Problems with freeing memory - memory-management

I have a form with the following fields:
List<String^> ^images;
PictureBox ^box;.
List<PictureBox^> ^boxes;
String ^path;
(as well as some ints).
I allocate the memory for each of these with gcnew, but when I close the form, the memory is not freed. I thought they would be garbage collected; why are they not?
I also noticed an autogenerated components variable of type Container ^ that's deleted in the destructor. What's up with that?
EDIT: Whoops, forgot one rather important thing: In the main form from which I call the above forms, I have a List of these forms (to communicate with them). How should I remove the form from the list once it's closed?

Garbage collection is indeterminate; you can't predict when it will run. All that's guaranteed is that it will run "when it needs to"; if you absolutely need to control when it happens, then you can call:
GC.Collect();
and
GC.WaitForPendingFinalizers();

Related

How to track/find out which userdata are GC-ed at certain time?

I've written an app in LuaJIT, using a third-party GUI framework (FFI-based) + some additional custom FFI calls. The app suddenly loses part of its functionality at some point soon after being run, and I'm quite confident it's because of some unpinned objects being GC-ed. I assume they're only referenced from the C world1, so Lua GC thinks they're unreferenced and can free them. The problem is, I don't know which of the numerous userdata are unreferenced (unpinned) on Lua side?
To confirm my theory, I've run the app with GC disabled, via:
collectgarbage 'stop'
and lo, with this line, the app works perfectly well long past the point where it got broken before. Obviously, it's an ugly workaround, and I'd much prefer to have the GC enabled, and the app still working correctly...
I want to find out which unpinned object (userdata, I assume) gets GCed, so I can pin it properly on Lua side, to prevent it being GCed prematurely. Thus, my question is:
(How) can I track which userdata objects got collected when my app loses functionality?
One problem is, that AFAIK, the LuaJIT FFI already assigns custom __gc handlers, so I cannot add my own, as there can be only one per object. And anyway, the framework is too big for me to try adding __gc in each and every imaginable place in it. Also, I've already eliminated the "most obviously suspected" places in the code, by removing local from some variables — thus making them part of _G, so I assume not GC-able. (Or is that not enough?)
1 Specifically, WinAPI.
For now, I've added some ffi.gc() handlers to some of my objects (printing some easily visible ALL-CAPS messages), then added some eager collectgarbage() calls to try triggering the issue as soon as possible:
ffi.gc(foo, function()
print '\n\nGC FOO !!!\n\n'
end)
[...]
collectgarbage()
And indeed, this exposed some GCing I didn't expect. Specifically, it led me to discover a note in luajit's FFI docs, which is most certainly relevant in my case:
Please note that [C] pointers [...] are not followed by the garbage collector. So e.g. if you assign a cdata array to a pointer, you must keep the cdata object holding the array alive [in Lua] as long as the pointer is still in use.

Releasing memory in smart pointer

When we are using dynamically allocated memory, the usefulness of the delete command is obvious - we need to let our program know that the memory at the pointer is no longer needed and can be repurposed.
Smart pointers in C++11 (e.g. unique_ptr) have a member function seemingly used for a similar purpose: release(). I thought the point of using smart pointers was to avoid having to manually handle the release of memory. Why is the release() function provided when, in this context, it seems pointless?
(pun intended)
unique_ptr::release is not equivalent to calling delete on the managed pointer. unique_ptrs are used when you want a sole entity owning a heap-allocated object. unique_ptr::release relinquishes ownership and returns the raw pointer. There might be instances when you no longer want the unique_ptr to own the managed data and yet not destroy the object - maybe you want to call a legacy API which takes a plain pointer and assumes ownership of it. Or perhaps you want your interface receive a unique_ptr but have many shared_ptrs having access to it in the implementation. So, the implementation would release from the unique_ptr and transfer ownership to one or more shared_ptrs.
unique_ptr only automatically releases memory when it goes out of scope or is assigned a new pointer, but you might want to release the memory before that (the most obvious reason would be optimizing memory usage).

Check Value of .NET Handle ^

Here's my situation:
I have .NET wrapper-objects in a C++/CLI layer that hold pointers to unmanaged C++ objects. I've implemented the finalizer so that it deletes the unmanaged memory pointed to by the wrapper-object on garbage-collection and sets the pointer to null.
Here's the problem:
I'm watching the finalizer for the .NET wrapper-object and it gets called twice and tries to delete the same memory twice, indicating that I have somehow created 2 .NET wrapper objects that go out-of-scope, and are garbage collected while I'm still expecting the wrapper object to be in scope (these wrapper objects are getting passed to a VB.NET application).
Here's my question:
Is there anyway for me to check the handle value so that I can confirm where the wrapper objects are getting created (copied or whatever)? Currently I'm looking at the handle values (EG - 0x0014fe80), but I see 3 different values for when the object is created, added to a collection, and deleted. So I'm not sure if the GC is just moving stuff around and this is the same object, or if I'm actually seeing 3 different objects that reference the same unmanaged memory. I would like to resolve the duplicate object copies if possible, but I understand that I will probably want to implement some sort of smart pointer so that this doesn't happen.
Thanks,
Ian
Take a look at this question
Here is an implementation of a scoped_ptr that is noncopyable and has an auto-release mechanism for unmanaged objects, by #Ben Voigt
Yeah, I ended up modifying an auto_ptr class to be a shared pointer to ensure that the unmanaged memory is only deleted once through the smart pointer finalizer. I'm assuming I did something similar to all the other implementations; I created a static dictionary in the auto_ptr template class, using the native pointer value as the key, that is checked every time the finalizer is called to update the count of each item, or delete the memory.

Windows Form Closed but not destroyed

In my Windows Form application when I close a form (which is derived from a base form), its FormClosing and FormClosed Events fire but destructor never fires off. It still keeps the memory occupied.
Any ideas on how to destroy the form completely when it is closed?
If it's not destroyed that means the Garbage Collector doesn't think it should be destroyed.
This basically means that you're either:
Holding a reference to the object somewhere
Have the object listening to an event (That's also a kind of reference to the object)
The garbage collector won't free the Form until there are no references to it.
If you have important resources you want to dispose of, make it IDisposable, and use the Dispose method.
Destructors (or more correctly, finalizers - there are no destructors in .NET) are not guaranteed to be executed in .NET - objects may be cleaned up at the whim of the runtime or even never. You cannot rely on your finalizer method ever being called.
If you need to do something when your form is closed, handle the Closed event.
If you need to release an unmanaged resource (e.g. close an open file), add this logic to the Dispose() method.
If you are worried about memory use, do not worry about memory use. The runtime manages memory automatically based on its own logic.
Reference: Garbage Collection (MSDN)

How can I decommit a file-mapped page?

I have a memory mapped file, and a page in a view which is currently committed. I would like to decommit it. MapViewOfFile tells me I cannot use VirtualFree on file mapped pages. Is there some other way to do it?
You cannot decommit it, but what you really want is not decommitting it ...
What you really want is to release the page from a memory. This can be done by using VirtualUnlock. See VirtualUnlock Remarks:
Calling VirtualUnlock on a range of memory that is not locked releases the pages from the process's working set.
Note: As documented, the function will return FALSE (the page was not locked) and GetLastError will return ERROR_NOT_LOCKED.
This is described in Guillermo Prandi's question CreateFileMapping, MapViewOfFile, how to avoid holding up the system memory.
Remarks: I think you can view it this way: decommitting a mapped page is nonsense - pages is commited whenever it is backed by a physical storage, be it a memory or a file. File mapped page cannot be decommitted in this sense, as it will be always backed by the file.
However, the code in the question mentioned is measuring the memory footprint, but what it measures is not representative, as the fact the page is removed from the process working set does not necessarily mean it is no longer present in a memory.
I have performed a different experiment, measuring how long it takes to read a byte from a memory mapped page. After unlocking the page or unmapping the view and closing the mapping handle the access was still fast.
For the access to be slow (i.e. to really discard the page from the memory) it was necessary to unmap the view and close BOTH memory mapping handle and file handle (the last was surprising to me, as I expected unmapping the view and closing the mapping handle will be enough).
It is still possible system will take VirtualUnlocked as a hint and it will discard the pages sooner, once it needs to discard something, but this is something I have to think about yet how to prove.

Resources