Algorithm: Calculate pseudo-random point inside an ellipse - algorithm

For a simple particle system I'm making, I need to, given an ellipse with width and height, calculate a random point X, Y which lies in that ellipse.
Now I'm not the best at maths, so I wanted to ask here if anybody could point me in the right direction.
Maybe the right way is to choose a random float in the range of the width, take it for X and from it calculate the Y value?

Generate a random point inside a circle of radius 1. This can be done by taking a random angle phi in the interval [0, 2*pi) and a random value rho in the interval [0, 1) and compute
x = sqrt(rho) * cos(phi)
y = sqrt(rho) * sin(phi)
The square root in the formula ensures a uniform distribution inside the circle.
Scale x and y to the dimensions of the ellipse
x = x * width/2.0
y = y * height/2.0

Use rejection sampling: choose a random point in the rectangle around the ellipse. Test whether the point is inside the ellipse by checking the sign of (x-x0)^2/a^2+(y-y0)^2/b^2-1. Repeat if the point is not inside. (This assumes that the ellipse is aligned with the coordinate axes. A similar solution works in the general case but is more complicated, of course.)

It is possible to generate points within an ellipse without using rejection sampling too by carefully considering its definition in polar form. From wikipedia the polar form of an ellipse is given by
Intuitively speaking, we should sample polar angle θ more often where the radius is larger. Put more mathematically, our PDF for the random variable θ should be p(θ) dθ = dA / A, where dA is the area of a single segment at angle θ with width dθ. Using the equation for polar angle area dA = 1/2 r2 dθ and the area of an ellipse being π a b, then the PDF becomes
To randomly sample from this PDF, one direct method is the inverse CDF technique. This requires calculating the cumulative density function (CDF) and then inverting this function. Using Wolfram Alpha to get the indefinite integral, then inverting it gives inverse CDF of
where u runs between 0 and 1. So to sample a random angle θ, you just generate a uniform random number u between 0 and 1, and substitute it into this equation for the inverse CDF.
To get the random radius, the same technique that works for a circle can be used (see for example Generate a random point within a circle (uniformly)).
Here is some sample Python code which implements this algorithm:
import numpy
import matplotlib.pyplot as plt
import random
# Returns theta in [-pi/2, 3pi/2]
def generate_theta(a, b):
u = random.random() / 4.0
theta = numpy.arctan(b/a * numpy.tan(2*numpy.pi*u))
v = random.random()
if v < 0.25:
return theta
elif v < 0.5:
return numpy.pi - theta
elif v < 0.75:
return numpy.pi + theta
else:
return -theta
def radius(a, b, theta):
return a * b / numpy.sqrt((b*numpy.cos(theta))**2 + (a*numpy.sin(theta))**2)
def random_point(a, b):
random_theta = generate_theta(a, b)
max_radius = radius(a, b, random_theta)
random_radius = max_radius * numpy.sqrt(random.random())
return numpy.array([
random_radius * numpy.cos(random_theta),
random_radius * numpy.sin(random_theta)
])
a = 2
b = 1
points = numpy.array([random_point(a, b) for _ in range(2000)])
plt.scatter(points[:,0], points[:,1])
plt.show()

I know this is an old question, but I think none of the existing answers are good enough.
I was looking for a solution for exactly the same problem and got directed here by Google, found all the existing answers are not what I wanted, so I implemented my own solution entirely by myself, using information found here: https://en.wikipedia.org/wiki/Ellipse
So any point on the ellipse must satisfy that equation, how to make a point inside the ellipse?
Just scale a and b with two random numbers between 0 and 1.
I will post my code here, I just want to help.
import math
import matplotlib.pyplot as plt
import random
from matplotlib.patches import Ellipse
a = 4
b = a*math.tan(math.radians((random.random()+0.5)/2*45))
def random_point(a, b):
d = math.radians(random.random()*360)
return (a * math.cos(d) * random.random(), b * math.sin(d) * random.random())
points = [random_point(a, b) for i in range(360)]
x, y = zip(*points)
fig = plt.figure(frameon=False)
ax = fig.add_subplot(111)
ax.set_axis_off()
ax.add_patch(Ellipse((0, 0), 2*a, 2*b, edgecolor='k', fc='None', lw=2))
ax.scatter(x, y)
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
plt.axis('scaled')
plt.box(False)
ax = plt.gca()
ax.set_xlim([-a, a])
ax.set_ylim([-b, b])
plt.set_cmap('rainbow')
plt.show()

Related

Obtaining a region of evenly distributed points on a sphere

There are several questions on this site about distributing points on the surface of a sphere, but all of these are based on actually generating all of the points on that sphere. My favorite thus far is the golden spiral discussed in Evenly distributing n points on a sphere.
I need to cover a sphere in trillions of points, but only ever need to actually generate a tiny region of the surface (earth down to ~10 meters, looking at a roughly 1 km^2 area). The points generated for that region must match the points that would be generated for the entire sphere (i.e., stitching small regions together must yield the same result as generating a larger region), and generation should be pretty fast.
My attempts to use the golden spiral with such a large number of points have been thwarted by floating point precision issues.
The best I've managed to come up with is generating points at equally spaced latitudes and calculating longitudinal spacing based on the circumference at that latitude. The result is far from satisfactory however (especially the resulting horizontal rings of points).
Does anyone have a suggestion for generating a small region of distributed points on the surface of a sphere?
The vertices of a geodesic sphere would work well in this application.
You start with an icosahedron, divide each face into a triangular mesh of whatever resolution you like, and project the points onto the surface of the sphere.
The Fibonacci sphere approximation is quite easy to generalize efficiently to a subset of points computation, as the analytic formulas are very straight-forward.
The below code computes the subset of points shown below for a trillion points in a few seconds of runtime on my weak laptop and a relatively under optimised python implementation.
Code to compute the above is below, and includes a means to verify the subset computation is exactly the same as a brute-force computation (however don't try it for trillion points, it will never finish unless you have a super-computer!)
Please note, the use of 128-bit doubles is an absolute requirement when you do the computation over more than about a billion points as there are major quantisation artefacts otherwise!
Runtime scales with r' * N where r' is the ratio of the subset to that of the full sphere. Thus, a very small r' can be computed very efficiently.
#!/usr/bin/env python3
import argparse
import mpl_toolkits.mplot3d.axes3d as ax3d
import matplotlib.pyplot as plt
import numpy as np
def fibonacci_sphere_pts(num_pts):
ga = (3 - np.sqrt(5)) * np.pi # golden angle
# Create a list of golden angle increments along tha range of number of points
theta = ga * np.arange(num_pts)
# Z is a split into a range of -1 to 1 in order to create a unit circle
z = np.linspace(1 / num_pts - 1, 1 - 1 / num_pts, num_pts)
# a list of the radii at each height step of the unit circle
radius = np.sqrt(1 - z * z)
# Determine where xy fall on the sphere, given the azimuthal and polar angles
y = radius * np.sin(theta)
x = radius * np.cos(theta)
return np.asarray(list(zip(x,y,z)))
def fibonacci_sphere(num_pts):
x,y,z = zip(*fibonacci_sphere_subset(num_pts))
# Display points in a scatter plot
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.scatter(x, y, z)
plt.show()
def fibonacci_sphere_subset_pts(num_pts, p0, r0 ):
"""
Get a subset of a full fibonacci_sphere
"""
ga = (3 - np.sqrt(5)) * np.pi # golden angle
x0, y0, z0 = p0
z_s = 1 / num_pts - 1
z_e = 1 - 1 / num_pts
# linspace formula for range [z_s,z_e] for N points is
# z_k = z_s + (z_e - z_s) / (N-1) * k , for k [0,N)
# therefore k = (z_k - z_s)*(N-1) / (z_e - z_s)
# would be the closest value of k
k = int(np.round((z0 - z_s) * (num_pts - 1) / (z_e - z_s)))
# here a sufficient number of "layers" of the fibonacci sphere must be
# selected to obtain enough points to be a superset of the subset given the
# radius, we use a heuristic to determine the number but it can be obtained
# exactly by the correct formula instead (by choosing an upperbound)
dz = (z_e - z_s) / (num_pts-1)
n_dk = int(np.ceil( r0 / dz ))
dk = np.arange(k - n_dk, k + n_dk+1)
dk = dk[np.where((dk>=0)&(dk<num_pts))[0]]
# NOTE: *must* use long double over regular doubles below, otherwise there
# are major quantization errors in the output for large number of points
theta = ga * dk.astype(np.longdouble)
z = z_s + (z_e - z_s ) / (num_pts-1) *dk
radius = np.sqrt(1 - z * z)
y = radius * np.sin(theta)
x = radius * np.cos(theta)
idx = np.where(np.square(x - x0) + np.square(y-y0) + np.square(z-z0) <= r0*r0)[0]
return x[idx],y[idx],z[idx]
def fibonacci_sphere_subset(num_pts, p0, r0, do_compare=False ):
"""
Display fib sphere subset points and optionally compare against bruteforce computation
"""
x,y,z = fibonacci_sphere_subset_pts(num_pts,p0,r0)
if do_compare:
subset = zip(x,y,z)
subset_bf = fibonacci_sphere_pts(num_pts)
x0,y0,z0 = p0
subset_bf = [ (x,y,z) for (x,y,z) in subset_bf if np.square(x - x0) + np.square(y-y0) + np.square(z-z0) <= r0*r0 ]
subset_bf = np.asarray(subset_bf)
if np.allclose(subset,subset_bf):
print('PASS: subset and bruteforce computation agree completely')
else:
print('FAIL: subset and bruteforce computation DO NOT agree completely')
# Display points in a scatter plot
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.scatter(x, y, z)
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="fibonacci sphere")
parser.add_argument(
"numpts", type=int, help="number of points to distribute along sphere"
)
args = parser.parse_args()
# hard-coded point to query with a tiny fixed radius
p0 = (.5,.5,np.sqrt(1. - .5*.5 - .5*.5)) # coordinate of query point representing center of subset, note all coordinates fall between -1 and 1
r0 = .00001 # the radius of the subset, a very small number is chosen as radius of full sphere is 1.0
fibonacci_sphere_subset(int(args.numpts),p0,r0,do_compare=False)

Sample two random variables uniformly, in region where sum is greater than zero

I am trying to figure out how to sample for two random variables uniformly in the region where the sum of the two is greater than zero. I thought a solution might be to sample for X~U(-1,1) and then sample for Y~U(-x,1) where x would be the current sample for X.
But this resulted in a distribution that looks like this.
This doesn't look uniformly distributed as the density of points at the top left is higher and keeps reducing as we move to the right. Can someone point out where the flaw in my reasoning is and how to possibly fix this?
Thank you
You just need to make sure that adjust the density of x points away from the "top-left" corner appropriately. I'd also suggest generating in [0,1] and then transforming into [-1,1] afterwards.
For example:
import numpy as np
# generate points, sqrt takes care of moving points away from zero
n = 50000
x = np.sqrt(np.random.uniform(size=n))
y = np.random.uniform(1-x)
# transform to -1,1
x = x * 2 - 1
y = y * 2 - 1
plotting these gives:
which looks reasonable to me. Note I've colored the [-1,1] square to show where it should fit.
Could you please elaborate a bit on how you arrived at the answer?
Well, the main problem consists in getting a fair way to sample the non-uniform distribution of coordinate X.
From elementary geometry, the area of the part of the upper triangle with x < x0 is: (1/2) * (x0 + 1)2. As the total area of this upper triangle is equal to 2, it follows that the cumulative probability P of (X < x0) within the upper triangle is: P = (1/4) * (x0 + 1)2.
So, inverting the last formula, we have: x0 = 2*sqrt(P) - 1
Now, from the Inverse Transform Sampling theorem, we know that we can generate a fair sampling of X by reinterpreting P as a random variable U0 uniformly distributed between 0 and 1.
In Python, this gives us:
u0 = random.uniform(0.0, 1.0)
x = (2*math.sqrt(u0)) - 1.0
or equivalently:
u0 = random.random()
x = (2 * math.sqrt(u0)) - 1.0
Note that this is essentially the same maths as in the excellent answer by #SamMason. That thing comes from a general statistical principle. It can just as well be used to prove that a fair sampling of the latitude on a 3D sphere is given by arcsin(2*u - 1).
So now we have x, but we still need y. The underlying 2D density is an uniform one, so for a given x, all possible values of y are equidistributed.
The interval of possible values for y is [-x, 1]. So if U1 is yet another independent random variable uniformly distributed between 0 and 1, y can be drawn from the equation:
y = (1+x) * u1 - x
which in Python is rendered by:
u1 = random.random()
y = (1+x)*u1 - x
Overall, the Python code can be written like this:
import math
import random
import matplotlib.pyplot as plt
def mySampler():
u0 = random.random()
u1 = random.random()
x = 2*math.sqrt(u0) - 1.0
y = (1+x)*u1 - x
return (x,y)
#--- Main program:
points = (mySampler() for _ in range(10000)) # an iterator object
xx, yy = zip(*points)
plt.scatter(xx, yy, s=0.2)
plt.show()
Graphically, the result looks good enough:
Side note: a cheaper, ad hoc solution:
There is always the possibility of sampling uniformly in the whole square, and rejecting the points whose x+y sum happens to be negative. But this is a bit wasteful. We can have a more elegant solution by noting that the “bad” region has the same shape and area as the “good” region.
So if we get a “bad” point, instead of just rejecting it, we can replace it by its symmetic point with respect to the x+y=0 dividing line. This can be done using the following Python code:
def mySampler2():
x0 = random.uniform(-1.0, 1.0)
y0 = random.uniform(-1.0, 1.0)
s = x0+y0
if (s >= 0):
return (x0, y0) # good point
else:
return (x0-s, y0-s) # symmetric of bad point
This works fine too. And this is probably the cheapest possible solution regarding CPU time, as we reject nothing, and we don't need to compute a square root.
Following Generate random locations within a triangular domain
Code, to sample uniformly in any triangle, Python 3.9.4, Win 10 x64
import math
import random
import matplotlib.pyplot as plt
def trisample(A, B, C):
"""
Given three vertices A, B, C,
sample point uniformly in the triangle
"""
r1 = random.random()
r2 = random.random()
s1 = math.sqrt(r1)
x = A[0] * (1.0 - s1) + B[0] * (1.0 - r2) * s1 + C[0] * r2 * s1
y = A[1] * (1.0 - s1) + B[1] * (1.0 - r2) * s1 + C[1] * r2 * s1
return (x, y)
random.seed(312345)
A = (1, 0)
B = (1, 1)
C = (0, 1)
points = [trisample(A, B, C) for _ in range(10000)]
xx, yy = zip(*points)
plt.scatter(xx, yy, s=0.2)
plt.show()

Algorithm to generate random 2D polygon

I'm not sure how to approach this problem. I'm not sure how complex a task it is. My aim is to have an algorithm that generates any polygon. My only requirement is that the polygon is not complex (i.e. sides do not intersect). I'm using Matlab for doing the maths but anything abstract is welcome.
Any aid/direction?
EDIT:
I was thinking more of code that could generate any polygon even things like this:
I took #MitchWheat and #templatetypedef's idea of sampling points on a circle and took it a bit farther.
In my application I need to be able to control how weird the polygons are, ie start with regular polygons and as I crank up the parameters they get increasingly chaotic. The basic idea is as stated by #templatetypedef; walk around the circle taking a random angular step each time, and at each step put a point at a random radius. In equations I'm generating the angular steps as
where theta_i and r_i give the angle and radius of each point relative to the centre, U(min, max) pulls a random number from a uniform distribution, and N(mu, sigma) pulls a random number from a Gaussian distribution, and clip(x, min, max) thresholds a value into a range. This gives us two really nice parameters to control how wild the polygons are - epsilon which I'll call irregularity controls whether or not the points are uniformly space angularly around the circle, and sigma which I'll call spikeyness which controls how much the points can vary from the circle of radius r_ave. If you set both of these to 0 then you get perfectly regular polygons, if you crank them up then the polygons get crazier.
I whipped this up quickly in python and got stuff like this:
Here's the full python code:
import math, random
from typing import List, Tuple
def generate_polygon(center: Tuple[float, float], avg_radius: float,
irregularity: float, spikiness: float,
num_vertices: int) -> List[Tuple[float, float]]:
"""
Start with the center of the polygon at center, then creates the
polygon by sampling points on a circle around the center.
Random noise is added by varying the angular spacing between
sequential points, and by varying the radial distance of each
point from the centre.
Args:
center (Tuple[float, float]):
a pair representing the center of the circumference used
to generate the polygon.
avg_radius (float):
the average radius (distance of each generated vertex to
the center of the circumference) used to generate points
with a normal distribution.
irregularity (float):
variance of the spacing of the angles between consecutive
vertices.
spikiness (float):
variance of the distance of each vertex to the center of
the circumference.
num_vertices (int):
the number of vertices of the polygon.
Returns:
List[Tuple[float, float]]: list of vertices, in CCW order.
"""
# Parameter check
if irregularity < 0 or irregularity > 1:
raise ValueError("Irregularity must be between 0 and 1.")
if spikiness < 0 or spikiness > 1:
raise ValueError("Spikiness must be between 0 and 1.")
irregularity *= 2 * math.pi / num_vertices
spikiness *= avg_radius
angle_steps = random_angle_steps(num_vertices, irregularity)
# now generate the points
points = []
angle = random.uniform(0, 2 * math.pi)
for i in range(num_vertices):
radius = clip(random.gauss(avg_radius, spikiness), 0, 2 * avg_radius)
point = (center[0] + radius * math.cos(angle),
center[1] + radius * math.sin(angle))
points.append(point)
angle += angle_steps[i]
return points
def random_angle_steps(steps: int, irregularity: float) -> List[float]:
"""Generates the division of a circumference in random angles.
Args:
steps (int):
the number of angles to generate.
irregularity (float):
variance of the spacing of the angles between consecutive vertices.
Returns:
List[float]: the list of the random angles.
"""
# generate n angle steps
angles = []
lower = (2 * math.pi / steps) - irregularity
upper = (2 * math.pi / steps) + irregularity
cumsum = 0
for i in range(steps):
angle = random.uniform(lower, upper)
angles.append(angle)
cumsum += angle
# normalize the steps so that point 0 and point n+1 are the same
cumsum /= (2 * math.pi)
for i in range(steps):
angles[i] /= cumsum
return angles
def clip(value, lower, upper):
"""
Given an interval, values outside the interval are clipped to the interval
edges.
"""
return min(upper, max(value, lower))
#MateuszKonieczny here is code to create an image of a polygon from a list of vertices.
vertices = generate_polygon(center=(250, 250),
avg_radius=100,
irregularity=0.35,
spikiness=0.2,
num_vertices=16)
black = (0, 0, 0)
white = (255, 255, 255)
img = Image.new('RGB', (500, 500), white)
im_px_access = img.load()
draw = ImageDraw.Draw(img)
# either use .polygon(), if you want to fill the area with a solid colour
draw.polygon(vertices, outline=black, fill=white)
# or .line() if you want to control the line thickness, or use both methods together!
draw.line(vertices + [vertices[0]], width=2, fill=black)
img.show()
# now you can save the image (img), or do whatever else you want with it.
There's a neat way to do what you want by taking advantage of the MATLAB classes DelaunayTri and TriRep and the various methods they employ for handling triangular meshes. The code below follows these steps to create an arbitrary simple polygon:
Generate a number of random points equal to the desired number of sides plus a fudge factor. The fudge factor ensures that, regardless of the result of the triangulation, we should have enough facets to be able to trim the triangular mesh down to a polygon with the desired number of sides.
Create a Delaunay triangulation of the points, resulting in a convex polygon that is constructed from a series of triangular facets.
If the boundary of the triangulation has more edges than desired, pick a random triangular facet on the edge that has a unique vertex (i.e. the triangle only shares one edge with the rest of the triangulation). Removing this triangular facet will reduce the number of boundary edges.
If the boundary of the triangulation has fewer edges than desired, or the previous step was unable to find a triangle to remove, pick a random triangular facet on the edge that has only one of its edges on the triangulation boundary. Removing this triangular facet will increase the number of boundary edges.
If no triangular facets can be found matching the above criteria, post a warning that a polygon with the desired number of sides couldn't be found and return the x and y coordinates of the current triangulation boundary. Otherwise, keep removing triangular facets until the desired number of edges is met, then return the x and y coordinates of triangulation boundary.
Here's the resulting function:
function [x, y, dt] = simple_polygon(numSides)
if numSides < 3
x = [];
y = [];
dt = DelaunayTri();
return
end
oldState = warning('off', 'MATLAB:TriRep:PtsNotInTriWarnId');
fudge = ceil(numSides/10);
x = rand(numSides+fudge, 1);
y = rand(numSides+fudge, 1);
dt = DelaunayTri(x, y);
boundaryEdges = freeBoundary(dt);
numEdges = size(boundaryEdges, 1);
while numEdges ~= numSides
if numEdges > numSides
triIndex = vertexAttachments(dt, boundaryEdges(:,1));
triIndex = triIndex(randperm(numel(triIndex)));
keep = (cellfun('size', triIndex, 2) ~= 1);
end
if (numEdges < numSides) || all(keep)
triIndex = edgeAttachments(dt, boundaryEdges);
triIndex = triIndex(randperm(numel(triIndex)));
triPoints = dt([triIndex{:}], :);
keep = all(ismember(triPoints, boundaryEdges(:,1)), 2);
end
if all(keep)
warning('Couldn''t achieve desired number of sides!');
break
end
triPoints = dt.Triangulation;
triPoints(triIndex{find(~keep, 1)}, :) = [];
dt = TriRep(triPoints, x, y);
boundaryEdges = freeBoundary(dt);
numEdges = size(boundaryEdges, 1);
end
boundaryEdges = [boundaryEdges(:,1); boundaryEdges(1,1)];
x = dt.X(boundaryEdges, 1);
y = dt.X(boundaryEdges, 2);
warning(oldState);
end
And here are some sample results:
The generated polygons could be either convex or concave, but for larger numbers of desired sides they will almost certainly be concave. The polygons are also generated from points randomly generated within a unit square, so polygons with larger numbers of sides will generally look like they have a "squarish" boundary (such as the lower right example above with the 50-sided polygon). To modify this general bounding shape, you can change the way the initial x and y points are randomly chosen (i.e. from a Gaussian distribution, etc.).
For a convex 2D polygon (totally off the top of my head):
Generate a random radius, R
Generate N random points on the circumference of a circle of Radius R
Move around the circle and draw straight lines between adjacent points on the circle.
As #templatetypedef and #MitchWheat said, it is easy to do so by generating N random angles and radii. It is important to sort the angles, otherwise it will not be a simple polygon. Note that I am using a neat trick to draw closed curves - I described it in here. By the way, the polygons might be concave.
Note that all of these polygons will be star shaped. Generating a more general polygon is not a simple problem at all.
Just to give you a taste of the problem - check out
http://www.cosy.sbg.ac.at/~held/projects/rpg/rpg.html
and http://compgeom.cs.uiuc.edu/~jeffe/open/randompoly.html.
function CreateRandomPoly()
figure();
colors = {'r','g','b','k'};
for i=1:5
[x,y]=CreatePoly();
c = colors{ mod(i-1,numel(colors))+1};
plotc(x,y,c);
hold on;
end
end
function [x,y]=CreatePoly()
numOfPoints = randi(30);
theta = randi(360,[1 numOfPoints]);
theta = theta * pi / 180;
theta = sort(theta);
rho = randi(200,size(theta));
[x,y] = pol2cart(theta,rho);
xCenter = randi([-1000 1000]);
yCenter = randi([-1000 1000]);
x = x + xCenter;
y = y + yCenter;
end
function plotc(x,y,varargin)
x = [x(:) ; x(1)];
y = [y(:) ; y(1)];
plot(x,y,varargin{:})
end
Here is a working port for Matlab of Mike Ounsworth solution. I did not optimized it for matlab. I might update the solution later for that.
function [points] = generatePolygon(ctrX, ctrY, aveRadius, irregularity, spikeyness, numVerts)
%{
Start with the centre of the polygon at ctrX, ctrY,
then creates the polygon by sampling points on a circle around the centre.
Randon noise is added by varying the angular spacing between sequential points,
and by varying the radial distance of each point from the centre.
Params:
ctrX, ctrY - coordinates of the "centre" of the polygon
aveRadius - in px, the average radius of this polygon, this roughly controls how large the polygon is, really only useful for order of magnitude.
irregularity - [0,1] indicating how much variance there is in the angular spacing of vertices. [0,1] will map to [0, 2pi/numberOfVerts]
spikeyness - [0,1] indicating how much variance there is in each vertex from the circle of radius aveRadius. [0,1] will map to [0, aveRadius]
numVerts - self-explanatory
Returns a list of vertices, in CCW order.
Website: https://stackoverflow.com/questions/8997099/algorithm-to-generate-random-2d-polygon
%}
irregularity = clip( irregularity, 0,1 ) * 2*pi/ numVerts;
spikeyness = clip( spikeyness, 0,1 ) * aveRadius;
% generate n angle steps
angleSteps = [];
lower = (2*pi / numVerts) - irregularity;
upper = (2*pi / numVerts) + irregularity;
sum = 0;
for i =1:numVerts
tmp = unifrnd(lower, upper);
angleSteps(i) = tmp;
sum = sum + tmp;
end
% normalize the steps so that point 0 and point n+1 are the same
k = sum / (2*pi);
for i =1:numVerts
angleSteps(i) = angleSteps(i) / k;
end
% now generate the points
points = [];
angle = unifrnd(0, 2*pi);
for i =1:numVerts
r_i = clip( normrnd(aveRadius, spikeyness), 0, 2*aveRadius);
x = ctrX + r_i* cos(angle);
y = ctrY + r_i* sin(angle);
points(i,:)= [(x),(y)];
angle = angle + angleSteps(i);
end
end
function value = clip(x, min, max)
if( min > max ); value = x; return; end
if( x < min ) ; value = min; return; end
if( x > max ) ; value = max; return; end
value = x;
end

Does anyone know how to do an "inverse" trilinear interpolation?

Trilinear interpolation approximates the value of a point (x, y, z) inside a cube using the values at the cube vertices. I´m trying to do an "inverse" trilinear interpolation. Knowing the values at the cube vertices and the value attached to a point how can I find (x, y, z)? Any help would be highly appreciated. Thank you!
You are solving for 3 unknowns given 1 piece of data, and as you are using a linear interpolation your answer will typically be a plane (2 free variables). Depending on the cube there may be no solutions or a 3D solution space.
I would do the following. Let v be the initial value. For each "edge" of the 12 edges (pair of adjacent vertices) of the cube look to see if 1 vertex is >=v and the other <=v - call this an edge that crosses v.
If no edges cross v, then there are no possible solutions.
Otherwise, for each edge that crosses v, if both vertices for the edge equal v, then the whole edge is a solution. Otherwise, linearly interpolate on the edge to find the point that has a value of v. So suppose the edge is (x1, y1, z1)->v1 <= v <= (x2, y2, z2)->v2.
s = (v-v1)/(v2-v1)
(x,y,z) = (s*(x2-x1)+x1, (s*(y2-y1)+y1, s*(z2-z1)+z1)
This will give you all edge points that are equal to v. This is a solution, but possibly you want an internal solution - be aware that if there is an internal solution there will always be an edge solution.
If you want an internal solution then just take any point linearly between the edge solutions - as you are linearly interpolating then the result will also be v.
I'm not sure you can for all cases. For example using tri-linear filtering for colours where each colour (C) at each point is identical means that wherever you interpolate to you will still get the colour C returned. In this situation ANY x,y,z could be valid. As such it would be impossible to say for definite what the initial interpolation values were.
I'm sure for some cases you can reverse the maths but, i imagine, there are far too many cases where this is impossible to do without knowing more of the input information.
Good luck, I hope someone will prove me wrong :)
The wikipedia page for trilinear interpolation has link to a NASA page which allegedly describes the inversing process - have you had a look at that?
The problem as you're describing it somewhat ill-defined.
What you're asking for basically translates to this: I have a 3D function and I know its values in 8 known points. I'd like to know what is the point in which the function received value V.
The trouble is that in most likelihood there is an infinite number of such points which make a set of surfaces, lines or points, depending on the data.
One way to find this set is to use an iso-surfacing algorithm like Marching cubes.
Let's start with 2d: think of a bilinear hill over a square km,
with heights say 0 10 20 30 at the 4 corners
and a horizontal plane cutting the hill at height z.
Draw a line from the 0 corner to the 30 corner (whether adjacent or diagonal).
The plane must cut this line, for any z,
so all points x,y,z fall on this one line, right ? Hmm.
OK, there are many solutions -- any z plane cuts the hill in a contour curve.
Say we want solutions to be spread out over the whole hill,
i.e. minimize two things at once:
vertical distance z - bilin(x,y),
distance from x,y to some point in the square.
Scipy.optimize.leastsq is one way of doing this, sample code below;
trilinear is similar.
(Optimizing any two things at once requires an arbitrary tradeoff or weighting:
food vs. money, work vs. play ...
Cf. Bounded rationality
)
""" find x,y so bilin(x,y) ~ z and x,y near the middle """
from __future__ import division
import numpy as np
from scipy.optimize import leastsq
zmax = 30
corners = [ 0, 10, 20, zmax ]
midweight = 10
def bilin( x, y ):
""" bilinear interpolate
in: corners at 0 0 0 1 1 0 1 1 in that order (binary)
see wikipedia Bilinear_interpolation ff.
"""
z00,z01,z10,z11 = corners # 0 .. 1
return (z00 * (1-x) * (1-y)
+ z01 * (1-x) * y
+ z10 * x * (1-y)
+ z11 * x * y)
vecs = np.array([ (x, y) for x in (.25, .5, .75) for y in (.25, .5, .75) ])
def nearvec( x, vecs ):
""" -> (min, nearest vec) """
t = (np.inf,)
for v in vecs:
n = np.linalg.norm( x - v )
if n < t[0]: t = (n, v)
return t
def lsqmin( xy ): # z, corners
x,y = xy
near = nearvec( np.array(xy), vecs )[0] * midweight
return (z - bilin( x, y ), near )
# i.e. find x,y so both bilin(x,y) ~ z and x,y near a point in vecs
#...............................................................................
if __name__ == "__main__":
import sys
ftol = .1
maxfev = 10
exec "\n".join( sys.argv[1:] ) # ftol= ...
x0 = np.array(( .5, .5 ))
sumdiff = 0
for z in range(zmax+1):
xetc = leastsq( lsqmin, x0, ftol=ftol, maxfev=maxfev, full_output=1 )
# (x, {cov_x, infodict, mesg}, ier)
x,y = xetc[0] # may be < 0 or > 1
diff = bilin( x, y ) - z
sumdiff += abs(diff)
print "%.2g %8.2g %5.2g %5.2g" % (z, diff, x, y)
print "ftol %.2g maxfev %d midweight %.2g => av diff %.2g" % (
ftol, maxfev, midweight, sumdiff/zmax)

3D Least Squares Plane

What's the algorithm for computing a least squares plane in (x, y, z) space, given a set of 3D data points? In other words, if I had a bunch of points like (1, 2, 3), (4, 5, 6), (7, 8, 9), etc., how would one go about calculating the best fit plane f(x, y) = ax + by + c? What's the algorithm for getting a, b, and c out of a set of 3D points?
If you have n data points (x[i], y[i], z[i]), compute the 3x3 symmetric matrix A whose entries are:
sum_i x[i]*x[i], sum_i x[i]*y[i], sum_i x[i]
sum_i x[i]*y[i], sum_i y[i]*y[i], sum_i y[i]
sum_i x[i], sum_i y[i], n
Also compute the 3 element vector b:
{sum_i x[i]*z[i], sum_i y[i]*z[i], sum_i z[i]}
Then solve Ax = b for the given A and b. The three components of the solution vector are the coefficients to the least-square fit plane {a,b,c}.
Note that this is the "ordinary least squares" fit, which is appropriate only when z is expected to be a linear function of x and y. If you are looking more generally for a "best fit plane" in 3-space, you may want to learn about "geometric" least squares.
Note also that this will fail if your points are in a line, as your example points are.
The equation for a plane is: ax + by + c = z. So set up matrices like this with all your data:
x_0 y_0 1
A = x_1 y_1 1
...
x_n y_n 1
And
a
x = b
c
And
z_0
B = z_1
...
z_n
In other words: Ax = B. Now solve for x which are your coefficients. But since (I assume) you have more than 3 points, the system is over-determined so you need to use the left pseudo inverse. So the answer is:
a
b = (A^T A)^-1 A^T B
c
And here is some simple Python code with an example:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
N_POINTS = 10
TARGET_X_SLOPE = 2
TARGET_y_SLOPE = 3
TARGET_OFFSET = 5
EXTENTS = 5
NOISE = 5
# create random data
xs = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
ys = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
zs = []
for i in range(N_POINTS):
zs.append(xs[i]*TARGET_X_SLOPE + \
ys[i]*TARGET_y_SLOPE + \
TARGET_OFFSET + np.random.normal(scale=NOISE))
# plot raw data
plt.figure()
ax = plt.subplot(111, projection='3d')
ax.scatter(xs, ys, zs, color='b')
# do fit
tmp_A = []
tmp_b = []
for i in range(len(xs)):
tmp_A.append([xs[i], ys[i], 1])
tmp_b.append(zs[i])
b = np.matrix(tmp_b).T
A = np.matrix(tmp_A)
fit = (A.T * A).I * A.T * b
errors = b - A * fit
residual = np.linalg.norm(errors)
print("solution:")
print("%f x + %f y + %f = z" % (fit[0], fit[1], fit[2]))
print("errors:")
print(errors)
print("residual:")
print(residual)
# plot plane
xlim = ax.get_xlim()
ylim = ax.get_ylim()
X,Y = np.meshgrid(np.arange(xlim[0], xlim[1]),
np.arange(ylim[0], ylim[1]))
Z = np.zeros(X.shape)
for r in range(X.shape[0]):
for c in range(X.shape[1]):
Z[r,c] = fit[0] * X[r,c] + fit[1] * Y[r,c] + fit[2]
ax.plot_wireframe(X,Y,Z, color='k')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
unless someone tells me how to type equations here, let me just write down the final computations you have to do:
first, given points r_i \n \R, i=1..N, calculate the center of mass of all points:
r_G = \frac{\sum_{i=1}^N r_i}{N}
then, calculate the normal vector n, that together with the base vector r_G defines the plane by calculating the 3x3 matrix A as
A = \sum_{i=1}^N (r_i - r_G)(r_i - r_G)^T
with this matrix, the normal vector n is now given by the eigenvector of A corresponding to the minimal eigenvalue of A.
To find out about the eigenvector/eigenvalue pairs, use any linear algebra library of your choice.
This solution is based on the Rayleight-Ritz Theorem for the Hermitian matrix A.
See 'Least Squares Fitting of Data' by David Eberly for how I came up with this one to minimize the geometric fit (orthogonal distance from points to the plane).
bool Geom_utils::Fit_plane_direct(const arma::mat& pts_in, Plane& plane_out)
{
bool success(false);
int K(pts_in.n_cols);
if(pts_in.n_rows == 3 && K > 2) // check for bad sizing and indeterminate case
{
plane_out._p_3 = (1.0/static_cast<double>(K))*arma::sum(pts_in,1);
arma::mat A(pts_in);
A.each_col() -= plane_out._p_3; //[x1-p, x2-p, ..., xk-p]
arma::mat33 M(A*A.t());
arma::vec3 D;
arma::mat33 V;
if(arma::eig_sym(D,V,M))
{
// diagonalization succeeded
plane_out._n_3 = V.col(0); // in ascending order by default
if(plane_out._n_3(2) < 0)
{
plane_out._n_3 = -plane_out._n_3; // upward pointing
}
success = true;
}
}
return success;
}
Timed at 37 micro seconds fitting a plane to 1000 points (Windows 7, i7, 32bit program)
This reduces to the Total Least Squares problem, that can be solved using SVD decomposition.
C++ code using OpenCV:
float fitPlaneToSetOfPoints(const std::vector<cv::Point3f> &pts, cv::Point3f &p0, cv::Vec3f &nml) {
const int SCALAR_TYPE = CV_32F;
typedef float ScalarType;
// Calculate centroid
p0 = cv::Point3f(0,0,0);
for (int i = 0; i < pts.size(); ++i)
p0 = p0 + conv<cv::Vec3f>(pts[i]);
p0 *= 1.0/pts.size();
// Compose data matrix subtracting the centroid from each point
cv::Mat Q(pts.size(), 3, SCALAR_TYPE);
for (int i = 0; i < pts.size(); ++i) {
Q.at<ScalarType>(i,0) = pts[i].x - p0.x;
Q.at<ScalarType>(i,1) = pts[i].y - p0.y;
Q.at<ScalarType>(i,2) = pts[i].z - p0.z;
}
// Compute SVD decomposition and the Total Least Squares solution, which is the eigenvector corresponding to the least eigenvalue
cv::SVD svd(Q, cv::SVD::MODIFY_A|cv::SVD::FULL_UV);
nml = svd.vt.row(2);
// Calculate the actual RMS error
float err = 0;
for (int i = 0; i < pts.size(); ++i)
err += powf(nml.dot(pts[i] - p0), 2);
err = sqrtf(err / pts.size());
return err;
}
As with any least-squares approach, you proceed like this:
Before you start coding
Write down an equation for a plane in some parameterization, say 0 = ax + by + z + d in thee parameters (a, b, d).
Find an expression D(\vec{v};a, b, d) for the distance from an arbitrary point \vec{v}.
Write down the sum S = \sigma_i=0,n D^2(\vec{x}_i), and simplify until it is expressed in terms of simple sums of the components of v like \sigma v_x, \sigma v_y^2, \sigma v_x*v_z ...
Write down the per parameter minimization expressions dS/dx_0 = 0, dS/dy_0 = 0 ... which gives you a set of three equations in three parameters and the sums from the previous step.
Solve this set of equations for the parameters.
(or for simple cases, just look up the form). Using a symbolic algebra package (like Mathematica) could make you life much easier.
The coding
Write code to form the needed sums and find the parameters from the last set above.
Alternatives
Note that if you actually had only three points, you'd be better just finding the plane that goes through them.
Also, if the analytic solution in unfeasible (not the case for a plane, but possible in general) you can do steps 1 and 2, and use a Monte Carlo minimizer on the sum in step 3.
CGAL::linear_least_squares_fitting_3
Function linear_least_squares_fitting_3 computes the best fitting 3D
line or plane (in the least squares sense) of a set of 3D objects such
as points, segments, triangles, spheres, balls, cuboids or tetrahedra.
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Principal_component_analysis_ref/Function_linear_least_squares_fitting_3.html
It sounds like all you want to do is linear regression with 2 regressors. The wikipedia page on the subject should tell you all you need to know and then some.
All you'll have to do is to solve the system of equations.
If those are your points:
(1, 2, 3), (4, 5, 6), (7, 8, 9)
That gives you the equations:
3=a*1 + b*2 + c
6=a*4 + b*5 + c
9=a*7 + b*8 + c
So your question actually should be: How do I solve a system of equations?
Therefore I recommend reading this SO question.
If I've misunderstood your question let us know.
EDIT:
Ignore my answer as you probably meant something else.
We first present a linear least-squares plane fitting method that minimizes the residuals between the estimated normal vector and provided points.
Recall that the equation for a plane passing through origin is Ax + By + Cz = 0, where (x, y, z) can be any point on the plane and (A, B, C) is the normal vector perpendicular to this plane.
The equation for a general plane (that may or may not pass through origin) is Ax + By + Cz + D = 0, where the additional coefficient D represents how far the plane is away from the origin, along the direction of the normal vector of the plane. [Note that in this equation (A, B, C) forms a unit normal vector.]
Now, we can apply a trick here and fit the plane using only provided point coordinates. Divide both sides by D and rearrange this term to the right-hand side. This leads to A/D x + B/D y + C/D z = -1. [Note that in this equation (A/D, B/D, C/D) forms a normal vector with length 1/D.]
We can set up a system of linear equations accordingly, and then solve it by an Eigen solver in C++ as follows.
// Example for 5 points
Eigen::Matrix<double, 5, 3> matA; // row: 5 points; column: xyz coordinates
Eigen::Matrix<double, 5, 1> matB = -1 * Eigen::Matrix<double, 5, 1>::Ones();
// Find the plane normal
Eigen::Vector3d normal = matA.colPivHouseholderQr().solve(matB);
// Check if the fitting is healthy
double D = 1 / normal.norm();
normal.normalize(); // normal is a unit vector from now on
bool planeValid = true;
for (int i = 0; i < 5; ++i) { // compare Ax + By + Cz + D with 0.2 (ideally Ax + By + Cz + D = 0)
if ( fabs( normal(0)*matA(i, 0) + normal(1)*matA(i, 1) + normal(2)*matA(i, 2) + D) > 0.2) {
planeValid = false; // 0.2 is an experimental threshold; can be tuned
break;
}
}
We then discuss its equivalence to the typical SVD-based method and their comparison.
The aforementioned linear least-squares (LLS) method fits the general plane equation Ax + By + Cz + D = 0, whereas the SVD-based method replaces D with D = - (Ax0 + By0 + Cz0) and fits the plane equation A(x-x0) + B(y-y0) + C(z-z0) = 0, where (x0, y0, z0) is the mean of all points that serves as the origin of the new local coordinate frame.
Comparison between two methods:
The LLS fitting method is much faster than the SVD-based method, and is suitable for use when points are known to be roughly in a plane shape.
The SVD-based method is more numerically stable when the plane is far away from origin, because the LLS method would require more digits after decimal to be stored and processed in such cases.
The LLS method can detect outliers by checking the dot product residual between each point and the estimated normal vector, whereas the SVD-based method can detect outliers by checking if the smallest eigenvalue of the covariance matrix is significantly smaller than the two larger eigenvalues (i.e. checking the shape of the covariance matrix).
We finally provide a test case in C++ and MATLAB.
// Test case in C++ (using LLS fitting method)
matA(0,0) = 5.4637; matA(0,1) = 10.3354; matA(0,2) = 2.7203;
matA(1,0) = 5.8038; matA(1,1) = 10.2393; matA(1,2) = 2.7354;
matA(2,0) = 5.8565; matA(2,1) = 10.2520; matA(2,2) = 2.3138;
matA(3,0) = 6.0405; matA(3,1) = 10.1836; matA(3,2) = 2.3218;
matA(4,0) = 5.5537; matA(4,1) = 10.3349; matA(4,2) = 1.8796;
// With this sample data, LLS fitting method can produce the following result
// fitted normal vector = (-0.0231143, -0.0838307, -0.00266429)
// unit normal vector = (-0.265682, -0.963574, -0.0306241)
// D = 11.4943
% Test case in MATLAB (using SVD-based method)
points = [5.4637 10.3354 2.7203;
5.8038 10.2393 2.7354;
5.8565 10.2520 2.3138;
6.0405 10.1836 2.3218;
5.5537 10.3349 1.8796]
covariance = cov(points)
[V, D] = eig(covariance)
normal = V(:, 1) % pick the eigenvector that corresponds to the smallest eigenvalue
% normal = (0.2655, 0.9636, 0.0306)

Resources