to a backtracking search, where we process each colour in turn and attempt to find all paths that:
doesn't cross an already coloured cell
Is not shorter than dMin(colour) and not longer than dMax(colour).
The second criteria will reduce the number of paths reported per colour, which causes the total number of paths to be tried to be greatly reduced (due to the combinatorial effect).
In pseudo-code:
function SolveLevel(initialBoard of size NxN)
{
foreach(colour on initialBoard)
{
Find startCell(colour) and endCell(colour)
minDistance(colour) = Length(ShortestPath(initialBoard, startCell(colour), endCell(colour)))
}
//Determine the number of uncoloured cells remaining after all shortest paths have been applied.
U = N^(N^2 - 2N) - (Sum of all minDistances)
firstColour = GetFirstColour(initialBoard)
ExplorePathsForColour(
initialBoard,
firstColour,
startCell(firstColour),
endCell(firstColour),
minDistance(firstColour),
U)
}
}
function ExplorePathsForColour(board, colour, startCell, endCell, minDistance, nrOfUncolouredCells)
{
maxDistance = minDistance + nrOfUncolouredCells
paths = FindAllPaths(board, colour, startCell, endCell, minDistance, maxDistance)
foreach(path in paths)
{
//Render all cells in 'path' on a copy of the board
boardCopy = Copy(board)
boardCopy = ApplyPath(boardCopy, path)
uRemaining = nrOfUncolouredCells - (Length(path) - minDistance)
//Recursively explore all paths for the next colour.
nextColour = NextColour(board, colour)
if(nextColour exists)
{
ExplorePathsForColour(
boardCopy,
nextColour,
startCell(nextColour),
endCell(nextColour),
minDistance(nextColour),
uRemaining)
}
else
{
//No more colours remaining to draw
if(uRemaining == 0)
{
//No more uncoloured cells remaining
Report boardCopy as a result
}
}
}
}
FindAllPaths
This only leaves FindAllPaths(board, colour, startCell, endCell, minDistance, maxDistance) to be implemented. The tricky thing here is that we're not searching for the shortest paths, but for any paths that fall in the range determined by minDistance and maxDistance. Hence, we can't just use Dijkstra's or A*, because they will only record the shortest path to each cell, not any possible detours.
One way of finding these paths would be to use a multi-dimensional array for the board, where
each cell is capable of storing multiple waypoints, and a waypoint is defined as the pair (previous waypoint, distance to origin). The previous waypoint is needed to be able to reconstruct the entire path once we've reached the destination, and the distance to origin
prevents us from exceeding the maxDistance.
Finding all paths can then be done by using a flood-fill like exploration from the startCell outwards, where for a given cell, each uncoloured or same-as-the-current-color-coloured neigbour is recursively explored (except the ones that form our current path to the origin) until we reach either the endCell or exceed the maxDistance.
An improvement on this strategy is that we don't explore from the startCell outwards to the endCell, but that we explore from both the startCell and endCell outwards in parallel, using Floor(maxDistance / 2) and Ceil(maxDistance / 2) as the respective maximum distances. For large values of maxDistance, this should reduce the number of explored cells from 2 * maxDistance^2 to maxDistance^2.
I think you'll want to do this in two steps. Step 1) find a set of non-intersecting paths that connect all your points, then 2) Grow/shift those paths to fill the entire board
My thoughts on Step 1 are to essentially perform Dijkstra like algorithm on all points simultaneously, growing together the paths. Similar to Dijkstra, I think you'll want to flood-fill out from each of your points, chosing which node to search next using some heuristic (My hunch says chosing points with the least degrees of freedom first, then by distance, might be a good one). Very differently from Dijkstra though I think we might be stuck with having to backtrack when we have multiple paths attempting to grow into the same node. (This could of course be fairly problematic on bigger maps, but might not be a big deal on small maps like the one you have above.)
You may also solve for some of the easier paths before you start the above algorithm, mainly to cut down on the number of backtracks needed. In specific, if you can make a trace between points along the edge of the board, you can guarantee that connecting those two points in that fashion would never interfere with other paths, so you can simply fill those in and take those guys out of the equation. You could then further iterate on this until all of these "quick and easy" paths are found by tracing along the borders of the board, or borders of existing paths. That algorithm would actually completely solve the above example board, but would undoubtedly fail elsewhere .. still, it would be very cheap to perform and would reduce your search time for the previous algorithm.
Alternatively
You could simply do a real Dijkstra's algorithm between each set of points, pathing out the closest points first (or trying them in some random orders a few times). This would probably work for a fair number of cases, and when it fails simply throw out the map and generate a new one.
Once you have Step 1 solved, Step 2 should be easier, though not necessarily trivial. To grow your paths, I think you'll want to grow your paths outward (so paths closest to walls first, growing towards the walls, then other inner paths outwards, etc.). To grow, I think you'll have two basic operations, flipping corners, and expanding into into adjacent pairs of empty squares.. that is to say, if you have a line like
.v<<.
v<...
v....
v....
First you'll want to flip the corners to fill in your edge spaces
v<<<.
v....
v....
v....
Then you'll want to expand into neighboring pairs of open space
v<<v.
v.^<.
v....
v....
v<<v.
>v^<.
v<...
v....
etc..
Note that what I've outlined wont guarantee a solution if one exists, but I think you should be able to find one most of the time if one exists, and then in the cases where the map has no solution, or the algorithm fails to find one, just throw out the map and try a different one :)
You have two choices:
Write a custom solver
Brute force it.
I used option (2) to generate Boggle type boards and it is VERY successful. If you go with Option (2), this is how you do it:
Tools needed:
Write a A* solver.
Write a random board creator
To solve:
Generate a random board consisting of only endpoints
while board is not solved:
get two endpoints closest to each other that are not yet solved
run A* to generate path
update board so next A* knows new board layout with new path marked as un-traversable.
At exit of loop, check success/fail (is whole board used/etc) and run again if needed
The A* on a 10x10 should run in hundredths of a second. You can probably solve 1k+ boards/second. So a 10 second run should get you several 'usable' boards.
Bonus points:
When generating levels for a IAP (in app purchase) level pack, remember to check for mirrors/rotations/reflections/etc so you don't have one board a copy of another (which is just lame).
Come up with a metric that will figure out if two boards are 'similar' and if so, ditch one of them.
I have several numbers. I need to group them in several groups, so that sums of all numbers in one group are between predefined min and max. The point is to left as few numbers ungrouped as possible.
Input:
min, max: range for sum of numbers
N1, N2, N3 ... Ni: numbers to group
Output:
[N1,N3,N5],[Ni,Nj,Nk,Nm...]...: groups where sum of numbers is between min and max
Na,Nb,Nc...: numbers, left ingrouped.
This problem could be viewed as bin packing into bins of size max, with a funny objective: minimize the number of items not packed into bins holding at least min. One idea from the bin-packing literature is that the "small" items (in this case, items that are small relative to max - min) are easy to pack but are accountable for most of the combinatorial explosion of possibilities. Thus some approximation algorithms for bin packing do something clever for big items and then fill in with the small. Another way to reduce the number of possibilities is to round the numbers to belong to a smaller set. It's somewhat obvious how to do that for bin packing (round up), but it's not clear what to do for this problem.
Okay, I'll give an example of how these ideas could be instantiated. Suppose that max = 1 and min = 1/2. Let's try to find a solution that's competitive with the optimum for when max = 2 and min = 1/2. (That may sound terrible, but this sort of approximation guarantee where OPT is held to higher standards is sometimes used in the literature.)
First round every item's size up to a power of 2. Very large items, of size 4 or greater, can't be packed. Large items, of size 2 or 1 or 1/2, are given their own bins. Small items, of size 1/4 or less, are dealt with as follows. Whenever two items of size 1/4 or less have the same size, combine them into one super-item. Pack all of the new items of size 1/2 into their own bins. The remainder has total size less than 1/2. If there is space in another bin, put them there. Otherwise, give them their own bin.
The quality of the resulting solution for max = 2 is at least as good as the quality of OPT for max = 1. Take the optimal solution for max = 1 and round the item sizes. The set of bad bins remains the same, because no item is smaller, and each bin stores less than 2 because each item is less than twice as large as it used to be. Now it suffices to show that the packing algorithm I gave for powers of 2 is optimal. I'll leave that as an exercise.
I don't expect this instantly to generalize into a full algorithm. I have to get back to work, but the approach I would take would be to force OPT to deal with max = 1 while ALG gets to use max = 1 + epsilon, substitute powers of (1 + epsilon) for powers of two in the rounding step, and then figure out how to pack the small items, probably using a dynamic program since greed likely won't work.
If you're not worried about efficiency, simply generate each possible grouping and choose the one that is correct and optimal in the sense you describe. Clearly, this works for any finite list of numbers (and is, by definition, optimal).
If efficiency is desired, the problem seems to become somewhat more difficult. :D I'll keep thinking.
EDIT: Come to think of it, this problem seems at least as hard as "subset sum" and, as such, I don't think there is a solution significantly better than the one I give (i.e., no known polynomial-time algorithm can solve it, if it is NP-Hard.