A Dynamic programming problem - algorithm

Can anyone help me find an optimal Dynamic programming algorithm for this problem
On the way to dinner, the CCC competitors are lining up for their delicious curly fries. The N (1 ≤ N ≤ 100) competitors have lined up single-file to enter the cafeteria.
Doctor V, who runs the CCC, realized at the last minute that programmers simply hate standing in line next to programmers who use a different language. Thankfully, only two languages are allowed at the CCC: Gnold and Helpfile. Furthermore, the competitors have decided that they will only enter the cafeteria if they are in a group of at least K (1 ≤ K ≤ 6) competitors.
Doctor V decided to iterate the following scheme:
* He will find a group of K or more competitors who use the same language standing next to each other in line and send them to dinner.
* The remaining competitors will close the gap, potentially putting similar-language competitors together.
So Doctor V recorded the sequence of competitors for you. Can all the competitors dine? If so, what is the minimum number of groups of competitors to be sent to dinner?
Input
The first line contains two integers N and K.
The second line contains N characters that are the sequence of competitors in line (H represents Helpfile, G represents Gnold)
Output
Output, on one line, the single number that is the minimum number of groups that are formed for dinner. If not all programmers can dine, output -1.

I'd prefer not to solve an SPOJ problem in a practical manner for you, so take the following as an existence proof of a poly-time DP.
For K fixed, the set of strings that can dine is context-free. I'm going to use g and h instead of G and H. For example, for K = 3, one grammar looks like
S -> ε | g S g S g S G | h S h S h S H
G -> ε | g S G
H -> ε | h S H
The idea is that either there are no diners, or the first diner dines with at least K - 1 others, between any two of which (and the last and the end) there is a string that can dine.
Now use the weighted variant of CYK to find the minimum-weight parse, where nonempty S productions have weight 1, and all others have weight 0. For K fixed, the running time of CYK is O(N3).

The subproblem is the minimal groups needed to get everyone to dine for a given state of the line. There are a whole lot of possible line states but only a few that will actually be seen, so your memoization should probably be done with a hash map.
Here's some pseudocode.
int dine(string line){
if(hashmap.contains(line)){
return hashmap.get(line);
}
if(line.length == 0){
return 0;
}
best = N+1;
for(i=0;i<line.length;i=j){
type = string[i];
j = i+1;
while(type == string[j]){
j++;
}
if(j-i >= K){
result = dine(string.substring(0,i-1) + string.substring(j,string.length));
if(result > 0 && result < best){
best = result;
}
}
}
if(best == N+1){
hashmap.insert(line, -1);
return -1;
}
else {
hashmap.insert(line, best+1);
return best+1;
}
}
If you already found answer for this line, return that answer. If theres no people in the line, you are already done and you don't need to form any more groups.
Assume you can't form any groups. Then try to prove this wrong by trying out all the contiguous groups of like-minded programmers in the line. If the group is big enough to get picked, see how many more moves it would take to get everyone in the resturaunt after removing this group. Keep track of the least moves needed.
If you couldn't find a way to remove all the groups, return -1. Otherwise, return the least moves needed after removing a group plus one to account for the move you made on this step.

How about divide and conquer? Take a (removable) group somewhere near the middle, and the two groups either side of it, say ...HHHGGGGGHHHHH.... - now there's two possibilities. Either those 2 sets of H's dine in the same group, or they don't. If they dine in the same group, then those G's between them must be removed as a group of precisely those G's (so you may as well try that as your first move). If they don't, then you can solve for the left and right sublists separately. Either case, you've got a shorter list to recurse on.

Related

How do I solve this dynamic programming?

I am practising DP and I came across this question. http://www.spoj.com/problems/MPILOT/en/
Charlie acquired airline transport company and to stay in business he needs to lower the expenses by any means possible. There are N pilots working for his company (N is even) and N/2 plane crews needs to be made. A plane crew consists of two pilots - a captain and his assistant. A captain must be older than his assistant. Each pilot has a contract granting him two possible salaries - one as a captain and the other as an assistant. A captain's salary is larger than assistant's for the same pilot. However, it is possible that an assistant has larger salary than his captain. Write a program that will compute the minimal amount of money Charlie needs to give for the pilots' salaries if he decides to spend some time to make the optimal (i.e. the cheapest) arrangement of pilots in crews.
Input
The first line of input contains integer N, 2 ≤ N ≤ 10,000, N is even, the number of pilots working for the Charlie's company. The next N lines of input contain pilots' salaries. The lines are sorted by pilot's age, the salaries of the youngest pilot are given the first. Each of those N lines contains two integers separated by a space character, X i Y, 1 ≤ Y < X ≤ 100,000, a salary as a captain (X) and a salary as an assistant (Y).
Output
The first and only line of output should contain the minimal amount of money Charlie needs to give for the pilots' salaries.
After research, I found out this will be solved by DP but how exactly do I solve this? I have spent hours reading up on the links but I didn't get one which is easily understandable. Please help me.
There's actually a nice way to visualize it. Starting from the bottom left, the start of our ascending list, we can envision choosing a Y (assistant's salary) as a movement to the right and an X (captain's salary) as a movement up, with the condition that the southwest-northeast diagonal is not crossed (see Catalan Number in Wikipedia).
From this we can see that each node in the triangle has at most two predecessors, from the west or from the south, and so the bottom-up general case ought to be:
captain assistant
dp[i][j] = min(x[i+j-1] + dp[i-1][j], y[i+j-1] + dp[i][j-1])
Example:
x = [4,5,6,7]
y = [3,2,1,2]
[9+7]
[3+5] [min(8+1,5+6)]
[.] [3] [3+2]
I'll leave coding as an exercise.
As usual, we need to find a compact set of subproblems. Remembering the details of how the pilots are matched won't do -- we need something like the following characterization.
Consider a labeling that makes each pilot a captain or an assistant without regard to matching. There exists a valid matching if and only if the following two conditions hold:
There are N/2 captains and N/2 assistants.
For every age cutoff, there are at least as many assistants who are younger than the cutoff as there are captains who are younger than the cutoff.
The "only if" direction is easy: Condition 1 is obvious, and Condition 2 holds because the inequality holds for each 2-pilot crew, and we can sum the inequalities.
For the "if" direction, we actually have to construct crews. We proceed by induction. If there are no pilots, then the empty match is valid. Otherwise, since the youngest pilot is an assistant (by Condition 2) and there exists at least one captain (by Condition 1), there exists (by Sperner's lemma if you want to get fancy) a pair of pilots such that (a) no pilots are intermediate in age (b) the younger of the pair is an assistant (c) the older of the pair is a captain. Match the pair and remove them from the pool. Observe that both Conditions still hold, so match the rest by inductive hypothesis.
This observation leads to an O(N^2)-time dynamic program. We repeatedly read the salaries of the next oldest pilot and then compute, given that K pilots have been considered so far, for all C from 0 to [K/2], the minimum cost of paying K - C assistants and C captains among these pilots. At the end, return the cost of paying N/2 assistants and N/2 captains. Untested Python:
def cost(pilots):
cost = [0]
for i, (assistant_salary, captain_salary) in enumerate(pilots):
cost.append(float('inf')) # two-way sentinel
cost = [min(cost[c] + assistant_salary,
cost[c - 1] + captain_salary)
for c in range((i + 1) / 2 + 1)]
return cost[-1] # i.e., N/2
Let's formulate some conditions for a recursion: if we've reached the end, return the sum; if we have N/2 assistants, add a captain next; if we have the same number of assistants as captains left, add an assistant next (we can't have a captain younger than an assistant); otherwise, return the minimum cost of either adding a captain or an assistant.
JavaScript code:
var x = [4,5,6,7];
var y = [3,2,1,2];
var n = x.length;
function f(i,ys,s){
if (i == n){
return s;
}
if (ys == n / 2){
return f(i + 1,ys,s + x[i]);
} else if (i % 2 == 0 && ys == i / 2){
return f(i + 1,ys + 1,s + y[i]);
} else {
return Math.min(f(i + 1,ys + 1,s + y[i]),f(i + 1,ys,s + x[i]));
}
}
Output:
console.log(f(0,0,0)) // 16
For recursive approach in c++, you can follow this code for better understanding:
int min_salary(int a[],int n,int x,int c[])
{
if(n==0)
return 0;
if(x==0)
return(a[0]+min_salary(a+1,n-1,1,c+1));
if(x==n)
return(c[0]+min_salary(a+1,n-1,x-1,c+1));
else
return(min(a[0]+min_salary(a+1,n-1,x+1,c+1),c[0]+min_salary(a+1,n-1,x-1,c+1)));
}

Count ways to take atleast one stick

There are N sticks placed in a straight line. Bob is planning to take few of these sticks. But whatever number of sticks he is going to take, he will take no two successive sticks.(i.e. if he is taking a stick i, he will not take i-1 and i+1 sticks.)
So given N, we need to calculate how many different set of sticks he could select. He need to take at least stick.
Example : Let N=3 then answer is 4.
The 4 sets are: (1, 3), (1), (2), and (3)
Main problem is that I want solution better than simple recursion. Can their be any formula for it? As am not able to crack it
It's almost identical to Fibonacci. The final solution is actually fibonacci(N)-1, but let's explain it in terms of actual sticks.
To begin with we disregard from the fact that he needs to pick up at least 1 stick. The solution in this case looks as follows:
If N = 0, there is 1 solution (the solution where he picks up 0 sticks)
If N = 1, there are 2 solutions (pick up the stick, or don't)
Otherwise he can choose to either
pick up the first stick and recurse on N-2 (since the second stick needs to be discarded), or
leave the first stick and recurse on N-1
After this computation is finished, we remove 1 from the result to avoid counting the case where he picks up 0 sticks in total.
Final solution in pseudo code:
int numSticks(int N) {
return N == 0 ? 1
: N == 1 ? 2
: numSticks(N-2) + numSticks(N-1);
}
solution = numSticks(X) - 1;
As you can see numSticks is actually Fibonacci, which can be solved efficiently using for instance memoization.
Let the number of sticks taken by Bob be r.
The problem has a bijection to the number of binary vectors with exactly r 1's, and no two adjacent 1's.
This is solveable by first placing the r 1's , and you are left with exactly n-r 0's to place between them and in the sides. However, you must place r-1 0's between the 1's, so you are left with exactly n-r-(r-1) = n-2r+1 "free" 0's.
The number of ways to arrange such vectors is now given as:
(1) = Choose(n-2r+1 + (r+1) -1 , n-2r+1) = Choose(n-r+1, n-2r+1)
Formula (1) is deriving from number of ways of choosing n-2r+1
elements from r+1 distinct possibilities with replacements
Since we solved it for a specific value of r, and you are interested in all r>=1, you need to sum for each 1<=r<=n
So, the solution of the problem is given by the close formula:
(2) = Sum{ Choose(n-r+1, n-2r+1) | for each 1<=r<=n }
Disclaimer:
(A close variant of the problem with fixed r was given as HW in the course I am TAing this semester, main difference is the need to sum the various values of r.

Implementing Parallel Algorithm for Longest Common Subsequence

I am trying to implement the Parallel Algorithm for Longest Common Subsequence Problem described in http://www.iaeng.org/publication/WCE2010/WCE2010_pp499-504.pdf
But i am having a problem with the variable C in Equation 6 on page 4
The paper refered to C on at the end of page 3 as
C as Let C[1 : l] bethe finite alphabet
I am not sure what is ment by this, as i guess it would it with the 2 strings ABCDEF and ABQXYEF be ABCDEFQXY. But what if my 2 stings is a list of objects (Where my match test for an example is obj1.Name = obj2.Name), what would my C be here? just a union on the 2 arrays?
Having read and studied the paper, I can say that C is supposed to be an array holding the alphabet of your strings, where the alphabet size (and, thus, the size of C) is l.
By the looks of your question, however, I feel the need to go deeper on this, because it looks like you didn't get the whole picture yet. What is P[i,j], and why do you need it? The answer is that you don't really need it, but it's an elegant optimization. In page 3, a little bit before Theorem 1, it is said that:
[...] This process ends when j-k = 0 at the k-th step, or a(i) =
b(j-k) at the k-th step. Assume that the process stops at the k-th
step, and k must be the minimum number that makes a(i) = b(j-k) or j-k
= 0. [...]
The recurrence relation in (3) is equivalent to (2), but the fundamental difference is that (2) expands recursively, whereas with (3) you never have recursive calls, provided that you know k. In other words, the magic behind (3) not expanding recursively is that you somehow know the spot where the recursion on (2) would stop, so you look at that cell immediately, rather than recursively approaching it.
Ok then, but how do you find out the value for k? Since k is the spot where (2) reaches a base case, it can be seen that k is the amount of columns that you have to "go back" on B until you are either off the limits (i.e., the first column that is filled with 0's) OR you find a match between a character in B and a character in A (which corresponds to the base case conditions in (2)). Remember that you will be matching the character a(i-1), where i is the current row.
So, what you really want is to find the last position in B before j where the character a(i-1) appears. If no such character ever appears in B before j, then that would be equivalent to reaching the case i = 0 or j-1 = 0 in (2); otherwise, it's the same as reaching a(i) = b(j-1) in (2).
Let's look at an example:
Consider that the algorithm is working on computing the values for i = 2 and j = 3 (the row and column are highlighted in gray). Imagine that the algorithm is working on the cell highlighted in black and is applying (2) to determine the value of S[2,2] (the position to the left of the black one). By applying (2), it would then start by looking at a(2) and b(2). a(2) is C, b(2) is G, to there's no match (this is the same procedure as the original, well-known algorithm). The algorithm now wants to find the value of S[2,2], because it is needed to compute S[2,3] (where we are). S[2,2] is not known yet, but the paper shows that it is possible to determine that value without refering to the row with i = 2. In (2), the 3rd case is chosen: S[2,2] = max(S[1, 2], S[2, 1]). Notice, if you will, that all this formula is doing is looking at the positions that would have been used to calculate S[2,2]. So, to rephrase that: we're computing S[2,3], we need S[2,2] for that, we don't know it yet, so we're going back on the table to see what's the value of S[2,2] in pretty much the same way we did in the original, non-parallel algorithm.
When will this stop? In this example, it will stop when we find the letter C (this is our a(i)) in TGTTCGACA before the second T (the letter on the current column) OR when we reach column 0. Because there is no C before T, we reach column 0. Another example:
Here, (2) would stop with j-1 = 5, because that is the last position in TGTTCGACA where C shows up. Thus, the recursion reaches the base case a(i) = b(j-1) when j-1 = 5.
With this in mind, we can see a shortcut here: if you could somehow know the amount k such that j-1-k is a base case in (2), then you wouldn't have to go through the score table to find the base case.
That's the whole idea behind P[i,j]. P is a table where you lay down the whole alphabet vertically (on the left side); the string B is, once again, placed horizontally in the upper side. This table is computed as part of a preprocessing step, and it will tell you exactly what you will need to know ahead of time: for each position j in B, it says, for each character C[i] in C (the alphabet), what is the last position in B before j where C[i] is found (note that i is used to index C, the alphabet, and not the string A. Maybe the authors should have used another index variable to avoid confusion).
So, you can think of the semantics for an entry P[i,j] as something along the lines of: The last position in B where I saw C[i] before position j. For example, if you alphabet is sigma = {A, E, I, O, U}, and B = "AOOIUEI", thenP` is:
Take the time to understand this table. Note the row for O. Remember: this row lists, for every position in B, where is the last known "O". Only when j = 3 will we have a value that is not zero (it's 2), because that's the position after the first O in AOOIUEI. This entry says that the last position in B where O was seen before is position 2 (and, indeed, B[2] is an O, the one that follows A). Notice, in that same row, that for j = 4, we have the value 3, because now the last position for O is the one that correspnds to the second O in B (and since no more O's exist, the rest of the row will be 3).
Recall that building P is a preprocessing step necessary if you want to easily find the value of k that makes the recursion from equation (2) stop. It should make sense by now that P[i,j] is the k you're looking for in (3). With P, you can determine that value in O(1) time.
Thus, the C[i] in (6) is a letter of the alphabet - the letter that we are currently considering. In the example above, C = [A,E,I,O,U], and C[1] = A, C[2] = E, etc. In equaton (7), c is the position in C where a(i) (the current letter of string A being considered) lives. It makes sense: after all, when building the score table position S[i,j], we want to use P to find the value of k - we want to know where was the last time we saw an a(i) in B before j. We do that by reading P[index_of(a(i)), j].
Ok, now that you understand the use of P, let's see what's happening with your implementation.
About your specific case
In the paper, P is shown as a table that lists the whole alphabet. It is a good idea to iterate through the alphabet because the typical uses of this algorithm are in bioinformatics, where the alphabet is much, much smaller than the string A, making the iteration through the alphabet cheaper.
Because your strings are sequences of objects, your C would be the set of all possible objects, so you'd have to build a table P with the set of all possible object instance (nonsense, of course). This is definitely a case where the alphabet size is huge when compared to your string size. However, note that you will only be indexing P in those rows that correspond to letters from A: any row in P for a letter C[i] that is not in A is useless and will never be used. This makes your life easier, because it means you can build P with the string A instead of using the alphabet of every possible object.
Again, an example: if your alphabet is AEIOU, A is EEI and B is AOOIUEI, you will only be indexing P in the rows for E and I, so that's all you need in P:
This works and suffices, because in (7), P[c,j] is the entry in P for the character c, and c is the index of a(i). In other words: C[c] always belongs to A, so it makes perfect sense to build P for the characters of A instead of using the whole alphabet for the cases where the size of A is considerably smaller than the size of C.
All you have to do now is to apply the same principle to whatever your objects are.
I really don't know how to explain it any better. This may be a little dense at first. Make sure to re-read it until you really get it - and I mean every little detail. You have to master this before thinking about implementing it.
NOTE: You said you were looking for a credible and / or official source. I'm just another CS student, so I'm not an official source, but I think I can be considered "credible". I've studied this before and I know the subject. Happy coding!

Algorithm to find matching pairs in a list

I will phrase the problem in the precise form that I want below:
Given:
Two floating point lists N and D of the same length k (k is multiple of 2).
It is known that for all i=0,...,k-1, there exists j != i such that D[j]*D[i] == N[i]*N[j]. (I'm using zero-based indexing)
Return:
A (length k/2) list of pairs (i,j) such that D[j]*D[i] == N[i]*N[j].
The pairs returned may not be unique (any valid list of pairs is okay)
The application for this algorithm is to find reciprocal pairs of eigenvalues of a generalized palindromic eigenvalue problem.
The equality condition is equivalent to N[i]/D[i] == D[j]/N[j], but also works when denominators are zero (which is a definite possibility). Degeneracies in the eigenvalue problem cause the pairs to be non-unique.
More generally, the algorithm is equivalent to:
Given:
A list X of length k (k is multiple of 2).
It is known that for all i=0,...,k-1, there exists j != i such that IsMatch(X[i],X[j]) returns true, where IsMatch is a boolean matching function which is guaranteed to return true for at least one j != i for all i.
Return:
A (length k/2) list of pairs (i,j) such that IsMatch(i,j) == true for all pairs in the list.
The pairs returned may not be unique (any valid list of pairs is okay)
Obviously, my first problem can be formulated in terms of the second with IsMatch(u,v) := { (u - 1/v) == 0 }. Now, due to limitations of floating point precision, there will never be exact equality, so I want the solution which minimizes the match error. In other words, assume that IsMatch(u,v) returns the value u - 1/v and I want the algorithm to return a list for which IsMatch returns the minimal set of errors. This is a combinatorial optimization problem. I was thinking I can first naively compute the match error between all possible pairs of indexes i and j, but then I would need to select the set of minimum errors, and I don't know how I would do that.
Clarification
The IsMatch function is reflexive (IsMatch(a,b) implies IsMatch(b,a)), but not transitive. It is, however, 3-transitive: IsMatch(a,b) && IsMatch(b,c) && IsMatch(c,d) implies IsMatch(a,d).
Addendum
This problem is apparently identically the minimum weight perfect matching problem in graph theory. However, in my case I know that there should be a "good" perfect matching, so the distribution of edge weights is not totally random. I feel that this information should be used somehow. The question now is if there is a good implementation to the min-weight-perfect-matching problem that uses my prior knowledge to arrive at a solution early in the search. I'm also open to pointers towards a simple implementation of any such algorithm.
I hope I got your problem.
Well, if IsMatch(i, j) and IsMatch(j, l) then IsMatch(i, l). More generally, the IsMatch relation is transitive, commutative and reflexive, ie. its an equivalence relation. The algorithm translates to which element appears the most times in the list (use IsMatch instead of =).
(If I understand the problem...)
Here is one way to match each pair of products in the two lists.
Multiply each pair N and save it to a structure with the product, and the subscripts of the elements making up the product.
Multiply each pair D and save it to a second instance of the structure with the product, and the subscripts of the elements making up the product.
Sort both structions on the product.
Make a merge-type pass through both sorted structure arrays. Each time you find a product from one array that is close enough to the other, you can record the two subscripts from each sorted list for a match.
You can also use one sorted list for an ismatch function, doing a binary search on the product.
well。。Multiply each pair D and save it to a second instance of the structure with the product, and the subscripts of the elements making up the product.
I just asked my CS friend, and he came up with the algorithm below. He doesn't have an account here (and apparently unwilling to create one), but I think his answer is worth sharing.
// We will find the best match in the minimax sense; we will minimize
// the maximum matching error among all pairs. Alpha maintains a
// lower bound on the maximum matching error. We will raise Alpha until
// we find a solution. We assume MatchError returns an L_1 error.
// This first part finds the set of all possible alphas (which are
// the pairwise errors between all elements larger than maxi-min
// error.
Alpha = 0
For all i:
min = Infinity
For all j > i:
AlphaSet.Insert(MatchError(i,j))
if MatchError(i,j) < min
min = MatchError(i,j)
If min > Alpha
Alpha = min
Remove all elements of AlphaSet smaller than Alpha
// This next part increases Alpha until we find a solution
While !AlphaSet.Empty()
Alpha = AlphaSet.RemoveSmallest()
sol = GetBoundedErrorSolution(Alpha)
If sol != nil
Return sol
// This is the definition of the helper function. It returns
// a solution with maximum matching error <= Alpha or nil if
// no such solution exists.
GetBoundedErrorSolution(Alpha) :=
MaxAssignments = 0
For all i:
ValidAssignments[i] = empty set;
For all j > i:
if MatchError <= Alpha
ValidAssignments[i].Insert(j)
ValidAssignments[j].Insert(i)
// ValidAssignments[i].Size() > 0 due to our choice of Alpha
// in the outer loop
If ValidAssignments[i].Size() > MaxAssignments
MaxAssignments = ValidAssignments[i].Size()
If MaxAssignments = 1
return ValidAssignments
Else
G = graph(ValidAssignments)
// G is an undirected graph whose vertices are all values of i
// and edges between vertices if they have match error less
// than or equal to Alpha
If G has a perfect matching
// Note that this part is NP-complete.
Return the matching
Else
Return nil
It relies on being able to compute a perfect matching of a graph, which is NP-complete, but at least it is reduced to a known problem. It is expected that the solution be NP-complete, but this is OK since in practice the size of the given lists are quite small. I'll wait around for a better answer for a few days, or for someone to expand on how to find the perfect matching in a reasonable way.
You want to find j such that D(i)*D(j) = N(i)*N(j) {I assumed * is ordinary real multiplication}
assuming all N(i) are nonzero, let
Z(i) = D(i)/N(i).
Problem: find j, such that Z(i) = 1/Z(j).
Split set into positives and negatives and process separately.
take logs for clarity. z(i) = log Z(i).
Sort indirectly. Then in the sorted view you should have something like -5 -3 -1 +1 +3 +5, for example. Read off +/- pairs and that should give you the original indices.
Am I missing something, or is the problem easy?
Okay, I ended up using this ported Fortran code, where I simply specify the dense upper triangular distance matrix using:
complex_t num = N[i]*N[j] - D[i]*D[j];
complex_t den1 = N[j]*D[i];
complex_t den2 = N[i]*D[j];
if(std::abs(den1) < std::abs(den2)){
costs[j*(j-1)/2+i] = std::abs(-num/den2);
}else if(std::abs(den1) == 0){
costs[j*(j-1)/2+i] = std::sqrt(std::numeric_limits<double>::max());
}else{
costs[j*(j-1)/2+i] = std::abs(num/den1);
}
This works great and is fast enough for my purposes.
You should be able to sort the (D[i],N[i]) pairs. You don't need to divide by zero -- you can just multiply out, as follows:
bool order(i,j) {
float ni= N[i]; float di= D[i];
if(di<0) { di*=-1; ni*=-1; }
float nj= N[j]; float dj= D[j];
if(dj<0) { dj*=-1; nj*=-1; }
return ni*dj < nj*di;
}
Then, scan the sorted list to find two separation points: (N == D) and (N == -D); you can start matching reciprocal pairs from there, using:
abs(D[i]*D[j]-N[i]*N[j])<epsilon
as a validity check. Leave the (N == 0) and (D == 0) points for last; it doesn't matter whether you consider them negative or positive, as they will all match with each other.
edit: alternately, you could just handle (N==0) and (D==0) cases separately, removing them from the list. Then, you can use (N[i]/D[i]) to sort the rest of the indices. You still might want to start at 1.0 and -1.0, to make sure you can match near-zero cases with exactly-zero cases.

Algorithm to establish ordering amongst a set of items

I have a set of students (referred to as items in the title for generality). Amongst these students, some have a reputation for being rambunctious. We are told about a set of hate relationships of the form 'i hates j'. 'i hates j' does not imply 'j hates i'. We are supposed to arrange the students in rows (front most row numbered 1) in a way such that if 'i hates j' then i should be put in a row that is strictly lesser numbered than that of j (in other words: in some row that is in front of j's row) so that i doesn't throw anything at j (Turning back is not allowed). What would be an efficient algorithm to find the minimum number of rows needed (each row need not have the same number of students)?
We will make the following assumptions:
1) If we model this as a directed graph, there are no cycles in the graph. The most basic cycle would be: if 'i hates j' is true, 'j hates i' is false. Because otherwise, I think the ordering would become impossible.
2) Every student in the group is at least hated by one other student OR at least hates one other student. Of course, there would be students who are both hated by some and who in turn hate other students. This means that there are no stray students who don't form part of the graph.
Update: I have already thought of constructing a directed graph with i --> j if 'i hates j and doing topological sorting. However, since the general topological sort would suit better if I had to line all the students in a single line. Since there is a variation of the rows here, I am trying to figure out how to factor in the change into topological sort so it gives me what I want.
When you answer, please state the complexity of your solution. If anybody is giving code and you don't mind the language, then I'd prefer Java but of course any other language is just as fine.
JFYI This is not for any kind of homework (I am not a student btw :)).
It sounds to me that you need to investigate topological sorting.
This problem is basically another way to put the longest path in a directed graph problem. The number of rows is actually number of nodes in path (number of edges + 1).
Assuming the graph is acyclic, the solution is topological sort.
Acyclic is a bit stronger the your assumption 1. Not only A -> B and B -> A is invalid. Also A -> B, B -> C, C -> A and any cycle of any length.
HINT: the question is how many rows are needed, not which student in which row. The answer to the question is the length of the longest path.
It's from a project management theory (or scheduling theory, I don't know the exact term). There the task is about sorting jobs (vertex is a job, arc is a job order relationship).
Obviously we have some connected oriented graph without loops. There is an arc from vertex a to vertex b if and only if a hates b. Let's assume there is a source (without incoming arcs) and destination (without outgoing arcs) vertex. If that is not the case, just add imaginary ones. Now we want to find length of a longest path from source to destination (it will be number of rows - 1, but mind the imaginary verteces).
We will define vertex rank (r[v]) as number of arcs in a longest path between source and this vertex v. Obviously we want to know r[destination]. Algorithm for finding rank:
0) r_0[v] := 0 for all verteces v
repeat
t) r_t[end(j)] := max( r_{t-1}[end(j)], r_{t-1}[start(j)] + 1 ) for all arcs j
until for all arcs j r_{t+1}[end(j)] = r_t[end(j)] // i.e. no changes on this iteration
On each step at least one vertex increases its rank. Therefore in this form complexity is O(n^3).
By the way, this algorithm also gives you student distribution among rows. Just group students by their respective ranks.
Edit: Another code with the same idea. Possibly it is better understandable.
# Python
# V is a list of vertex indices, let it be something like V = range(N)
# source has index 0, destination has index N-1
# E is a list of edges, i.e. tuples of the form (start vertex, end vertex)
R = [0] * len(V)
do:
changes = False
for e in E:
if R[e[1]] < R[e[0]] + 1:
changes = True
R[e[1]] = R[e[0]] + 1
while changes
# The answer is derived from value of R[N-1]
Of course this is the simplest implementation. It can be optimized, and time estimate can be better.
Edit2: obvious optimization - update only verteces adjacent to those that were updated on the previous step. I.e. introduce a queue with verteces whose rank was updated. Also for edge storing one should use adjacency lists. With such optimization complexity would be O(N^2). Indeed, each vertex may appear in the queue at most rank times. But vertex rank never exceeds N - number of verteces. Therefore total number of algorithm steps will not exceed O(N^2).
Essentailly the important thing in assumption #1 is that there must not be any cycles in this graph. If there are any cycles you can't solve this problem.
I would start by seating all of the students that do not hate any other students in the back row. Then you can seat the students who hate these students in the next row and etc.
The number of rows is the length of the longest path in the directed graph, plus one. As a limit case, if there is no hate relationship everyone can fit on the same row.
To allocate the rows, put everyone who is not hated by anyone else on the row one. These are the "roots" of your graph. Everyone else is put on row N + 1 if N is the length of the longest path from any of the roots to that person (this path is of length one at least).
A simple O(N^3) algorithm is the following:
S = set of students
for s in S: s.row = -1 # initialize row field
rownum = 0 # start from first row below
flag = true # when to finish
while (flag):
rownum = rownum + 1 # proceed to next row
flag = false
for s in S:
if (s.row != -1) continue # already allocated
ok = true
foreach q in S:
# Check if there is student q who will sit
# on this or later row who hates s
if ((q.row == -1 or q.row = rownum)
and s hated by q) ok = false; break
if (ok): # can put s here
s.row = rownum
flag = true
Simple answer = 1 row.
Put all students in the same row.
Actually that might not solve the question as stated - lesser row, rather than equal row...
Put all students in row 1
For each hate relation, put the not-hating student in a row behind the hating student
Iterate till you have no activity, or iterate Num(relation) times.
But I'm sure there are better algorithms - look at acyclic graphs.
Construct a relationship graph where i hates j will have a directed edge from i to j. So end result is a directed graph. It should be a DAG otherwise no solutions as it's not possible to resolve circular hate relations ship.
Now simply do a DFS search and during the post node callbacks, means the once the DFS of all the children are done and before returning from the DFS call to this node, simply check the row number of all the children and assign the row number of this node as row max row of the child + 1. Incase if there is some one who doesn't hate anyone basically node with no adjacency list simply assign him row 0.
Once all the nodes are processed reverse the row numbers. This should be easy as this is just about finding the max and assigning the row numbers as max-already assigned row numbers.
Here is the sample code.
postNodeCb( graph g, int node )
{
if ( /* No adj list */ )
row[ node ] = 0;
else
row[ node ] = max( row number of all children ) + 1;
}
main()
{
.
.
for ( int i = 0; i < NUM_VER; i++ )
if ( !visited[ i ] )
graphTraverseDfs( g, i );`enter code here`
.
.
}

Resources