Cookie-Only Sessions Pros/Cons/Summary - session

Beaker offers an option to use encrypted cookie-only sessions. These sessions are encrypted in such a way that allegedly the user cannot view or modify the information inside the cookie. The documentation discusses these in little details, and I am having trouble finding a list of pros/cons regarding these types of sessions.
I can see the benefit in that it allows your servers to be more disposable, allowing for a greater degree of horizontal scalability. Also, there is lightened complexity on the server-side architecture since you don't need to account for storage/management of the sessions.
On the other hand, there is some request overhead due to the fact all the info needs to be sent on every request. The session values cannot be changed purely server-side, so require a request to be modified. I have concerns with session hijacking, and also, there is a size limit.
I would imagine this topic has been covered somewhere in some type of summary. Does anybody know of such a summary? Would anybody have any additional pros/cons to add? Does anybody know of any mainstream sites that use such an approach?

Related

asp.net: pass data between pages using delegate

I want to know if it is possible to pass data to another page without Querystrings or Session.
In other words:
Can i do this using delegates or any other way?
You can POST data to another page (this is slightly different than using querystrings but may be too similar for your liking). Any data POSTED to another web form can be read with Request.Form["name_of_control"].
In certain cases I've had to develop my own approach involving generating a GUID and passing that around from page-to-page. Then any page can pull my data structures associated with a given GUID from a static key/value structure... Similar to Sessions I suppose but I had more control over how it worked. It allowed for any user to have multiple simultaneous windows/tabs open to my application and each one would work without affecting or being affected by the others (because each were passing around a different GUID). Whatever approach you choose I do urge you to consider the fact that users may want to use your application via multiple windows/tabs at the same time.
The right tool for you depends on your needs. Remember your challenge lies is making HTTP which is inherently stateless more state-ful. This thread has a very good discussion on this topic: Best Practices for Passing Data Between Pages

What should be stored in cache for web app?

I realize that this might be a vague question the bequests a vague answer, but I'm in need of some real world examples, thoughts, &/or best practices for caching data for a web app. All of the examples I've read are more technical in nature (how to add or remove cache data from the respective cache store), but I've not been able to find a higher level strategy for caching.
For example, my web app has an inbox/mail feature for each user. What I've been doing to date is storing typical session data in the cache. In this example, when the user logs in I go to the database and retrieve the user's mail messages and store them in cache. I'm beginning to wonder if I should just maintain a copy of all users' messages in the cache, all the time, and just retrieve them from cache when needed, instead of loading from the database upon login. I have a bunch of other data that's loaded on login (product catalogs and related entities) and login is starting to slow down.
So I guess my question to the community, is what would you do/recommend as an approach in this scenario?
Thanks.
This might be better suited to https://softwareengineering.stackexchange.com/, but generally you want to cache:
Metadata/configuration data that does not change frequently. E.g. country/state lists, external resource addresses, logic/branching settings, product/price/tax definitions, etc.
Data that is costly to retrieve or generate and that does not need to frequently change. E.g. historical data sets for reports.
Data that is unique to the current user's session.
The last item above is where you need to be careful as you can drastically increase your app's memory usage, by adding a few megabytes to the data for every active session. It also implies different levels of caching -- application wide, user session, etc.
Generally you should NOT cache data that is under active change.
In larger systems you also need to think about where the cache(s) will sit. Is it possible to have one central cache server, or is it good enough for each server/process to handle its own caching?
Also: you should have some method to quickly reset/invalidate the cached data. For a smaller or less mission-critical app, this could be as simple as restarting the web server. For the large system that I work on, we use a 12 hour absolute expiration window for most cached data, but we have a way of forcing immediate expiration if we need it.
This is a really broad question, and the answer depends heavily on the specific application/system you are building. I don't know enough about your specific scenario to say if you should cache all the users' messages, but instinctively it seems like a bad idea since you would seem to be effectively caching your entire data set. This could lead to problems if new messages come in or get deleted. Would you then update them in the cache? Would that not simply duplicate the backing store?
Caching is only a performance optimization technique, and as with any optimization, measure first before making substantial changes, to avoid wasting time optimizing the wrong thing. Maybe you don't need much caching, and it would only complicate your app. Maybe the data you are thinking of caching can be retrieved in a faster way, or less of it can be retrieved at once.
Cache anything that causes duplicate database queries.
Client side file caching is important as well. Assuming files are marked with an id in your database, cache them on every network request to avoid many network requests for the same file. A resource to do this can be found here (https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API). If you don't need to cache files, web storage, local storage and cookies are good for smaller pieces of data.
//if file is in cache
//refer to cache
//else
//make network request and push file to cache

How to read a file from browsers cache?

I had made a GIF-file with more (hidden) information in it self, then only the picture-data.
Like so:
<?php
// set variabelen
$naam = "gebruikersinformatie";
$info['age'] = 27;
$info['number'] = '1234.56.789';
$info['name'] = 'Arie Noniem';
$info['unique_hash'] = base64_encode(implode("|", array($_SERVER['HTTP_USER_AGENT'],$_SERVER['HTTP_ACCEPT'],$_SERVER['REMOTE_ADDR'],$_SERVER['REMOTE_PORT'],$_SERVER['HTTP_ACCEPT_LANGUAGE'])));
// build the information
$info = base64_encode(http_build_query($info));
// build the image
header('Content-type: image/gif');
echo base64_decode("R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7\n".$info);
?>-
Now, i would like to check if the file is already in user's cache.
If not: make a new one (with code above).
If is in cache: read that gif.gif file with PHP, as there is more information stored in it.
Question: how to check if the file is in the cache? How to get the browser to cache images, with php? doesnt work correctly
And how to read the cached file? So PHP gets the real contents from the cached file?
Reason: to avoid EU-cookie-law
I'm afraid you won't be avoiding EU Cookie Law.
Although it's commonly become known as cookie law it is a privacy directive with principles applying to any technology where information is placed, held or read from the user's device. So necessity for compliance includes for instance Flash files (Locally Stored Objects), tracking pixels (invisible one pixel images typically used for tracking email opens) and other stuff too.
Just for reference, this answer is based in our experience in putting together ukcookieslaw.co.uk to deal specifically with the UK implementation of the EU Directive (noticing the German in your coding :-).
Assuming at the least privacy invasive your solution was doing the same as a session cookie and providing a necessary function (like maintaining a log-in) one could argue your solution is actually less compliant, as a session cookie will be (usually) destroyed at latest when the user quits the browser.
Your more obscured, difficult to inspect, deliberately hidden (I appreciate there's no malicious intent) payload can, and given that most people do not empty their cache each time they quit, will hang around for longer. In fact, in a way you're relying on that.
Without the details one can't take a view, but it may be that the information is more available to third parties, i.e. is there a possibility of caching of the image by intermediaries in the network that you would have to protect against?
You would still have to describe your use of personal data, and rely on either implied consent (or explicit consent) for placing data on the user's device for your site's compliance. Problem is that any consent must be INFORMED consent, and it would appear on the face of it that informing the user is furthest from your mind.
I think you need a better reason for your engineering effort :-)
kind regards,
Philip

Practices for allowing systems to accommodate human error?

Systems have to sometimes accommodate the possibility of real world bad data. Consider that some data originates with paper forms. And forms inherently have a limited means of validating data.
Example 1: On one form users are expected to enter an integer distance (in miles) into a blank. We capture the information as written as a string since we don't always end up getting integer values.
Example 2: On another form we capture a code. That code should map to one of the codes in our system. However, sometimes the code written on the form is incorrect. We capture the code and allow it to exist with an invalid value until some future time of resolution. That is, we temporarily allow bad data since it's important to record the record even if some of it is invalid.
I'm interested in learning more about how systems accommodate bad data, that is, human error. Databases are supposed to be bastions of data integrity, but the real world is messy and people make mistakes. Systems must allow us to reflect those mistakes.
What are some ways systems you've developed accommodate human error? What practices have you used? What lessons have you learned?
Any further reading on the topic? (I had trouble Googling it.)
I agree with you, whatever we do there's no guarantee that we can get rid of bad or incorrect data. Especially, but not only, if it comes to user input. In my experience the same problems exist in complex integration projects, in which you have to integrate and merge (often inconsistent) data retrieved from different systems.
A good strategy is to decouple the input from the operational system itself. First, place user (or external system) provided data in a separate datastore (e.g. different schema). In a second step load this data into your operational datastore, but only if it confirms to strict rules (e.g. use address verification software to verify a given address). This Extract, Transform, Load (ETL) approach is fairly common in Data Warehousing (DWH) solutions, but can be applied programmatically in transactional systems as well (in my experience).
The above approach often leads to asynchronous processes in which the input is subitted first and (maybe) at a later time the external entity (user or system) retrives feedback whether its data was correct or not.
EDIT: For further readings I recommend to have a look at DWH concepts. Alhtough, you may not want to build such a thing, you could partially apply those concepts:
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Data_warehouse
http://en.wikipedia.org/wiki/Data_cleansing
A government department I worked in does a lot of surveys, most of which are (were) still paper based.
All the results were OCR'd into the system.
As part of the OCR process a digital scan of the forms is kept.
Data is then validated, data that is undecipherable or which fails validation is flagged.
When a human operator reviews the digital data they can modify the data if they are confident that they can correctly interpret what the code could not; they (here's the cool bit) can also bring up the scan of the paper based original, and use that to determine what the user was trying to say.
On a different thread; at some point you want to validate the data coming in against any expected data ranges that you want it to conform to; buy rejecting it at the point of entry you give the user a chance to correct it - the trade off is that every time you reject it you increase the chance of them abandoning the whole process.
At some point in your system you need to specify the rules which will be used for validation. At the end of the day a system is only going to be as smart as those rules. You can develop these yourself into the code (probably the business logic) or you might use a 3rd party component.
having flexible control over the validation is pretty important as they are likely to change overtime.
To be honest with you, one point of migrating from paper-based systems to IT is to remove these errors and make sure all data is always correct. I doubt any correctly planned and developed IT system (especially business financial systems) would allow such errors. Not in the company I am working for anyway...
There are lots of software tools that address the kinds of problems you mention. There are platforms and tools that let you define rules for scrubbing and transforming data and handling validation errors. Those techniques are widely used for Data Integration and Business Intelligence applications. Google for "Data Quality" or "Data Integration".
The easiest thing to do is to (this is not always possible) design the interface where users enter the data to limit as much as possible the amount of text that they need to enter. In my experience this seems to be where a lot of problems come from. One simple example of this is to provide a select, or auto-complete select field
One thing that you could do is do everything possible to determine if the data is correct before going into the db. I try to give the user entering the data as much feedback as possible so they can (ideally) fix some of the issues before the data gets persisted. For example, it is a very quick check to determine if the data being entered is of the correct type.
I got started in legal systems before the PC era. Litigation support databases routinely have to accommodate factually incorrect, incomplete, and contradictory information. It takes a different way of thinking.
The short version . . .
Instead of recording a single fact, you record multiple assertions about a fact. It boils down to designing a database to store data from assertions like these.
In an interview at 2011-01-03 08:13, Neil Rimes told Officer Cane
that he was at home from 2011-01-02 20:00 until 2011-01-03 08:13.
In an interview at 2011-01-03 08:25, Liza Nevers told Officer Cane
that Neil Rimes came home at 2011-01-02 23:45.
In a deposition at 2011-05-13 10:22, Cody Maxon told attorney Kurt
Schlagel that he saw Neil Rimes at Kroger at 2011-01-03 03:00

Techniques to reduce data harvesting from AJAX/JSON services

I was wondering if anyone had come across any techniques to reduce the chances of data exposed through JSON type services on the server (intended to supply AJAX functions) from being harvested by external agents.
It seems to me that the problem is not so difficult if you had say a Flash client consuming the data. Then you could send encrypted data to the client, which would know how to decrypt it. The same method seems impossible with AJAX though, due to the open nature of the Javascript source.
Has anybody implemented a clever technique here?
Whatever the method, it should still allow a genuine AJAX function to consume the data.
Note that I'm not really talking about protecting 'sensitive' information here, the odd record leaking out is not a problem. Rather I am thinking about stopping a situation where the whole DB is hoovered up by bots (either in one go, or gradually over time).
Thanks.
First, I would like to clear on this:
It seems to me that the problem is not
so difficult if you had say a Flash
client consuming the data. Then you
could send encrypted data to the
client, which would know how to
decrypt it. The same method seems
impossible with AJAX though, due to
the open nature of the Javascrip
source.
It will be pretty obvious the information is being sent encrypted to the flash client & it won't be that hard for the attacker to find out from your flash compiled program what's being used for this - replicate & get all that data.
If the data does happens to have the value you are thinking, you can count on the above.
If this is public information, embrace that & don't combat it - instead find ways to capitalize on it.
If this is information that you are only exposing to a set of users, make sure you have the corresponding authentication / secure communication. Track usage as others have said, and have measures that act on it,
The first thing to prevent bots from stealing your data is not technological, it's legal. First, make sure you have the right language in your site's Terms of Use that what you're trying to prevent is actually disallowed and defensible from a legal standpoint. Second, make sure you design your technical strategy with legal issues in mind. For example, in the US, if you put data behind an authentication barrier and an attacker steals it, it's likely a violation of the DMCA law. Third, find a lawyer who can advise you on IP and DMCA issues... nice folks on StackOverflow aren't enough. :-)
Now, about the technology:
A reasonable solution is to require that users be authenticated before they can get access to your sensitive Ajax calls. This allows you to simply monitor per-user usage of your Ajax calls and (manually or automatically) cancel the account of any user who makes too many requests in a particular time period. (or too many total requests, if you're trying to defend against a trickle approach).
This approach of course is vulnerable to sophisticated bots who automatically sign up new "users", but with a reasonably good CAPTCHA implementation, it's quite hard to build this kind of bot. (see "circumvention" section at http://en.wikipedia.org/wiki/CAPTCHA)
If you are trying to protect public data (no authentication) then your options are much more limited. As other answers noted, you can try IP-address-based limits (and run afoul of large corporate proxy users) but sophisticated attackers can get around this by distributing the load. There's also likley sophisticated software which watches things like request timing, request patterns, etc. and tries to spot bots. Poker sites, for example, spend a lot of time on this. But don't expect these kinds of systems to be cheap. One easy thing you can do is to mine your web logs (e.g. using Splunk) and find the top N IP addresses hitting your site, and then do a reverse-IP lookup on them. Some will be legitimate corporate or ISP proxies. But if you recognize a compeitor's domain name among the list, you can block their domain or follow up with your lawyers.
In addition to pre-theft defense, you might also want to think about inserting a "honey pot": deliberately fake information that you can track later. This is how, for example, maps manufacturers catch plaigarism: they insert a fake street in their maps and see which other maps show the same fake street. While this doesn't prevent determined folks from sucking out all your data, it does let you find out later who's re-using your data. This can be done by embedding unique text strings in your text output, and then searching for those strings on Google later (assuming your data is re-usable on another public website). If your data is HTML or images, you can include an image which points back to your site, and you can track who is downloading it, and look for patterns you can use to bust the freeloaders.
Note that the javascript encryption approach noted in one of the other answers won't work for non-authenticated sessions-- an attacker can simply download the javascript and run it just like a regular browser would. Moral of the story: public data is essentially indefensible. If you want to keep data protected, put it behind an authentication barrier.
This is obvious, but if your data is publicly searchable by search engines, you'll both need a non-AJAX solution for them (Google won't read your ajax data!) and you'll want to mark those pages NOARCHIVE so your data doesn't show up in Google's cache. You'll also probably want a white list of search engine crawler IP addreses which you allow into your search-engine-crawlable pages (you can work with Google, Bing, Yahoo, etc. to get these), otherwise malicious bots could simply impersonate Google and get your data.
In conclusion, I want to echo #kdgregory above: make sure that the threat is real enough that it's worth the effort required. Many companies overestimate the interest that other people (both legitimate customers and nefarious actors) have in their business. It might be that yours is an oddball case where you have particularly important data, it's particularly valuable to obtain, it must be publicly accessible without authentication, and your legal recourses will be limited if someone steals your data. But all those together is admittedly an unusual case.
P.S. - another way to think about this problem which may or may not apply in your case. Sometimes it's easier to change how your data works which obviates securing it. For example, can you tie your data in some way to a service on your site so that the data isn't very useful unless it's being used in conjunction with your code. Or can you embed advertising in it, so that wherever it's shown you get paid? And so on. I don't know if any of these mitigations apply to your case, but many businesses have found ways to give stuff away for free on the Internet (and encourage rather than prevent wide re-distribution) and still make money, so a hybrid free/pay strategy may (or may not) be possible in your case.
If you have an internal Memcached box, you could consider using a technique where you create an entry for each IP that hits your server with an hour expiration. Then increment that value each time the IP hits your AJAX endpoint. If the value gets over a particular threshold, fry the connection. If the value expires in Memcached, you know it isn't getting "hoovered away".
This isn't a concrete answer with a proof of concept, but maybe a starting point for you. You could create a javascript function that provides encryption/decryption functions. The javascript would need to be built dynamically, and you would include an encryption key that is unique to the session. On the server side, you'd have an encryption service that uses the key from the session to encrypt your JSON before delivering it.
This would at least prevent someone from listening to your web traffic, pulling information out of your database.
I'm with kdgergory though, it sounds like your data is too open.
Some techniques are listed in Further thoughts on hindering screen scraping.
If you use PHP, Bad behavior is a nice tool to help. If you don't use PHP, it can give some ideas on how to filter (see How it works page).
Incredibill's blog is giving nice tips, lists of User-agents/IP ranges to block, etc...
Here are a variety of suggestions:
Issue tokens required for redemption along with each AJAX request. Expire the tokens.
Track how many queries are coming from each client, and throttle excessive usage based on expected normal usage of your site.
Look for patterns in usage such as sequential queries, spikes in requests, or queries that occur faster than a human could conduct.
Check user-agents. Many bots don't completely replicate the user agent info of a browser, and you can eliminate programatic scraping of your data using this method.
Change the front-end component of your website to redirect to a captcha (or some other human verifying mechanism) once a request threshold is exceeded.
Modify your logic so the respsonse data is returned in a few different ways to complicate the code required to parse.
Obsfucate your client-side javascript.
Block IPs of offending clients.
Bots usually doesn't parse Javascript, so your ajax code won't be instantly executed. And if they even do, bots usually doesn't maintain sessions/cookies as well. Knowing that, you could reject the request if it is invoked without a valid session/cookie (which is obviously set on the server side beforehand by the request on the parent page).
This does not protect you from human hazard though. The safest way is to restrict access to users with a login/password. If that is not your intent, well, then you have to live with the fact that it's a public application. You could of course scan logs and maintian blacklists with IP addresses and useragents, but that goes extreme.

Resources