GPS intermediate points - algorithm

I'm developing an algorithm that involves inserting intermediary points between GPS coordinates. To be precisely let's assume that I have these 2 coordinates:
25.60593,45.65151
25.60662,45.65164000000001
I want to add extra points between these coordinates (on the same "line"). Is it wise to consider a linear variation (in this case I consider the intermediate points as points on the segment defined by the 2 given coordinates).
This involves actual GPS data obtained from a computed route -> this would mean that the distance is less than 1000 meters between each consecutive shape point (on highway the distance between consecutive points can be quite big due to the fact that it is a straight line).
Is linear variation a good approximation, or are they any other methods? (given the fact that the distance between points is less than 1km)
Thanks,
Iulian

Given that the distance between the points is less than 1 km, AND *ASSUMING* that you're not playing very close to the North or South Pole, linear interpolation is probably good enough.
After linear interpolation is shown in live testing on real data NOT to be good enough, you can try spherical trig interpolation. Math involved.
If both of those fall short, then you will need very specialized expert assistance.

If the you have two points a and b, and the distance from a to b is less than 1km, then the maximimum distance between the midpoint (coordinates obtained by averaging) and the "middle point" (coordinates obtained by going halway along the shortest path between a and b) is tiny (1 micrometer) if a is on the equator, around 5cm at the arctic circle and 25cm at 85 north. If the distance between a and b was up to 10km, then the figures above should be multiplied by 100. These figures were calculated using the GPS ellipsoid, WGS84.
PS You have to be a bit careful averaging longitudes. The average of 179 and -179 is 180, not 0.

Related

algorithm to select a pair of vectors for the best "zigzag" profile

I have a set of distinct 2D vectors (over real numbers), pointing in different directions. We are allowed to pick a pair of vectors and construct their linear combination, such that the coefficients are positive and their sum is 1.
In simple words we are allowed to take a "weighted average" of any two vectors.
My goal is for an arbitrary direction to pick a pair of vectors whose "weighted average" is in this direction and is maximized.
Speaking algebraically given vectors a and b and a direction vector n we are interested in maximizing this value:
[ a cross b ] / [ (a - b) cross n ]
i.e. pick a and b which maximize this value.
To be concrete the application of this problem is for sailing boats. For every apparent wind direction the boat will have a velocity given by a polar diagram. Here's an example of such a diagram:
(Each line in this diagram corresponds to a specific wind magnitude). Note the "impossible" front sector of about 30 degrees in each direction.
So that in some direction the velocity will be high, for some - low, and for some directions it's impossible to sail directly (for instance in the direction strictly opposite to the wind).
If we need to advance in a direction in which we can't sail directly (or the velocity isn't optimal) - it's possible to advance in zigzags. This is called tacking.
Now, my goal is to recalculate a new diagram which denotes the average advance velocity in any direction, either directly or indirectly. For instance for the above diagram the corrected diagram would be this:
Note that there are no more "impossible" directions. For some directions the diagram resembles the original one, where it's best to advance directly, and no maneuver is required. For others - it shows the maximum average advance velocity in this direction assuming the most optimal maneuver is periodically performed.
What would be the most optimal algorithm to calculate this? Assume the diagram is given as a discrete set of azimuth-velocity pairs, from which we can calculate the vectors.
So far I just check all the vector pairs to select the best. Well, there're cut-off criterias, such as picking only vectors with positive projection on the advance direction, and opposite perpendicular projections, but still the complexity is O(N^2).
I wonder if there's a more efficient algorithm.
EDIT
Many thanks to #mcdowella. For both computer-science and sailor answers!
I too thought in terms of convex polygon, figured out that it's only worth probing vectors on that hull (i.e. if you take a superposition of 2 vectors on this hull, and try to replace one of them by a vector which isn't on this hull, the result would be worse since new vector's projection on the needed direction is worse than of both source vectors).
However I didn't realize that any "weighted average" of 2 vectors is actually a straight line segment connecting those vectors, hence the final diagram is indeed this convex hull! And, as we can see, this is also in agreement with what I calculated by "brute-force" algorithm.
Now the computer science answer
A tacking strategy gives you the convex combination of the vectors from the legs that make up the tacks.
So consider the outline made by just one contour in your diagram. The set of all possible best speeds and directions is the convex polygon formed by taking all convex combinations of the vectors to the contour. So what you want to do is form the convex hull of your contour (https://en.wikipedia.org/wiki/Convex_hull). To find out how to go fast in any particular direction, intersect that vector with the convex hull, and use tacks with legs that correspond to the corners on either side of the edge of the convex hull that you intersect with.
Looking at your diagram, the contour is concave straight upwind and straight downwind, which is what you would expect. However there is also another concave section, somewhere between 4 and 5 O'Clock and also symmetrically between 7 and 8 O'Clock, which appears as a straight line in your corrected diagram - so I guess there is a third direction to tack in, using two reaches on the same side of the wind which I don't recognise from traditional sailing.
First the ex-laser sailor answer
At least for going straight upwind or downwind, the obvious guess is to tack so that each leg is of the same length and of the same bearing to the wind. If the polar diagram is symmetric around the upwind-downwind axis this is correct. Suppose upwind is the Y axis and possible legs are (A, B), (-A, B), (a, b) and (-a, b). Symmetrical tacking moves (A, B)/2 + (-A, B)/2 = (0, B) and the other symmetrical tack gives you (0, b). Asymmetrical tacking is (-A, B)a/(a+A) + (a, b)A/(a+A) = (0, (a/(a+A))B + (A/(a+A))b) and if b!=B lies between b and B and so is not as good as whichever of b or B is best.
For any direction which lies between the port and starboard tacks that you would take to work your way upwind, the obvious strategy is to change the length of those legs but not their direction so that the average vector traveled is in the required direction. Is this the best strategy? If not, the better strategy is making progress upwind faster that the port and starboard tacks that you would take to work your way upwind, which I think is a contradiction - so for any direction which lies between the port and starboard tacks made to go upwind I think the best strategy is indeed to make those tacks but alter the leg lengths to go in the required direction. The same thing should apply for tacking downwind, if you have a boat that makes that a good idea.

Find the diameter of a set of n points in d-dimensional space

I am interesting in finding the diameter of two points sets, in 128 dimensions. The first has 10000 points and the second 1000000. For that reason I would like to do something better than the naive approach which takes O(n²). The algorithm will be able to handle any number of points and dimensions, but I am currently very interested in these two particular data sets.
I am very interesting in gaining speed over accuracy, thus, based on this, I would find the (approximate) bounding box of the point set, by computing the min and max value per coordinate, thus O(n*d) time. Then, if I find the diameter of this box, the problem is solved.
In the 3d case, I could find the diameter of the one side, since I know the two edges and then, I could apply the Pythagorean theorem on the other, which is vertical to this side. I am not sure for this however and for sure, I can't see how to generalize it to d dimensions.
An interesting answer can be found here, but it seems to be specific for 3 dimensions and I want a method for d dimensions.
Interesting paper: On computing the diameter of a point set in high dimensional Euclidean space. Link. However, implementing the algorithm seems too much for me in this phase.
The classic 2-approximation algorithm for this problem, with running time O(nd), is to choose an arbitrary point and then return the maximum distance to another point. The diameter is no smaller than this value and no larger than twice this value.
I would like to add a comment, but not enough reputation for that...
I just want to warn other readers that the "bounding box" solution is very inaccurate. Take for example the Euclidean ball of radius one. This set has diameter two, but its bounding box is [-1, 1]^d, which has diameter twice the square root of d. For d = 128, this is already a very bad approximation.
For a crude estimate, I would stay with David Eisenstat's answer.
There is a precision based algorithm which performs very well on any dimension, which is based on computing the dimension of an axial bounding box.
The idea is that it's possible to find the lower and upper boundaries of the axis bounding box length function since it's partial derivatives are limited, and depend on the angle between the axises.
The limit of the local maxima derivatives between two axises in 2d space can be computed as:
sin(a/2)*(1 + tan(a/2))
That means that, for example, for 90deg between axises the boundary is 1.42 (sqrt(2))
Which reduces to a/2 when a => 0, so the upper boundary is proportional to the angle.
For a multidimensional case the formula varies slightly, but still it's easy to compute.
So, the search of local minima convolves in logarithmic time.
The good news is that we can run the search of such local maxima in parallel.
Also, we can filter out both the regions of the search based on the best achieved result so far, as well as the points themselves, which are belo the lower limit of the search in the worst region.
The worst case of the algorithm is where all of the points are placed on the surface of a sphere.
This can be firther improved: when we detect a local search which operates on just few points, we swap to bruteforce for this particular axis. It works fast, because we need only the points which are subject to that particular local search, which can be determined as points actually bound by two opposite spherical cones of a particular angle sharing the same axis.
It's hard to figure out the big O notation, because it depends on desired precision and the distribution of points (bad when most of the points are on a sphere's surface).
The algorithm i use is here:
Set the initial angle a = pi/2.
Take one axis for each dimension. The angle and the axises form the initial 'bucket'
For each axis, compute the span on that axis by projecting all the points onto the axis, and finding min and max of the coordinates on the axis.
Compute the upper and lower bounds of the diameter which is interesting. It's based on the formula: sin(a/2)*(1 + tan(a/2)) and multiplied by assimetry cooficient, computed from the length of the current axis projections.
For the next step, kill all of the points which fall under the lower bound in each dimension at the same time.
For each exis, If the amount of points above the upper bound is less then some reasonable amount (experimentally computed) then compute using a bruteforce (N^2) on the set of the points in question, and adjust the lower bound, and kill the axis for the next step.
For the next step, Kill all of the axises, which have all of their points under the lower bound.
If the precision is satisfactory (upper bound - lower bound) < epsilon, then return the upper bound as the result.
For all of the survived axises, there is a virtual cone on that axis (actually, the two opposite cones), which covers some area on a virtual sphere which encloses a face of the cube. If i'm not mistaken, it's angle would be a * sqrt(2). Set the new angle to a / sqrt(2). Create a whole bucket of new axises (2 * number of dimensions), so the new cone areas would cover the initial cone area. It's the hard part for me, as i have not enough imagination for n>3-dimensional case.
Continue from step (3).
You can paralellize the procedure, synchronizing the limits computed so far for the points from (5) through (7).
I'm going to summarize the algorithm proposed by Timothy Shields.
Pick random point x.
Pick point y furthest from x.
If not done, let x = y, and go to step 2
The more times you repeat, the more accurate the result will be... ??
EDIT: actually this algorithm is not very good. Think about a 2D rectangle with vertices ABCD. There are two maxima: between AC and BD, which are separated by a sizable valley. This algorithm will get stuck at one or the other 50/50. If AC is slightly larger than BD, you'll be getting the wrong answer 50% of the time no matter how many times you iterate. Other regular polygons have the same issue, and in higher dimensions it is even worse.

Moving GPS position with a certain distance (in meters) in a known direction

I have some GPS sample data taken from a device. What I need to do is to "move" the data to the "left" by, let's say, 1 to 5 meters. I know how to do the moving part, the only problem is that the moving is not as accurate as I want it to be.
What I currently do:
I take the GPS coordinates (latitude, longitude pairs)
I convert them using plate carrée transformation.
I scale the resulting coordinates to the longitudinal distance (distance on x) and the latitudinal distance (distance on y) - imagine the entire GPS sample data is inside a rectangle being bound by the maximum and minimum latitude/longitude. I compute these distances using the formula for the Great Circle Distance between the extreme values for longitude and latitude.
I move the points x meters in the wanted direction
I convert back to GPS coordinates
I don't really have the accuracy I want. For example moving to the left by 3 meters means less than 3 meters (around 1.8m - maybe 2).
What are the known solutions for doing such things? I need a solution that deviates at most by 0.2-0.5 meters from the real point (not 1.2 like in the current case).
LATER: Is this kind of approach good? By this kind I mean to transform the GPS coordinates into plane coordinates and back to GPS. Is there other way?
LATER2: The approach of converting to a conformal map is probably the one that will be used. In case of a small rectangle, and since there are not roads at the poles probably Mercator will be used. Opinions?
Thanks,
Iulian
PS: I'm working on small areas - so imagine the bounding rectangle I'm talking about to have the length of each side no more than 5 kilometers. (So a 5x5km rectangle is maximum).
There are two issues with your solution:
plate carrée transformation is not conformal (i.e. angles are not preserved)
you can not measure distances along lat or lon that way since that are not great circles (approximately you are off by a factor cos(lat) for your x).
Within small rectangles you may assume that lon/lat can be linearly mapped to x/y pairs but you have to keep in mind that a "square" in lon/lat maps to a rectangle with aspect ratio of approx cos(lat)/1.

How to perform spatial partitioning in n-dimensions?

I'm trying to design an implementation of Vector Quantization as a c++ template class that can handle different types and dimensions of vectors (e.g. 16 dimension vectors of bytes, or 4d vectors of doubles, etc).
I've been reading up on the algorithms, and I understand most of it:
here and here
I want to implement the Linde-Buzo-Gray (LBG) Algorithm, but I'm having difficulty figuring out the general algorithm for partitioning the clusters. I think I need to define a plane (hyperplane?) that splits the vectors in a cluster so there is an equal number on each side of the plane.
[edit to add more info]
This is an iterative process, but I think I start by finding the centroid of all the vectors, then use that centroid to define the splitting plane, get the centroid of each of the sides of the plane, continuing until I have the number of clusters needed for the VQ algorithm (iterating to optimize for less distortion along the way). The animation in the first link above shows it nicely.
My questions are:
What is an algorithm to find the plane once I have the centroid?
How can I test a vector to see if it is on either side of that plane?
If you start with one centroid, then you'll have to split it, basically by doubling it and slightly moving the points apart in an arbitrary direction. The plane is just the plane orthogonal to that direction.
But you don't need to compute that plane.
More generally, the region (i) is defined as the set of points which are closer to the centroid c_i than to any other centroid. When you have two centroids, each region is a half space, thus separated by a (hyper)plane.
How to test on a vector x to see on which side of the plane it is? (that's with two centroids)
Just compute the distance ||x-c1|| and ||x-c2||, the index of the minimum value (1 or 2) will give you which region the point x belongs to.
More generally, if you have n centroids, you would compute all the distances ||x-c_i||, and the centroid x is closest to (i.e., for which the distance is minimal) will give you the region x is belonging to.
I don't quite understand the algorithm, but the second question is easy:
Let's call V a vector which extends from any point on the plane to the point-in-question. Then the point-in-question lies on the same side of the (hyper)plane as the normal N iff V·N > 0

Closest grid square to a point in spherical coordinates

I am programming an algorithm where I have broken up the surface of a sphere into grid points (for simplicity I have the grid lines parallel and perpendicular to the meridians). Given a point A, I would like to be able to efficiently take any grid "square" and determine the point B in the square with the least spherical coordinate distance AB. In the degenerate case the "squares" are actually "triangles".
I am actually only using it to bound which squares I am searching, so I can also accept a lower bound if it is only a tiny bit off. For this reason, I need the algorithm to be extremely quick otherwise it would be better to just take the loss of accuracy and search a few more squares.
I decided to repost this question to Math Overflow: https://mathoverflow.net/questions/854/closest-grid-square-to-a-point-in-spherical-coordinates. More progress has been made here
For points on a sphere, the points closest in the full 3D space will also be closest when measured along the surface of the sphere. The actual distances will be different, but if you're just after the closest point it's probably easiest to minimize the 3D distance rather than worry about great circle arcs, etc.
To find the actual great-circle distance between two (latitidude, longitude) points on the sphere, you can use the first formula in this link.
A few points, for clarity.
Unless you specifically wish these squares to be square (and hence to not fit exactly in this parallel and perpendicular layout with regards to the meridians), these are not exactly squares. This is particularly visible if the dimensions of the square are big.
The question speaks of a [perfect] sphere. Matters would be somewhat different if we were considering the Earth (or other planets) with its flattened poles.
Following is a "algorithm" that would fit the bill, I doubt it is optimal, but could offer a good basis. EDIT: see Tom10's suggestion to work with the plain 3D distance between the points rather than the corresponding great cirle distance (i.e. that of the cord rather than the arc), as this will greatly reduce the complexity of the formulas.
Problem layout: (A, B and Sq as defined in the OP's question)
A : a given point the the surface of the sphere
Sq : a given "square" from the grid
B : solution to problem : point located within Sq which has the shortest
distance to A.
C : point at the center of Sq
Tentative algorithm:
Using the formulas associated with [Great Circle][1], we can:
- find the equation of the circle that includes A and C
- find the distance between A and C. See the [formula here][2] (kindly lifted
from Tom10's reply).
- find the intersect of the Great Circle arc between these points, with the
arcs of parallel or meridian defining the Sq.
There should be only one such point, unless this finds a "corner" of Sq,
or -a rarer case- if the two points are on the same diameter (see
'antipodes' below).
Then comes the more algorithmic part of this procedure (so far formulas...):
- find, by dichotomy, the point on Sq's arc/seqment which is the closest from
point A. We're at B! QED.
Optimization:
It is probably possible make a good "guess" as to the location
of B, based on the relative position of A and C, hence cutting the number of
iterations for the binary search.
Also, if the distance A and C is past a certain threshold the intersection
of the cicles' arcs is probably a good enough estimate of B. Only when A
and C are relatively close will B be found a bit further on the median or
parallel arc in these cases, projection errors between A and C (or B) are
smaller and it may be ok to work with orthogonal coordinates and their
simpler formulas.
Another approach is to calculate the distance between A and each of the 4
corners of the square and to work the dichotomic search from two of these
points (not quite sure which; could be on the meridian or parallel...)
( * ) *Antipodes case*: When points A and C happen to be diametrically
opposite to one another, all great circle lines between A and C have the same
length, that of 1/2 the circonference of the sphere, which is the maximum any
two points on the surface of a sphere may be. In this case, the point B will
be the "square"'s corner that is the furthest from C.
I hope this helps...
The lazy lower bound method is to find the distance to the center of the square, then subtract the half diagonal distance and bound using the triangle inequality. Given these aren't real squares, there will actually be two diagonal distances - we will use the greater. I suppose that it will be reasonably accurate as well.
See Math Overflow: https://mathoverflow.net/questions/854/closest-grid-square-to-a-point-in-spherical-coordinates for an exact solution

Resources